1 Supplementary Information for

2	Post-reproductive Killer Whale Grandmothers Improve the Survival of their Grandoffspring
3 4	Stuart Nattrass, Darren Croft P., Samuel Ellis, Michael A. Cant, Michael N. Weiss, Brianna Wright, Eva Stredulinsky, Thomas Doniol-Valcroze, John K.B. Ford, Kenneth C. Balcomb, Daniel W. Franks
5	Corresponding author: Daniel Franks
6	Email: daniel.franks@york.ac.uk
7	
8	This PDF file includes:
9	Supplementary text
10	Tables S1 to S12
11	Data Description
12	Supplementary information
13	Parameter list for coefficients used in the model comparisons:
14	sex = 1 if individual is male, 0 if female, and 0.5 if unknown
15	<i>MR</i> = 1 if mother died in last 2 years
16	<i>ML</i> = 1 if mother died prior to last 2 years
17	sMA = sex if mother is living
18	sMR = sex if MR=1
19	<i>sML</i> = <i>sex</i> if ML=1
20	gmA = 1 if grandmother is living
21	gmR = 1 if grandmother died in last 2 years
22	gmL = 1 if grandmother died prior to last 2 years
23	sgmA = sex if gmA = 1
24	sgmR = sex if gmR = 1
25	sgmL = sex if gmL= 1
26	gmo45 =1 if the grandmother has died and was aged over 45 (post-reproductive) at death
27	<i>slm</i> = observed salmon abundance in given year
28	mageAlive = current age of the focal individuals mother if she is alive, 0 otherwise
29	Each binary parameter is set to zero if their respective conditions are not met.
30	

31 Model Selection

32 Each table 3-6 presents the median hazard coefficients of the variables over 10,000 randomisations

of the death order. The final column represents our model selection criteria, where the lowest AIC is
 considered the most parsimonious model. The best model is highlighted in bold. Mother effect

35 models were used to determine which mothering terms were included in the models, with the terms

36 from the best mother model being carried over.

37 All statistical models were compared via AIC. We calculate Δ AIC for each of *R* models by subtracting 38 the minimum AIC value from all AICs, and then calculate model weights (*w*) for each model *i* as

39
$$w_i = \frac{\exp\left(-0.5 \cdot \Delta \text{AIC}_i\right)}{\sum_{r=1}^{R} \exp\left(-0.5 \cdot \Delta \text{AIC}_r\right)}$$

40 This quantity is often interpreted as the probability that a given model is the K-L best model out of 41 the candidate set (table 1).

Model	Terms	AIC	ΔΑΙϹ	w
1	MR + ML + sMA + sMR + sML	1263.629	9.569495	0.001598
2	sMA + sMR + sML	1260.415	6.355493	0.007972
3	sMR	1258.323	4.263298	0.022692
4	gmA	1272.207	18.1471	2.19E-05
5	MR + ML + sMA + sMR + sML + mageA	1265.129	11.06929	0.000755
6	sMA + sMR + sML + mageA	1262.144	8.084595	0.003358
7	sMR + mageA	1260.102	6.04215	0.009324
8	sMR + gmR + gmL + sgmA + sgmR + sgmL + slm	1259.384	5.324206	0.013351
	sMR + gmR + gmL + sgmA + sgmR + sgmL + gmo45 +			
9	slm	1260.588	6.528728	0.00731
10	sMR + gmR + gmo45	1254.824	0.764295	0.13052
11	sMR + gmR + gmo45 + slm	1255.435	1.375307	0.096161
12	sMR + gmR + sIm	1256.759	2.699272	0.049602
13	sMR + gmR	1255.882	1.821992	0.076913
14	sMR + gmR + gmo45 + slm + gmR:slm + gmo45:slm	1257.172	3.112457	0.040344
15	sMR + gmR + gmo45 + slm + gmR:slm	1255.353	1.293509	0.100175
16	sMR + gmR + gmo45 + gmR:slm	1254.06	0	0.191267
17	sMR + gmR + gmo45 + slm + gmo45:slm	1257.148	3.088062	0.040839
18	sMR + gmR + gmo45 + gmo45:slm	1255.42	1.360516	0.096874
19	sMR + gmR + gmo45 + gmR:slm + mageA	1256.055	1.995649	0.070517

42 **Table S1.** Summary of models and selection criteria. All models with ΔAIC < 2 are in bold

20	sMR + gmR + gmR:slm + mageA	1257.169	3.109427	0.040405

44 A term's model-averaged coefficient $\bar{\beta}$ is then

45

$$\bar{\beta} = \sum_{i=1}^{R} w_i \hat{\beta}_i$$

46 Where $\hat{\beta}$ is the estimated coefficient of the term in model *i*, which is 0 when the term is not included 47 in the model.

48 Similarly, a term's variable importance is simply the sum of the weights of the models in which that49 term is included (table 2).

50 **Table S2.** Model averaged coefficients and variable importance for all terms. Terms with variable

51 importance > 0.9 are in bold.

Term	Model Averaged Coefficient	Variable Importance
motherrecent	0.001574	0.002353
motherlong	0.000934	0.002353
sexmotheralive	0.004516	0.013683
sexmotherrecent	2.884683	0.999978
sexmotherlong	0.003597	0.013683
motheragealive	8.53E-05	0.124359
gmalive	-8.66E-06	2.19E-05
gmrecent	2.128937	0.954278
gmlong	0.000734	0.020661
sexgmalive	0.001895	0.020661
sexgmrecent	0.008289	0.020661
sexgmlong	0.010244	0.020661
gmover45	0.37338	0.774007
salmon	-0.06953	0.347782
gmRsIm	-1.11666	0.442708
gmo45slm	-0.05812	0.178058

52

53

54

55 Mother effect model selection

Model	MR	ML	sMA	sMR	sML	AIC
1	0.587	0.276	0.363	2.503	0.056	1263.629
	(-1.659:	(-0.789:	(-0.135:	(-0.327:	(-1.294:	
	2.903)	1.341)	0.861)	5.174)	1.409)	
	P=0.594	P=0.612	P=0.153	P=0.081	P=0.935	
2			0.327	3.079	0.285	1260.415
			(-0.149:	(2.017:	(-0.735:	
			0.805)	4.155)	1.305)	
			P=0.179	P=1.0e-8	P=0.584	
3				2.893		1258.323
				(1.831:		
				3.927)		
				P=8.4e-8		

56 **Table S3:** Statistics for fitted models with only the mother survival terms, and sex terms.

57 Grandmother alive/dead only model

Model	gmA	AIC
4	-0.395	1272.207
	(-0.775:	
	-0.015)	
	P=0.042	

58 **Table S4:** Statistics for the fitted model with only the grandmother alive/dead survival term.

59 Mother effect model selection including mageAlive

Model	MR	ML	sMA	sMR	sML	mageAlive	AIC
5	0.841	0.653	0.347	2.587	0.045	0.009	1265.129
	(-1.507:	(-0.737:	(-0.149:	(-0.296:	(-1.316:	(-0.013:	
	3.214)	2.046)	0.846)	5.313)	1.407)	0.032)	
	P=0.493	P=0.358	P=0.170	P=0.077	P=0.948	P=0.413	
6			0.316	3.150	0.358	0.002	1262.144
			(-0.171:	(1.955:	(-0.830:	(-0.154:	
			0.804)	4.357)	1.546)	0.020)	
			P=0.204	P=2.6e-7	P=0.555	P=0.801	

7		2.968	0.002	1260.102
		(1.839:	(-0.012:	
		4.100)	0.017)	
		P=1.8e-7	P=0.763	

Table S5: Statistics for fitted models with only the mother survival terms, and sex terms, but with current mother age
 added to each model from table S3.

62

63 Grandmother model selection

Mod el	sMR	gmR	gmL	sgmA	sgmR	sgmL	gmo45	slm	AIC
8	2.622 (1.561: 3.683) P=9.7e-7 2.668 (1.597: 3.748) P=9.7e-7	0.813 (-0.625: 2.254) P=0.268 0.652 (-0.852: 2.149) P=0.395	0.082 (- 0.589: 0.752) P=0.81 1 -0.049 (- 0.790: 0.690) P=0.89	0.091 (- 0.646: 0.826) P=0.80 9 0.094 (- 0.644: 0.830) P=0.80	0.408 (- 1.413: 2.262) P=0.65 4 0.389 (- 1.448: 2.261) P=0.67	0.503 (-0.118: 1.126) P=0.113 0.482 (-0.139: 1.104) P=0.128	0.253 (- 0.288: 0.795) P=0.35	-0.233 (-0.665: 0.200) P=0.292 -0.232 (-0.665: 0.201) P=0.294	1259.3 84 1260.5 88
10	2.926 (1.876: 3.974) P=4.5e-8	0.718 (-0.135: 1.570) P=0.099	2	4	3		9 0.386 (- 0.019: 0.792) P=0.06 2		1254.8 24
11	2.863 (1.810: 3.915) P=1.0e-7	0.688 (-0.169: 1.544) P=0.116					0.384 (- 0.022: 0.790) P=0.06 3	-0.237 (-0.672: 0.199) P=0.287	1255.4 35
12	2.823	0.887						-0.238	1256.7 59

	(1.777:	(0.058:			(-0.673:	
	3.878)	1.716)			0.197)	
	P=1.5e-7	P=0.036			P=0.283	
13	2.899	0.924				1255.8
	(1.853:	(0.097:				82
	3.940)	1.750)				
	P=5.3e-8	P=0.029				

64 **Table S6:** Statistics for fitted models with mother, grandmother, sex interactions, and additive salmon terms.

65 Interaction between grandmothering and salmon abundance

Model	sMR	gmR	Gmo45	slm	gmR*slm	Gmo45*slm	AIC
14	2.859	1.477	0.648	-0.129	-0.578	-0.202	1257.172
	(1.802:	(-1.683:	(-0.703:	(-0.671:	(-3.327:	(-10108:	
	3.922)	4.858)	2.001)	0.414)	1.997)	0.704)	
	P=1.3e-7	P=0.369	P=0.347	P=0.643	P=0.671	P=0.662	
15	2.853	3.853	0.369	-0.193	-2.496		1255.353
	(1.795:	(-1.129:	(-0.041:	(-0.632:	(-6.258:		
	3.912)	8.169)	0.778)	0.246	0.246)		
	-	-	-	_	-		
	P=1.3e-7	P=0.107	P=0.078	P=0.388	P=0.194		
16	2.898	4.318	0.368		-2.811		1254.06
	(1.842:	(-0.731:	(-0.041:		(-6.542:		
	3.955)	8.544)	0.778)		1.533)		
	P=7.6e-8	P=0.086	P=0.078		P=0.152		
17	2.868	0.657	0.767	-0.137		-0.267	1257.148
	(1.816:	(-0.202:	(-0.570:	(-0.681:		(-1.166:	
	3.925)	1.518)	2.103)	0.406)		0.632)	
	P=1.0e-7	P=0.134	P=0.261	P=0.621		P=0.561	
18	2.891	0.657	0.961			-0.403	1255.42
	(1.843:	(-0.202:	(-0.123:			(-1.124:	
	3.945)	1.517)	2.046)			0.318)	
	P=7.3e-8	P=0.134	P=0.082			0.274	

66

Table S7: Statistics for fitted models that include an interaction between grandmother death and salmon index

67 68 Comparison of mother age and post-reproductive grandmother effects in best fitting model

sMR	gmR	Gmo45	gmR:slm	mageAlive	AIC
2.894	4.167	0.372	-2.704	-0.0004	1256.055
(1.750:	(-0.786:	(-0.046:	(-6.441:	(-0.015:	
4.037)	8.432)	0.789)	1.526)	0.014)	
P=7.8e-7	P=0.086	P=0.081	P=0.156	P=0.917	
2.940	4.519		-2.847	0.002	1257.169
(1.793:	(-0.375:		(-6.618:	(-0.013:	
4.086)	8.808)		1.391)	0.017)	
P=5.4e-7	P=0.065		P=0.139	P=0.789	
	2.894 (1.750: 4.037) P=7.8e-7 2.940 (1.793: 4.086)	2.894 4.167 (1.750: (-0.786: 4.037) 8.432) P=7.8e-7 P=0.086 2.940 4.519 (1.793: (-0.375: 4.086) 8.808)	2.8944.1670.372(1.750:(-0.786:(-0.046:4.037)8.432)0.789)P=7.8e-7P=0.086P=0.0812.9404.519	2.8944.1670.372-2.704(1.750:(-0.786:(-0.046:(-6.441:4.037)8.432)0.789)1.526)P=7.8e-7P=0.086P=0.081P=0.1562.9404.519-2.847(1.793:(-0.375:(-6.618:4.086)8.808)1.391)	2.8944.1670.372-2.704-0.0004(1.750:(-0.786:(-0.046:(-6.441:(-0.015:4.037)8.432)0.789)1.526)0.014)P=7.8e-7P=0.086P=0.081P=0.156P=0.9172.9404.519-2.8470.002(1.793:(-0.375:(-6.618:(-0.013:4.086)8.808)1.391)0.017)

⁶⁹ 70

Table S8: Statistics for models comparing the best fitting model from Table S7 to that same model including current
 mother age, and replacing grandmother age at death with current mother age

71

72 Baseline hazard results for model 16

Age	survival
0	1
0.01	0.9317914
1	0.9109458
2	0.8922604
3	0.8662591
3 4 5	0.8325562
	0.8086164
6	0.7917492
7	0.7774825
8	0.7666257
9	0.7630136
10	0.7554141
11	0.7515013
12	0.7428485
13	0.7245344
14	0.7102096
15	0.7001025
16	0.6948398
17	0.6948398
18	0.6842934
19	0.6842934
20	0.6842934
21	0.6432206
22	0.6233646
23	0.6233646
24	0.6067848

25	0.5789901
26	0.5674077
27	0.5674077
28	0.5674077
29	0.5674077
30	0.5674077
31	0.5674077
32	0.5171197
33	0.5171197
34	0.5171197
35	0.5171197
36	0.5171197
37	0.5171197
38	0.3716110
39	0.3202017
40	0.3202017
41	0.3202017

Table S9: The baseline hazard for the best fitting model 16. This baseline is the case where both mother and grandmother 74 remain alive for the duration

75

76 **Data Information**

77 Each row of data accounts for a period of an individual whale's life. This time period is generally a

78 single year, except in cases where multiple family members die within the same year. In this case,

79 the period of time covered by a row is assigned a duration of 0.01 years.

80 The data as presented contains the assumption that the focal individual dies last whenever there are

81 multiple family members who die within the same year. The column p.rowexists is then used to

82 facilitate randomisation of death order (see below)

83 Variable Details

84	٠	Id
85		 Anonymised identifier for the individual whale
86	٠	X.mother
87		\circ Anonymised identifier for the mother of the focal individual. Hereafter referred to as
88		"the mother"
89	٠	Grandmother
90		\circ Anonymised identifier for the focal individual's grandmother. Hereafter referred to
91		as "the grandmother"
92	•	Sex
93		 1 if male, 0 if female. Individuals of unknown sex are assigned a value of 0.5,
94		equivalent to randomised sex

95	•	Salmon
96		 Salmon index value for the time period considered
97	٠	Motheralive
98		 1 if the mother is still alive during this time period, 0 otherwise
99	•	Motherrecent
100		 1 if the mother has died within the previous 2 years, 0 otherwise
101	٠	Motherlong
102		 1 if the mother has died prior to the previous two years, 0 otherwise
103	٠	Gmalive
104		\circ 1 if the grandmother is alive during this time period, 0 otherwise
105	٠	Gmrecent
106		 1 if the grandmother has died within the previous 2 years, 0 otherwise
107	٠	Gmlong
108		 1 if the grandmother has died prior to the previous two years, 0 otherwise
109	٠	Sexmotheralive
110		 The values of columns "sex" and "motheralive" multipled
111	٠	Sexmotherrecent
112		 The values of columns "sex" and "motherrecent" multipled
113	٠	Sexmotherlong
114		 The values of columns "sex" and "motherlong" multipled
115	•	Sexgmalive
116		 The values of columns "sex" and "gmalive" multipled
117	•	Sexgmrecent
118		 The values of columns "sex" and "gmrecent" multipled
119	•	Sexgmlong
120		• The values of columns "sex" and "gmlong" multipled
121	•	Gmover45
122 123		 1 if the grandmother has died and was aged 45 or over at the time of death, 0 otherwise
125	•	gmRsIm
124	•	 The values of columns "gmrecent" and "salmon" multipled
126	•	gmo45slm
120	·	 The values of columns "gmover45" and "salmon" multipled
128	•	Startage
129		 Age of the focal individual at the beginning of the time period
130	•	Stopage
131		 Age of the focal individual at the end of the time period
132	•	Event
133		 1 if the individual dies during the time period, 0 otherwise
134	•	p.rowexists
135		• This column is used to determine the randomisation of death orders. 0 if the row is
136		included in the analysis regardless of randomisation. 0.5 if the row is dependent on
137		death order. If this is the case and p.rowexists=0.5, then the row will be excluded
138		from analysis with probability 0.5, and the event signified with be moved to the
139		previous row. This switches the assumed death order from 1) ancestors, 2) focal
140		individual to 1) focal individual, 2) ancestors

142 Survival Model for weaned individuals

- 143 We extend our main models by taking the best fitting model (AIC = 1254.06; model 16) and adding
- 144 parameters that consider the grandmother effects only for weaning individuals (define as those aged
- 145 2 or over). Neither of these models improve model fit, or show any indication that grandmother
- 146 effects are specific to weaned or unweaned grandoffspring.
- 147 Weaning model 1: death ~ Sexmotherrecent + GMrecent + GMover45 + GMrecent*salmon +
- 148 GMrecent*weaned
 - Parameter coeff CI P value Sexmotherrecent 2.90 1.84 - 3.95 8.1e-8 * Gmrecent 1.98 -1.06 - 5.25 0.20 Gmover45 0.37 -0.040 - 0.780.077 gmRslm -1.17 -3.87 - 1.58 0.39 Gmrecent*weaned 0.15 -1.56 - 1.88 0.78
- 149 AIC = 1256.0

150 Table S10: Statistics for weaning model 1, which takes the best fitting previous model (model 16) and includes the weaning 151 status of grand offspring.

152 Weaning model 2: death ~ Sexmotherrecent + GMrecent + GMover45 + GMrecent*salmon +

- 153 Gmrecent*weaned + GMver45*weaned
- 154 AIC = 1256.1

Parameter	coeff	CI	P value
Sexmotherrecent	2.91	1.85 – 3.97	7.4e-8 *
Gmrecent	4.67	-0.44 - 9.07	0.067
Gmover45	-0.11	-0.97 – 0.76	0.80
gmRsIm	-2.73	-6.58 – 1.53	0.17
Gmrecent*weaned	-0.25	-2.04 – 1.59	0.77
Gmover45*weaned	0.65	-0.33 – 1.64	0.19

Table S11: Statistics for weaning model 2, which takes the best fitting previous model (model 16) and includes the weaning
 status of grand offspring.

157

158

159

160

161 Interbirth Interval Model

We used a generalized additive model with a Gamma error structure and identity link function, to examine the consequences of a grandmother's alive/dead status on her daughters' interbirth interval by regressing a number of covariates on each birth interval length. We used AIC to select between a number of models capturing a range of covariates:

166 birth.interval 167 • The length, in years, of the birth interval. 168 daughter.age 169 • The age of the daughter at the end of the birth interval (i.e. her age in the year when the second calf in the interval is born). 170 171 first.calf.alive.post.weaning • 172 1 if the first calf in the interval survives more than 2 years into the interval (i.e. has been weaned), otherwise it is set to 0. 173 174 gmother.alive.end.first.calf.weaning 175 • 1 if the grandmother (mother of the daughter whose interval is being examined) is 176 alive more than two years into the interval (the time after which the first calf in the 177 interval will, if alive, have been weaned), otherwise is it set to 0. 178 gmother.alive.and.postreproductive.end.first.calf.weaning ٠ 179 1 if gmother.alive.end.first.calf.weaning = 1 and the grandmother is over 45 two 180 years into the interval (i.e. she is alive and postreproductive by the time the first calf 181 has had time to be weaned), otherwise it is set to 0. salmon 182 183 • The mean salmon abundance during the entire interval. 184 **Proposed Models** 185 Model 1 (AIC: 975.453): birth.interval ~ s(daughter.age)

186 Model 2 (AIC: 961.8445): birth.interval ~ s(daughter.age) + first.calf.alive.post.weaning

- 187 Model 3 (AIC: 976.4604): birth.interval ~ s(daughter.age) + gmother.alive.end.first.calf.weaning
- 188 Model 4 (AIC: 962.9218): birth.interval ~ s(daughter.age) + first.calf.alive.post.weaning +
- 189 gmother.alive.end.first.calf.weaning
- 190 Model 5 (AIC: 962.27): birth.interval ~ s(daughter.age) + first.calf.alive.post.weaning +
- 191 gmother.alive.end.first.calf.weaning + gmother.alive.and.postreproductive.end.first.calf.weaning
- 192 Model 6 (AIC: 963.9162): birth.interval ~ s(daughter.age) + first.calf.alive.post.weaning +

193 gmother.alive.end.first.calf.weaning + gmother.alive.and.postreproductive.end.first.calf.weaning +194 salmon

Model	(intercept)	s(daughter.a ge)	first.calf.aliv e.post.weani ng	gmother.al ive.end. first.calf.w eaning	gmother.aliv e.and.postre productive. end.first.calf	salmon	AIC
					.weaning		
1	5.4820	Edf=4.645					975.453
		(P=1.14e-12)					
2	4.2152	Edf=4.793	1.4208				961.8445
		(P=2.17e-09)	(P=1.55e-05)				
3	5.2444	Edf=4.596		0.3466			976.4604
		(P=6.25e-12)		(P=0.301)			

4	4.0161	Edf=4.766	1.4085	0.3077			962.9218
		(P=5.68e-09)	(P=1.85e-05)	(P=0.341)			
5	3.93881	Edf=4.791	1.48613	-0.03823	0.57121		962.27
		(P=4.13e-06)	(P=4.13e-06)	(P=0.9166)	(P=0.0824)		
6	3.67903	Edf=4.823	1.49564	-0.04632	0.57577	0.21004	963.9162
		(P=6.44e-10)	(P=3.83e-06)	(P=0.8991)	(P=0.0806)	(P=0.6325)	

 Table S12: Statistics for the proposed inter birth interval models. Model 2 is the best fitting, although models 4 and 5 are

 within $\Delta AIC < 2$ of model 2.