1 Supplementary Figures

3. Salk - AAV8-nef-DIO-GFP-p2a-FugB2-WPRE

B Larger Band

TTCAGATCGCCACACATCGAGGACGGCAGCGTGCAGCTCGCCGACCACTACCAGC AGAACACCCCCATCGGCGACGGCCCCGTGCTGCTGCCCGACAACCACTACCTGAG CTACCAGTCCGCCCTGAGCAAAGACCCCCAACGAGAAGCGCGATCACATGGTCCTGC TGGAGTTCGTGACCGCCGCCGGGATCACTCTCGGCATGGACGAGCTGTACAAGTAA TAGGGCGCGCCATAACTTCGTATAATGTATGCTATACGAAGTTAT -LoxP JGCTAATATCATCTACCATCCGATTACCATTCTGCATAACTACTGATAGAGTATCCTATA -Lox2722-CAAAGTTATTTGCCTTAACCCTGAAATTATCACTGTTTTCTTTAGAATGGCATGCTAATA ACTTCCGATAATGTATGCTATACTAATCCATGAATTCGATATGGAGGTTATCTATAATCA -Lox ACCTCTGGATTACAAATTTGTGAAAGATTGACTGGTATTCTTAACTATGTTGCTCCTTT TACGCTATGGGATACGCTGCTTTAATGCCTTTGTATCATGCTATTGCTTCCCGTATGGC TTTCATTTTCTCCTCCTTGTATAAATCCTGGTTGCTGTCTCTTTATGAGGAGTTGTGGC

Smaller Band

Sequencing Primer

IGAAAGCCATACGGGAAGCAATAGCATGATACAAAGGCATTAAAGCAGCGTAT CCACATAGCGTAAAAGGAGCAACAATAGTTAAGAATACCAGTCAATCTTTCACA AATTTTGTAATCCGAGGTTGATTATCGATAGCATGCAATCCATACCAT (GTATAGCATACATTATACGAAGTTATTCGATAGGATACCAGTCAATCATACAGT IOXP GATAATTTCTGGGTTAAGGCAA<u>ATAACTTCGTATAGGATACCTTTATACGAAGTTA</u> IOXP IGCTAGCGCCGCCACCATGGCTCCTAAGAAGAAGAGGAGGAGGTAATGAGCCA GTTCACCATCCTGTGCAAGACCCCCCCCAAGGGGCGCGGCAGTCGT FIDO GGAGAGATTCGAGAGGCCCAGCGGCGAGAAGATCGCCAGCTGCCGCCGCCG AGCTGACCTACCTGTGCTGGATGATCACCCACAACGGCACCGCCATCAAGA GGGCCACCT

Sequencing Primer G

Supplementary Figure 1: PCR products from in-sense primers across recombinase sites reveal reverted transgenes in AAV genomes and plasmids

6 (A) PCR experiments using four sets of primers with either sense or antisense orientation 7 in reference to the expected design (top) of the template pAAV-nef-DIO-FlpO plasmid. Antisense primers (lanes 2 and 5) produce a band at the expected size. In-sense primer 8 pairs (lanes 3 and 6) produce doublet or triplet bands less 1kb. Cre-recognition site pairs 9 10 labelling each band (bottom right) indicate the lox sites across which recombination occurred to produce the sequence found for each of these bands. The sequences in (B) and 11 (C) are from the band found in the dotted box in (A) using the flp-specific primers shown. 12 (D) PCR of FLEX and DIO AAV genomes using in-sense primers across recombinant 13 sites creates short band doublets. General recombinase-dependent DIO or FLEX AAV 14 design (top) with in-sense PCR primers (black). Gel of PCR products using the AAVs 15 listed with sources (below). Dotted box in lane 2 denotes products used for sequencing. 16 Sequencing of (E) larger and (F) smaller of the two bands show the transgene in-sense with 17 the WPRE element and separated by three or one recombinase sites (triangles). 18

19

24 Supplementary Figure 2: Effects of incubation temperature on spontaneous

- recombination rates across *loxp* sites in competent cell lines used for AAV plasmid
 production.
- 27 Recombination rates in minipreps of pUC19-*loxp*-inv_LacZ plasmids grown at 30°C for
- 28 21hrs or at 37° C for 16hrs as measured by qPCR. N=7 per condition. P values for to be
- 0.00068 for NEB 5-alpha, 0.4875 for NEB stable, and 0.1911 for Fisher Stbl3 using a two-
- 30 tailed independent t-test.
- 31

Α					
/ \		Cre			
_		Position 1	Position 2		
	loxp	ATAACTTCGTATA GCATACAT TATACGAAGTTAT	ATAACTTCGTATA GCATACAT TATACGAAGTTAT		
	lox2722	ATAACTTCGTATA G <u>G</u> ATAC <u>T</u> T TATACGAAGTTAT	ATAACTTCGTATA G <u>G</u> ATAC <u>T</u> T TATACGAAGTTAT		
	loxn	ATAACTTCGTATA G <u>T</u> ATAC <u>C</u> T TATACGAAGTTAT	ATAACTTCGTATA G <u>T</u> ATAC <u>C</u> T TATACGAAGTTAT		
	loxp ^{66/71}	ATAACTTCGTATA GCATACAT TATACGAACGGTA	TACCGTTCGTATA GCATACAT TATACGAAGTTAT		
	loxp ^{75/76}	ATAACTTCGTATA GCATACAT TATACGCCCGGTA	TACCGGGCGTATA GCATACAT TATACGAAGTTAT		
	loxp ^{43/44}	ATAACTTCGTATA GCATACAT TATAGGTACCGAC	AATGCATGCTATA GCATACAT TATACGAAGTTAT		
	loxp/2722	ATAACTTCGTATA GCATACAT TATACGAAGTTAT	ATAACTTCGTATA G <u>G</u> ATAC <u>T</u> T TATACGAAGTTAT		

Flp				
	Position 1	Position 2		
frt	GAAGTTCCTATTC TCTAGAAA GTATAGGAACTTC	GAAGTTCCTATTC TCTAGAAA GTATAGGAACTTC		
F3	GAAGTTCCTATTC T <u>TC</u> A <u>A</u> A <u>T</u> A GTATAGGAACTTC	GAAGTTCCTATTC T <u>TC</u> A <u>A</u> A <u>T</u> A GTATAGGAACTTC		
F5	GAAGTTCCTATTC T <u>TC</u> A <u>A</u> AA <u>G</u> GTATAGGAACTTC	GAAGTTCCTATTC T <u>TC</u> A <u>A</u> AA <u>G</u> GTATAGGAACTTC		
frtRE/LE	GAAGTTCATATTC TCTAGAAA GTATAGGAACTC	GAAGTTCCTATTC TCTAGAAA GTATATGAACTTC		

Controls		
	Position 1	Position 2
homologous shuffle (HS)	AAATTCGATGAATACATTATGAGCTTACTCAATT	AAATTCGATGAATACATTATGAGCTTACTCAATT
non-homologous shuffle (NHS)	ATATCTAATAGAGCGTAATAGTAGTACATTTTAT	ACCTTAGCAGAAATTCATATTATTAAGTCTAGTC
		Within-pairs sequence differences

В

Supplementary Figure 3: All tested recombinase recognition site pairs and associated recombination rates as measured by qPCR

- 35 (A) Table of recombination recognition site pairs used to bookend inverted LacZ sequences
- 36 in pUC19 experiments. Red text signifies within-pair sequence differences. (B)
- 37 Accumulated LacZ recombination frequencies of all tested recombination recognition site
- pairs. Horizontal lines signify mean value across minipreps (circles), and vertical lines are
- 39 standard deviation.

43 Supplementary Figure 4: Disruption of 5' ITR D-sequence packaging signal blocks 44 AAV packaging of genomes containing reverted transgenes but not leak expression

(A) Typical recombinase dependent AAV plasmid design and AAV genome. (B) 45 Expected first-order recombinant plasmids and resultant AAV genomes resulting from 46 47 recombination events across like recombinase-recognition sites. (C) Packaging profile of ssDNA AAV genomes from plasmids containing unmodified ITR D-sequences (i), 5' 48 modified ITR (ii, in red), and 3' modified ITR (iii, in red). (D) Plasmid design and resulting 49 AAV genomes from a recombinase-dependent AAV design with both a disrupted ORF and 50 5' ITR modified D-sequence, in red. (E) Expected first-order recombinant plasmids and 51 resultant AAV genomes from the plasmid in (D). (F) Flowchart of each AAV genomes' 52 propensity to leak, be packaged, and functionally express the transgene in the presence of 53 recombinase. (G) PCR of AAV genomes using primers targeting all possible transgene 54 orientations following recombination. Templates, listed at bottom, are AAV8 nef-fDIO-55 iCre and the ITR modified AAV8 5DS-nef-ATG-fDIO-iCre. (H) Example image of an 56 AAV8-5DS-ATG-fDIO-p2a-iCRE injection in primary visual cortex of an Ai14 x SomFlp 57 White arrows indicate off target non-somatostatin cre expression. 58 mouse. Antisomatostatin staining in green, tdTomato in red. 59

60