Supplementary material for A Bayesian Approach to Modeling Missing Not at Random Outcome Data: The Role of Identifying Restrictions

Antonio R. Linero*and Michael J. Daniels[†]
August 31, 2017

S.1 Proof of Proposition 3.1

Proof. Sadinle and Reiter (2017) show that ICI implies the existence of functions $\eta_j(\bar{y}_{j-1})$ such that

$$\log \frac{p(S=j \mid Y=y)}{p(S=j-1 \mid Y=y)} = \eta_j(\bar{y}_{j-1}). \tag{S.1}$$

We show that this occurs if and only if NCMV is satisfied. First, suppose NCMV holds. Let $f_j(y)$ denote $p(y \mid S = j)$, and, abusing notation, define $f_j(y_k \mid \bar{y}_{k-1})$ to be $p(y_k \mid S = j, \bar{Y}_{k-1} = \bar{y}_{k-1})$. Then

$$\frac{p(S=j\mid Y=y)}{p(S=j-1\mid Y=y)} = \frac{p(S=j)}{p(S=j-1)} \cdot \frac{f_j(\bar{y}_{j-1})f_j(y_j\mid \bar{y}_{j-1})}{f_{j-1}(\bar{y}_{j-1})f_{j-1}(y_j\mid \bar{y}_{j-1})} \cdot \frac{\prod_{k>j} f_j(y_k\mid \bar{y}_{k-1})}{\prod_{k>j} f_{j-1}(y_k\mid \bar{y}_{k-1})}.$$

Applying NCMV and canceling shared terms in the numerator and denominator gives

$$\frac{p(S=j\mid Y=y)}{p(S=j-1\mid Y=y)} = \frac{p(S=j)}{p(S=j-1)} \cdot \frac{f_j(\bar{y}_{j-1})}{f_{j-1}(\bar{y}_{j-1})},$$

the right-hand-side of which can be chosen for $\eta_j(\bar{y}_{j-1})$.

Conversely, suppose that (S.1) holds. We prove the converse by showing that, for k < j,

^{*}Department of Statistics, Florida State University, arlinero@stat.fsu.du

[†]Department of Statistics, University of Florida, mjdaniels@stat.ufl.edu

 $f_k(y_j \mid \bar{y}_{j-1}) = f_{k+1}(y_j \mid \bar{y}_{j-1})$. Abusing notation, by Bayes theorem we have

$$f_{k+1}(y_j \mid \bar{y}_{j-1}) = \frac{\int f(y)p(S = k+1 \mid Y = y) \ dy_{j+1}, \dots, dy_j}{\int f(y)p(S = k+1 \mid Y = y) \ dy_{j}, \dots, dy_j}$$

$$= \frac{\int f(y)p(S = k \mid Y = y) \ dy_{j+1}, \dots, dy_j}{\int f(y)p(S = k \mid Y = y) \ dy_{j}, \dots, dy_j} \cdot \frac{\exp\{\eta_{k+1}(\bar{y}_k)\}}{\exp\{\eta_{k+1}(\bar{y}_k)\}} = f_k(y_j \mid \bar{y}_k).$$

Crucially, note that this argument only holds for k < j; otherwise, we would not be able to factor out $\exp{\{\eta_{k+1}(\bar{y}_k)\}}$ in the denominator.

S.2 Markov chain Monte Carlo algorithm for the productmultinomial model

For completeness, we provide the MCMC algorithm used to fit the product-multinomial model used for the BCPT. For additional details, see <u>Dunson and Xing</u> (2009). The model

$$p^{\star}(y,r) = \sum_{k=1}^{\infty} \pi_k \left\{ \prod_{j=1}^{J} \gamma_{kj}^{r_j} (1 - \gamma_{kj})^{1-r_j} \right\} \left\{ \prod_{j=1}^{J} \beta_{kj}^{y_j} (1 - \beta_{kj})^{1-r_j} \right\}.$$
 (S.2)

can be reformulated as a hierarchical model as follows. For each i we have

$$Z_i \sim \operatorname{Categorical}(\pi)$$

 $Y_{ij} \sim \operatorname{Bernoulli}(\beta_{kj}), \quad (\text{given } Z_i = k),$
 $R_{ij} \sim \operatorname{Bernoulli}(\gamma_{kj}), \quad (\text{given } Z_i = k),$

with the Y_{ij} 's and R_{ij} 's conditionally independent given Z_i . We use a Gibbs sampling algorithm which samples from the full conditionals.

Following Si and Reiter (2013), we truncate the infinite mixture model at some fixed $K < \infty$; unlike the usual latent-class setup, more mixture components are better. Let

$$M_k = \sum_{i=1}^N I(Z_i = k)$$
 and $M_{>k} = \sum_{i=1}^N I(Z_i > k)$. Define
$$N_{\beta kj} = \sum_{i:R_{ij}=1,Z_i=k} 1, \qquad T_{\beta kj} = \sum_{i:R_{ij}=1,Z_i=k} Y_{ij},$$

$$N_{\gamma kj} = \sum_{i:Z_i=k} 1, \qquad T_{\gamma kj} = \sum_{i:Z_i=k} R_{ij}.$$

Then the full conditionals are given by

$$V_k \overset{\text{indep}}{\sim} \text{Beta}(1 + M_k, \alpha + M_{>k}), \qquad (1 \le k \le K - 1)$$

$$\beta_{kj} \overset{\text{indep}}{\sim} \text{Beta}\{a_{\beta j}\rho_{\beta j} + T_{\beta kj}, a_{\beta j}(1 - \rho_{\beta j}) + N_{\beta kj} - T_{\beta kj}\} \qquad (1 \le k \le K, 1 \le j \le J)$$

$$\gamma_{kj} \overset{\text{indep}}{\sim} \text{Beta}\{a_{\gamma j}\rho_{\gamma j} + T_{\gamma kj}, a_{\gamma j}(1 - \rho_{\gamma j}) + N_{\gamma kj} - T_{\gamma kj}\} \qquad (1 \le k \le K, 1 \le j \le J).$$

Each distribution above is understood to be the conditional distribution given both the observed data $(Y_{iR_i}, R_i : 1 \le i \le N)$ and the variables given on the other rows. We must also update the hyperparameters $a_{\beta j}, \rho_{\beta j}, a_{\gamma j}, \rho_{\gamma j}$ for j = 1, ..., J. The priors we used for these parameters are not conditionally conjugate. We use Metropolis-within-Gibbs for these parameters. The density of the full conditionals are (up-to a normalizing constant),

$$a_{\beta j} \stackrel{\text{indep}}{\sim} \frac{\sigma}{(\sigma + a_{\beta j})^2} \prod_{k=1}^K \text{Beta}\{\beta_{kj} \mid a_{\beta j} \rho_{\beta j} + T_{\beta kj}, a_{\beta j} (1 - \rho_{\beta j}) + N_{\beta kj} - T_{\beta kj}\},$$

$$\rho_{\beta j} \stackrel{\text{indep}}{\sim} I(0 \le \rho_{\beta j} \le 1) \prod_{k=1}^K \text{Beta}\{\beta_{kj} \mid a_{\beta j} \rho_{\beta j} + T_{\beta kj}, a_{\beta j} (1 - \rho_{\beta j}) + N_{\beta kj} - T_{\beta kj}\},$$

$$a_{\gamma j} \stackrel{\text{indep}}{\sim} \frac{\sigma}{(\sigma + a_{\gamma j})^2} \prod_{k=1}^K \text{Beta}\{\gamma_{kj} \mid a_{\gamma j} \rho_{\gamma j} + T_{\gamma kj}, a_{\gamma j} (1 - \rho_{\gamma j}) + N_{\gamma kj} - T_{\gamma kj}\},$$

$$\rho_{\gamma j} \stackrel{\text{indep}}{\sim} I(0 \le \rho_{\gamma j} \le 1) \prod_{k=1}^K \text{Beta}\{\gamma_{kj} \mid a_{\gamma j} \rho_{\gamma j} + T_{\gamma kj}, a_{\gamma j} (1 - \rho_{\gamma j}) + N_{\gamma kj} - T_{\gamma kj}\}.$$

Slice sampling (Neal, 2000) was used for the Metropolis-within-Gibbs steps. To improve mixing on the hyperparameters, it is also valid to ignore any mixture components with $M_k = 0$; that

Algorithm 1 Monte Carlo integration for PMAR

```
1: procedure GCOMP(\theta, T, j) \triangleright Approximates \mu_j by simulating T samples from p_{\theta}(y)
2: for t = 1, ..., T do
3: Sample (Y_{R^{(t)}}^{(t)}, R^{(t)}) \sim p_{\theta}(y_r, r).
4: Sample Y_{-R^{(t)}}^{(t)} \sim p_{\theta}(Y_{s(-r)} \mid Y_r = y_r, R = 1).
5: end for
6: Set \mu_j = T^{-1} \sum_{s=1}^T Y_{sj}.
7: return \mu_j
8: end procedure
```

Algorithm 2 Monte Carlo integration for tilted-last-occasion

```
\triangleright Approximates \mu_J by simulating T samples from p_{\theta}(y_J)
 1: procedure GCOMP(\theta, T, \xi)
           for t = 1, \dots, T do
 2:
                Sample (Y_{R^{(t)}}^{(t)}, R^{(t)}) \sim p_{\theta}(y_r, r).
 3:
                if R_J^{(t)} = 0 then
 4:
                      Sample
 5:
                                                Y_J^{(t)} \sim \frac{p_{\theta}(y_J \mid y_r, R^{(t)} = 1)e^{\xi y_J}}{E_{\theta}(e^{\xi Y_J} \mid Y_r = y_r, R^{(t)} = 1)}.
                end if
 6:
           end for
 7:
           Set \mu_J = T^{-1} \sum_{s=1}^T Y_{sJ}.
 8:
           return \mu_J
 9:
10: end procedure
```

is, in each of the products above, we take the product over $\{k: M_k > 0\}$.

S.3 Monte Carlo algorithms

In Algorithm 1 and Algorithm 2 we give the Monte Carlo integration algorithms used for PMAR and the tilted-last-occasion restriction in the analysis of the BCPT data in Section 5.

S.4 Conditional distributions for the product-multinomial mixture model

For the model given in Section 5, we need to sample from the conditional distributions of (S.2). This task is straight-forward due to the within-class independence. For example, the conditional density $p_{\theta}(y_{-r} \mid y_r, R = 1)$ is given by

$$p_{\theta}^{\star}(y_{-r} \mid y_r, \mathbb{1}) = \frac{\sum_{k=1}^{K} \pi_k \left\{ \prod_{j=1}^{J} \gamma_{kj} \right\} \left\{ \prod_{j=1}^{J} \beta_{kj}^{y_j} (1 - \beta_{kj})^{1 - y_j} \right\}}{\sum_{k=1}^{K} \pi_k \left\{ \prod_{j=1}^{J} \gamma_{kj} \right\} \left\{ \prod_{j:r_j=1}^{J} \beta_{kj}^{y_j} (1 - \beta_{kj})^{1 - y_j} \right\}}$$
$$= \sum_{k=1}^{K} \vartheta_k(y_r) \prod_{j:r_j=0} \beta_{kj}^{y_j} (1 - \beta_{kj})^{1 - y_j},$$

where $\sum_{k=1}^{K} \vartheta_k(y_r) = 1$ and

$$\vartheta_k(y_r) \propto \pi_k \left\{ \prod_{j=1}^J \gamma_{kj} \right\} \left\{ \prod_{j:r_j=1} \beta_{kj}^{y_j} (1 - \beta_{kj})^{1-y_j} \right\}.$$

Hence sampling from this conditional can be accomplished by choosing a mixture component k with probability $\vartheta_k(y_r)$ and then sampling independently $Y_j \sim \text{Bernoulli}(\beta_{kj})$. The density of $p_{\theta}(y_j \mid \bar{o}_{j-1})$ is given by

$$\frac{\sum_{k=1}^{K} \pi_{k} \left\{ \prod_{\ell=1}^{j-1} \gamma_{k\ell}^{r_{\ell}} (1 - \gamma_{k\ell})^{1-r_{\ell}} \right\} \left\{ \prod_{\ell < j, r_{\ell} = 1} \beta_{k\ell}^{y_{\ell}} (1 - \beta_{k\ell})^{1-y_{\ell}} \right\} \beta_{kj}^{y_{j}} (1 - \beta_{kj})^{1-y_{j}}}{\sum_{k=1}^{K} \pi_{k} \left\{ \prod_{\ell=1}^{j-1} \gamma_{k\ell}^{r_{\ell}} (1 - \gamma_{k\ell})^{1-r_{\ell}} \right\} \left\{ \prod_{\ell < j, r_{\ell} = 1} \beta_{k\ell}^{y_{\ell}} (1 - \beta_{k\ell})^{1-y_{\ell}} \right\}}$$

As before, this can be written as $\sum_{k=1}^{K} \vartheta_k(y_r, r) \beta_{kj}^{y_j} (1 - \beta_{kj})^{1-y_j}$ where

$$\vartheta_k(y_r, r) \propto \pi_k \left\{ \prod_{\ell=1}^{j-1} \gamma_{k\ell}^{r_\ell} (1 - \gamma_{k\ell})^{1 - r_\ell} \right\} \left\{ \prod_{\ell < j, r_\ell = 1} \beta_{k\ell}^{y_\ell} (1 - \beta_{k\ell})^{1 - y_\ell} \right\}.$$

		ATE	Lower limit	Upper limit	P-value
MAR	FB	0.752	-0.693	2.233	0.168
	MI	0.638	-0.874	2.150	0.204
PMAR	FΒ	0.497	-0.992	2.005	0.258
	MI	0.468	-1.008	1.944	0.267
SE	FB	4.091	0.841	7.410	0.006
DL	MI	3.850	0.329	7.372	0.016
TLO	FB	0.292	-2.536	3.151	0.420
	MI	0.331	-2.557	3.218	0.411

Table S.2: Results for the BCPT study. MAR, PMAR, SE, and TLO denote the missing at random, pairwise missing at random, sequential explainability, and tilted-last-occasion models. FB denotes inference obtained using the fully-Bayes procedure while MI denotes inference obtained using multiple imputation. ATE denotes the point estimate of the average treatment effect, with lower and upper limits associated to a 95% credible interval. The posterior probability is associated to a one-sided test for $\psi > 0$.

S.5 Results of BCPT

We provide the results for the BCPT from Figure 2 in tabular form in Table S.2. Results are given using both fully-Bayesian inference with the G-computation algorithm and multiple imputation with M=50 imputed datasets. We see that the inferences using either fully-Bayesian inference or multiple imputation largely agree.

References

Dunson, D. B. and Xing, C. (2009). Nonparametric bayes modeling of multivariate categorical data. *Journal of the American Statistical Association*, 104(487):1042–1051.

Neal, R. M. (2000). Markov chain sampling methods for Dirichlet process mixture models.

Journal of Computational and Graphical Statistics, 9:249–265.

Sadinle, M. and Reiter, J. P. (2017). Itemwise conditionally independent nonresponse modeling for incomplete multivariate data. *Biometrika*, 104(1):207–220.

Si, Y. and Reiter, J. P. (2013). Nonparametric Bayesian multiple imputation for incomplete categorical variables in large-scale assessment surveys. *Journal of Educational and Behavioral Statistics*, 38(5):499–521.