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S.1 Proof of Proposition 3.1

Proof. Sadinle and Reiter (2017) show that ICI implies the existence of functions ηj(ȳj−1) such

that

log
p(S = j | Y = y)

p(S = j − 1 | Y = y)
= ηj(ȳj−1). (S.1)

We show that this occurs if and only if NCMV is satisfied. First, suppose NCMV holds. Let fj(y)

denote p(y | S = j), and, abusing notation, define fj(yk | ȳk−1) to be p(yk | S = j, Ȳk−1 = ȳk−1).

Then

p(S = j | Y = y)

p(S = j − 1 | Y = y)
=

p(S = j)

p(S = j − 1)
· fj(ȳj−1)fj(yj | ȳj−1)
fj−1(ȳj−1)fj−1(yj | ȳj−1)

·
∏

k>j fj(yk | ȳk−1)∏
k>j fj−1(yk | ȳk−1)

.

Applying NCMV and canceling shared terms in the numerator and denominator gives

p(S = j | Y = y)

p(S = j − 1 | Y = y)
=

p(S = j)

p(S = j − 1)
· fj(ȳj−1)

fj−1(ȳj−1)
,

the right-hand-side of which can be chosen for ηj(ȳj−1).

Conversely, suppose that (S.1) holds. We prove the converse by showing that, for k < j,
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fk(yj | ȳj−1) = fk+1(yj | ȳj−1). Abusing notation, by Bayes theorem we have

fk+1(yj | ȳj−1) =

∫
f(y)p(S = k + 1 | Y = y) dyj+1, . . . , dyj∫
f(y)p(S = k + 1 | Y = y) dyj, . . . , dyj

=

∫
f(y)p(S = k | Y = y) dyj+1, . . . , dyj∫
f(y)p(S = k | Y = y) dyj, . . . , dyj

· exp{ηk+1(ȳk)}
exp{ηk+1(ȳk)}

= fk(yj | ȳk).

Crucially, note that this argument only holds for k < j; otherwise, we would not be able to

factor out exp{ηk+1(ȳk)} in the denominator.

S.2 Markov chain Monte Carlo algorithm for the product-

multinomial model

For completeness, we provide the MCMC algorithm used to fit the product-multinomial model

used for the BCPT. For additional details, see Dunson and Xing (2009). The model

p?(y, r) =
∞∑
k=1

πk

{
J∏
j=1

γ
rj
kj(1− γkj)

1−rj

}{
J∏
j=1

β
yj
kj(1− βkj)

1−rj

}
. (S.2)

can be reformulated as a hierarchical model as follows. For each i we have

Zi ∼ Categorical(π)

Yij ∼ Bernoulli(βkj), (given Zi = k),

Rij ∼ Bernoulli(γkj), (given Zi = k),

with the Yij ’s and Rij ’s conditionally independent given Zi. We use a Gibbs sampling algorithm

which samples from the full conditionals.

Following Si and Reiter (2013), we truncate the infinite mixture model at some fixed

K < ∞; unlike the usual latent-class setup, more mixture components are better. Let
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Mk =
∑N

i=1 I(Zi = k) and M>k =
∑N

i=1 I(Zi > k). Define

Nβkj =
∑

i:Rij=1,Zi=k

1, Tβkj =
∑

i:Rij=1,Zi=k

Yij,

Nγkj =
∑
i:Zi=k

1, Tγkj =
∑
i:Zi=k

Rij.

Then the full conditionals are given by

Vk
indep∼ Beta(1 +Mk, α +M>k), (1 ≤ k ≤ K − 1)

βkj
indep∼ Beta{aβjρβj + Tβkj, aβj(1− ρβj) +Nβkj − Tβkj} (1 ≤ k ≤ K, 1 ≤ j ≤ J)

γkj
indep∼ Beta{aγjργj + Tγkj, aγj(1− ργj) +Nγkj − Tγkj} (1 ≤ k ≤ K, 1 ≤ j ≤ J).

Each distribution above is understood to be the conditional distribution given both the observed

data (YiRi
, Ri : 1 ≤ i ≤ N) and the variables given on the other rows. We must also update

the hyperparameters aβj, ρβj, aγj, ργj for j = 1, . . . , J . The priors we used for these parameters

are not conditionally conjugate. We use Metropolis-within-Gibbs for these parameters. The

density of the full conditionals are (up-to a normalizing constant),

aβj
indep∼ σ

(σ + aβj)2

K∏
k=1

Beta{βkj | aβjρβj + Tβkj, aβj(1− ρβj) +Nβkj − Tβkj},

ρβj
indep∼ I(0 ≤ ρβj ≤ 1)

K∏
k=1

Beta{βkj | aβjρβj + Tβkj, aβj(1− ρβj) +Nβkj − Tβkj},

aγj
indep∼ σ

(σ + aγj)2

K∏
k=1

Beta{γkj | aγjργj + Tγkj, aγj(1− ργj) +Nγkj − Tγkj},

ργj
indep∼ I(0 ≤ ργj ≤ 1)

K∏
k=1

Beta{γkj | aγjργj + Tγkj, aγj(1− ργj) +Nγkj − Tγkj}.

Slice sampling (Neal, 2000) was used for the Metropolis-within-Gibbs steps. To improve mixing

on the hyperparameters, it is also valid to ignore any mixture components with Mk = 0; that
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Algorithm 1 Monte Carlo integration for PMAR
1: procedure GComp(θ, T, j) . Approximates µj by simulating T samples from pθ(y)
2: for t = 1, . . . , T do
3: Sample (Y

(t)

R(t) , R
(t)) ∼ pθ(yr, r).

4: Sample Y (t)

−R(t) ∼ pθ(Ys(−r) | Yr = yr, R = 1).
5: end for
6: Set µj = T−1

∑T
s=1 Ysj.

7: return µj
8: end procedure

Algorithm 2 Monte Carlo integration for tilted-last-occasion
1: procedure GComp(θ, T, ξ) . Approximates µJ by simulating T samples from pθ(yJ)
2: for t = 1, . . . , T do
3: Sample (Y

(t)

R(t) , R
(t)) ∼ pθ(yr, r).

4: if R(t)
J = 0 then

5: Sample

Y
(t)
J ∼

pθ(yJ | yr, R(t) = 1)eξyJ

Eθ(eξYJ | Yr = yr, R(t) = 1)
.

6: end if
7: end for
8: Set µJ = T−1

∑T
s=1 YsJ .

9: return µJ
10: end procedure

is, in each of the products above, we take the product over {k : Mk > 0}.

S.3 Monte Carlo algorithms

In Algorithm 1 and Algorithm 2 we give the Monte Carlo integration algorithms used for

PMAR and the tilted-last-occasion restriction in the analysis of the BCPT data in Section 5.
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S.4 Conditional distributions for the product-multinomial

mixture model

For the model given in Section 5, we need to sample from the conditional distributions of

(S.2). This task is straight-forward due to the within-class independence. For example, the

conditional density pθ(y−r | yr, R = 1) is given by

p?θ(y−r | yr,1) =

∑K
k=1 πk

{∏J
j=1 γkj

}{∏J
j=1 β

yj
kj(1− βkj)1−yj

}
∑K

k=1 πk

{∏J
j=1 γkj

}{∏
j:rj=1 β

yj
kj(1− βkj)1−yj

}
=

K∑
k=1

ϑk(yr)
∏
j:rj=0

β
yj
kj(1− βkj)

1−yj ,

where
∑K

k=1 ϑk(yr) = 1 and

ϑk(yr) ∝ πk

{
J∏
j=1

γkj

} ∏
j:rj=1

β
yj
kj(1− βkj)

1−yj

 .

Hence sampling from this conditional can be accomplished by choosing a mixture component k

with probability ϑk(yr) and then sampling independently Yj ∼ Bernoulli(βkj). The density of

pθ(yj | ōj−1) is given by

∑K
k=1 πk

{∏j−1
`=1 γ

r`
k`(1− γk`)1−r`

}{∏
`<j,r`=1 β

y`
k`(1− βk`)1−y`

}
β
yj
kj(1− βkj)1−yj∑K

k=1 πk

{∏j−1
`=1 γ

r`
k`(1− γk`)1−r`

}{∏
`<j,r`=1 β

y`
k`(1− βk`)1−y`

} .

As before, this can be written as
∑K

k=1 ϑk(yr, r)β
yj
kj(1− βkj)1−yj where

ϑk(yr, r) ∝ πk

{
j−1∏
`=1

γr`k`(1− γk`)
1−r`

}{ ∏
`<j,r`=1

βy`k`(1− βk`)
1−y`

}
.
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ATE Lower limit Upper limit P -value

MAR FB 0.752 -0.693 2.233 0.168
MI 0.638 -0.874 2.150 0.204

PMAR FB 0.497 -0.992 2.005 0.258
MI 0.468 -1.008 1.944 0.267

SE FB 4.091 0.841 7.410 0.006
MI 3.850 0.329 7.372 0.016

TLO FB 0.292 -2.536 3.151 0.420
MI 0.331 -2.557 3.218 0.411

Table S.2: Results for the BCPT study. MAR, PMAR, SE, and TLO denote the missing
at random, pairwise missing at random, sequential explainability, and tilted-last-occasion
models. FB denotes inference obtained using the fully-Bayes procedure while MI denotes
inference obtained using multiple imputation. ATE denotes the point estimate of the average
treatment effect, with lower and upper limits associated to a 95% credible interval. The
posterior probability is associated to a one-sided test for ψ > 0.

S.5 Results of BCPT

We provide the results for the BCPT from Figure 2 in tabular form in Table S.2. Results

are given using both fully-Bayesian inference with the G-computation algorithm and multiple

imputation with M = 50 imputed datasets. We see that the inferences using either fully-

Bayesian inference or multiple imputation largely agree.
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