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S.1 Proof of Proposition 3.1

Proof. Sadinle and Reiter (2017) show that ICI implies the existence of functions 7;(y;_) such

that

pS=71Y =y
pS=j-11Y =y

log 7= i (Yj-1)- (S.1)

We show that this occurs if and only if NCMV is satisfied. First, suppose NCMV holds. Let f;(y)
denote p(y | S = j), and, abusing notation, define f;(yx | ¥x_1) to be p(yr | S = j, Ye_1 = Jr_1)-
Then

p(S=j]Y =y) _ p(S=3) S-Sy 1g-1) [Tis; filyr | Gr—1)
p(S=j-11Y=y) pS=7-1) fi0@-0)F-1i |G-1) [ls; fior(e | e-1)

Applying NCMV and canceling shared terms in the numerator and denominator gives

p(S=jlY=y) _ pS=j)  fily-1)

p(S=j—-1|Y=y) pS=j—-1) fi-1(g-1)

the right-hand-side of which can be chosen for 7;(y,-1).

Conversely, suppose that (S.1) holds. We prove the converse by showing that, for k& < j,
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fe(y; | 9j—1) = fet1(y; | gj—1). Abusing notation, by Bayes theorem we have

[ fy) S E+1|Y =vy) dyjs,....dy;

Jrar(ys | 9j-1) = [ fyp(S=k+1|Y =y) dy;,...,dy;
ff S k1Y =y) dyjer, .- dy;  exp{ne1(Gn)} = fuly; | 1)
ff —_ ] Y = y) dyj, o ,dyj eXp{ﬁkH(ﬂk)} ’

Crucially, note that this argument only holds for £ < j; otherwise, we would not be able to

factor out exp{nx+1(yx)} in the denominator. O

S.2 Markov chain Monte Carlo algorithm for the product-
multinomial model

For completeness, we provide the MCMC algorithm used to fit the product-multinomial model

used for the BCPT. For additional details, see Dunson and Xing (2009). The model

Zﬁk{H’Ykg 1 — )™ TJ} {Hﬁ (1= Bry)'™ ”}. (S.2)

can be reformulated as a hierarchical model as follows. For each i we have

Z; ~ Categorical(m)
Y;; ~ Bernoulli(5;), (given Z; = k),

R;; ~ Bernoulli(vy;), (given Z; = k),

with the Y;;’s and R;;’s conditionally independent given Z;. We use a Gibbs sampling algorithm
which samples from the full conditionals.
Following Si and Reiter (2013), we truncate the infinite mixture model at some fixed

K < o0; unlike the usual latent-class setup, more mixture components are better. Let
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My =N 1(Z = k) and Moy = SN I1(Z; > k). Define

Nowj= >, 1, Tay= > Yy

iZRij:17Zi:]€ ’LR”:LZl:k,‘
N'ykj — E 1, T’ykj - E R”
i:Zi=k i:Z;=k

Then the full conditionals are given by

Vi "SSP Beta(1 + My, o + Msy), (1<k<K-1)
1nde .

Br "~ Beta{ag;ps; + Tongs agi(1 — pgj) + Nowy — Tpig} (1< k<K 1<j<)
inde .

Vkj pBeta{awa"‘Tvkmaw(l_ij)+vaj_Tvkj} (I1<k<K/1<j<J).

Each distribution above is understood to be the conditional distribution given both the observed
data (Yig,, R; : 1 <1i < N) and the variables given on the other rows. We must also update
the hyperparameters ag;, pg;, @, py; for j =1,...,J. The priors we used for these parameters
are not conditionally conjugate. We use Metropolis-within-Gibbs for these parameters. The

density of the full conditionals are (up-to a normalizing constant),

indep
agj ~ (UJF—G H Beta{Bk; | agjps; + Tprj, asi(1 — psj) + Nawj — Tans b,
J k=1
. K
pa; ~ 10 < pg; < 1) [ [ Beta{Bus | agjps; + Towss agi (L — pa;) + Nowg — Tang }
k=1
inde
Q5 ~ H Beta{k; | ayjpyj + Thngs @y (1 = pyj) + Nogg — T},
(U + ay)?
: K
Prj e~ 1(0 < pyy < 1) HBeta{’ij | ayjprg + Tongs ayi(1 = pyj) + Nogj — Tokj}-
k=1

Slice sampling (Neal, 2000) was used for the Metropolis-within-Gibbs steps. To improve mixing

on the hyperparameters, it is also valid to ignore any mixture components with M = 0; that
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Algorithm 1 Monte Carlo integration for PMAR
1: procedure GComP(6,T, j) > Approximates p; by simulating 7" samples from py(y)
2 fort=1,...,7T do

3 Sample (¥, RO) ~ pe<yr, r).

4 Sample Y(;u) ~po(Ys(—ny | Yo =yr, R=1).

5: end for
6
7
8

1T
Set Hi = T 1 Zs:l }/sj-
return g;

: end procedure

Algorithm 2 Monte Carlo integration for tilted-last-occasion

1: procedure GComP(0,T,¢) > Approximates p; by simulating 7" samples from pg(ys)
2 fort=1,...,7 do
t
3: Sample (YI;&), RO ~ py(yr, 7).
4 if RY — 0 then
5 Sample
v® Po(ys | yr, RY = T)ev
J EQ(G&:YJ ’ Y - yrvR(t) = ]1)
6: end if
7 end for
8: Set py =T71 Zzzl Y.
9: return u;

10: end procedure

is, in each of the products above, we take the product over {k : M} > 0}.

S.3 Monte Carlo algorithms

In Algorithm 1 and Algorithm 2 we give the Monte Carlo integration algorithms used for

PMAR and the tilted-last-occasion restriction in the analysis of the BCPT data in Section 5.
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S.4 Conditional distributions for the product-multinomial
mixture model

For the model given in Section 5, we need to sample from the conditional distributions of
(S.2). This task is straight-forward due to the within-class independence. For example, the

conditional density py(y_, | v, R = 1) is given by

A e {0 s § {TIs (1 = Big) v }
ZkK:1 Tk {H}le ’ij} {Hj-rj:1 B,Z;(l — gkj)l—yj}
_ZﬁkyT Hﬁ ]_—ﬁkjly]

]7”7

pg(y—r | yr, 1) =

where S0 U5 (y,) = 1 and

7
ﬁk(yr)O(Wk{H%j} H 5 (1= Bej) %

7j=1 Jiri=1

Hence sampling from this conditional can be accomplished by choosing a mixture component k

with probability ¥4 (y,) and then sampling independently Y; ~ Bernoulli(/x;). The density of

po(y; | 0j-1) is given by

it ™ {HZ 17k =)' ”} {Hkm:l Bre(1 = 51%)1_‘%} Big (L= Byy)' v
Zk 1Tk {Hz 1722(1 - %6)1_”} {ijmz:l Brs(1— 5,6@)1—9@}

As before, this can be written as Zszl Ve (Y, r)ﬂz;(l — Br;)' 7Y where

7j—1
i (yr, )“Wk{HW’kel—Wlw}{ 1T s 1—51%13”}-

/=1 0<j,re=1
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ATE Lower limit Upper limit P-value

MAR FB 0.752 -0.693 2.233 0.168
MI 0.638 -0.874 2.150 0.204
PMAR FB 0497 -0.992 2.005 0.258
MI  0.468 -1.008 1.944 0.267
SE FB 4.091 0.841 7.410 0.006
MI  3.850 0.329 7.372 0.016
TLO FB 0.292 -2.536 3.151 0.420
MI 0.331 -2.557 3.218 0.411

Table S.2: Results for the BCPT study. MAR, PMAR, SE, and TLO denote the missing
at random, pairwise missing at random, sequential explainability, and tilted-last-occasion
models. FB denotes inference obtained using the fully-Bayes procedure while MI denotes
inference obtained using multiple imputation. ATE denotes the point estimate of the average
treatment effect, with lower and upper limits associated to a 95% credible interval. The
posterior probability is associated to a one-sided test for 1) > 0.

S.5 Results of BCPT

We provide the results for the BCPT from Figure 2 in tabular form in Table S.2. Results
are given using both fully-Bayesian inference with the G-computation algorithm and multiple
imputation with M = 50 imputed datasets. We see that the inferences using either fully-

Bayesian inference or multiple imputation largely agree.
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