Short-term effects of air pollution on blood pressure

Short title: Short-term effects of air pollution on BP

You-Jung Choi, MD^{a,b,d}, Sun-Hwa Kim, PhD^a, Si-Hyuck Kang, MD^{a,b}, Sun-Young Kim, PhD^c, Ok-Jin Kim, PhD^c, Chang-Hwan Yoon, MD, PhD^{a,b}, Hae-Young Lee, MD, PhD^{b,d}, Tae-Jin Youn, MD, PhD^{a,b}, In-Ho Chae, MD, PhD^{a,b}, Cheol-Ho Kim, MD, PhD^{a,b}

^aCardiovascular Center, Seoul National University Bundang Hospital, Seongnam-si, Korea;

^bDepartment of Internal Medicine, Seoul National University, Seoul, Korea;

^cDepartment of Cancer Control and Population Health, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si, Gyeonggi-do, Korea;

^dCardiovascular Center, Seoul National University Hospital, Seoul, Korea

Address for correspondence:

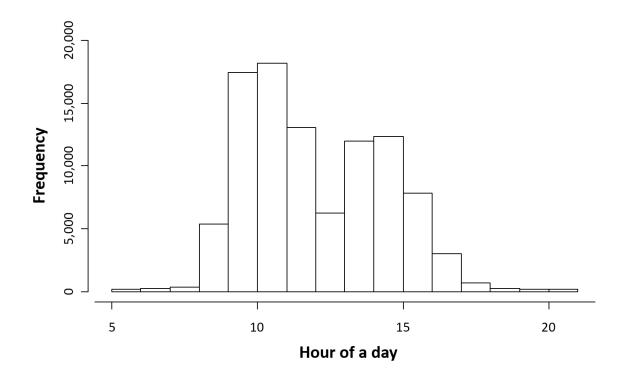
Si-Hyuck Kang, MD

Cardiovascular Center, Internal Medicine, Seoul National University Bundang Hospital 82, Gumi-Ro 173 Beon-Gil, Bundang-Gu, Seongnam-Si, Gyeonggi-Do, Korea, 13620 Telephone: 82-31-787-7027; Fax: 82-31-787-4290; E-mail: eandp303@snu.ac.kr

Supplementary Material

Supplementary Figure 1. Histogram of the hour a day when blood pressure and pulse rate measurements were done

Supplementary Table 1. Correlation matrix among air pollutants, temperature, and humidity during the study period

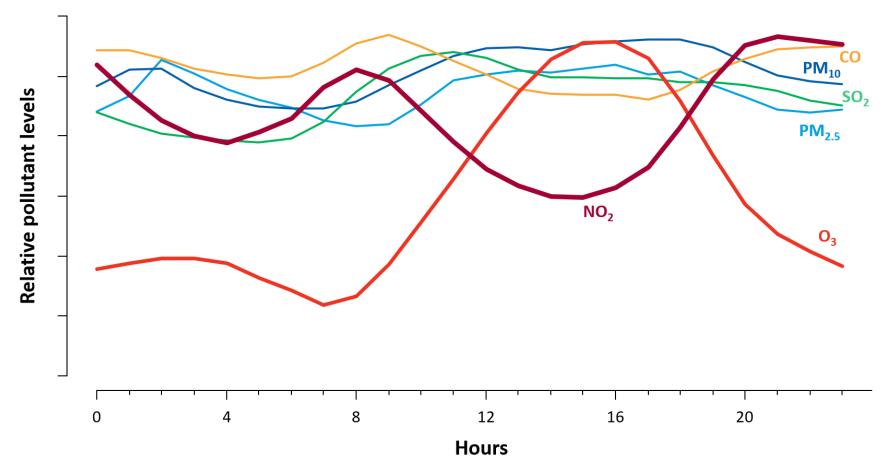

Supplementary Figure 2. Relative concentrations of air pollutants according to time in a day during the study period

Supplementary Figure 3. Time-lag effects of air pollution on diastolic blood pressure

Supplementary Figure 4. Time-lag effects of air pollution on pulse rate

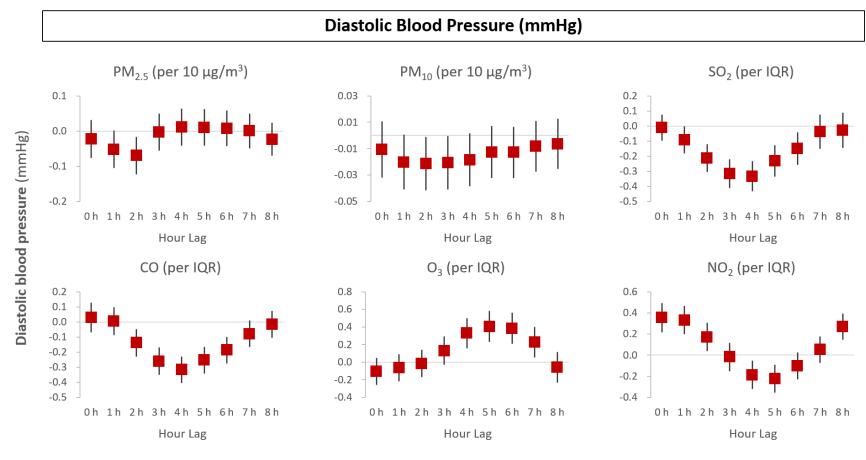
Supplementary Figure 5. Subgroup analysis for the associations between air pollutants and systolic blood pressure stratified by body mass index

Supplementary Figure 1. Histogram of the hour a day when blood pressure and pulse rate measurements were done



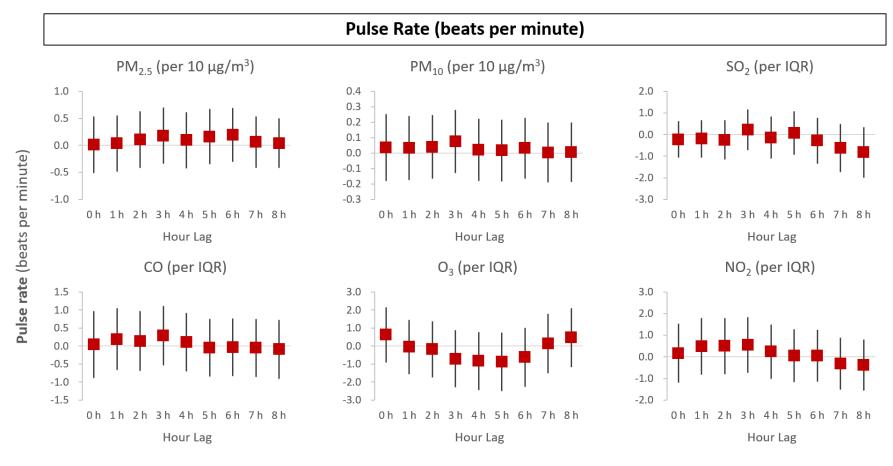
Supplementary Table 1. Correlation matrix among air pollutants, temperature, and humidity during the study period

	PM _{2.5}	PM ₁₀	SO ₂	СО	O ₃	NO ₂	Temperature	Humidity
PM _{2.5}	-	0.64	0.40	0.58	0.09	0.33	-0.05	0.07
PM ₁₀		_	0.34	0.42	0.07	0.21	-0.16	-0.10
SO ₂			_	0.49	0.05	0.33	-0.20	-0.30
СО				_	-0.37	0.67	-0.37	0.17
O ₃					-	-0.58	0.50	-0.40
NO ₂						_	-0.31	0.13
Temperature							_	0.03
Humidity								_


Abbreviations: $PM_{2.5}$, fine particulate matter with an aerodynamic diameter of <2.5 μ m; PM_{10} , fine particulate matter with an aerodynamic diameter of <10 μ m; CO, carbon monoxide; SO₂, sulfur dioxide; NO₂, nitrogen dioxide; O₃, ozone.

Supplementary Figure 2. Relative concentrations of air pollutants according to time in a day during the study period

Abbreviations: $PM_{2.5}$, fine particulate matter with an aerodynamic diameter of <2.5 μ m; PM_{10} , fine particulate matter with an aerodynamic diameter of <10 μ m; CO, carbon monoxide; SO₂, sulfur dioxide; NO₂, nitrogen dioxide; O₃, ozone.


Supplementary Figure 3. Time-lag effects of air pollution on diastolic blood pressure

The x-axis represents hour lags, while the y-axis does adjusted effects on systolic blood pressure.

Abbreviations: $PM_{2.5}$, fine particulate matter with an aerodynamic diameter of <2.5 μ m; PM_{10} , fine particulate matter with an aerodynamic diameter of <10 μ m; CO, carbon monoxide; SO₂, sulfur dioxide; NO₂, nitrogen dioxide; O₃, ozone; IQR, Interquartile range.

Supplementary Figure 4. Time-lag effects of air pollution on pulse rate

The x-axis represents hour lags, while the y-axis does adjusted effects on systolic blood pressure.

Abbreviations: $PM_{2.5}$, fine particulate matter with an aerodynamic diameter of <2.5 μ m; PM_{10} , fine particulate matter with an aerodynamic diameter of <10 μ m; CO, carbon monoxide; SO₂, sulfur dioxide; NO₂, nitrogen dioxide; O₃, ozone; IQR, Interquartile range.

Supplementary Figure 5. Subgroup analysis for the associations between air pollutants and systolic blood pressure stratified by body mass index.

Pollutants	Subgroups	Effects on systolic BP	P value	Int P				
PM _{2.5}	BMI ≥25 kg/m²	 ■ -	0.283	0.196				
	BMI <25 kg/m ²	- -	0.257					
PM ₁₀	BMI ≥25 kg/m²	•	0.574	0.179				
	BMI <25 kg/m ²	•	0.937					
SO ₂	BMI ≥25 kg/m²	-	0.111	0.088				
	BMI <25 kg/m ²	■ -	0.118					
со	BMI ≥25 kg/m ²		0.013	0.791				
	BMI <25 kg/m ²		0.333					
O ₃	BMI ≥25 kg/m²		0.000	0.139				
	BMI <25 kg/m ²		0.015					
NO ₂	BMI ≥25 kg/m²		0.877	0.316				
	BMI <25 kg/m ²		0.002					
	- I		T					
	-1.0 0.0 1.0 2.0 Systolic Blood Pressure (mmHg)							

Abbreviations: BMI, body mass index (kg/m²); Int P, interaction P values; PM $_{2.5}$, fine particulate matter with an aerodynamic diameter of <2.5 μ m; PM $_{10}$; CO, carbon monoxide; SO $_{2}$, sulfur dioxide; NO $_{2}$, nitrogen dioxide; O $_{3}$, ozone.