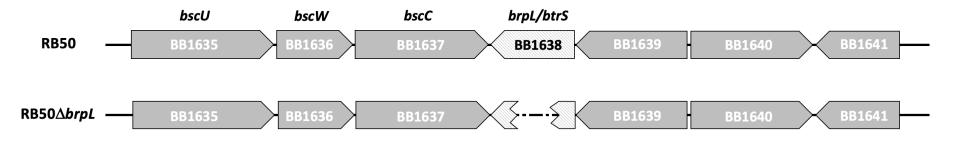
Title: Enhancement of immune response against *Bordetella* spp. by disrupting immunomodulation

Monica C. Gestal¹*, Laura K. Howard¹, Kalyan Dewan¹, Hannah M. Johnson¹, Mariette Barbier^{2,3}, Clare Bryant⁴, Illiassou Hamidou Soumana¹, Israel Rivera¹, Bodo Linz¹, Uriel Blas-Machado⁵, and Eric T. Harvill¹*.

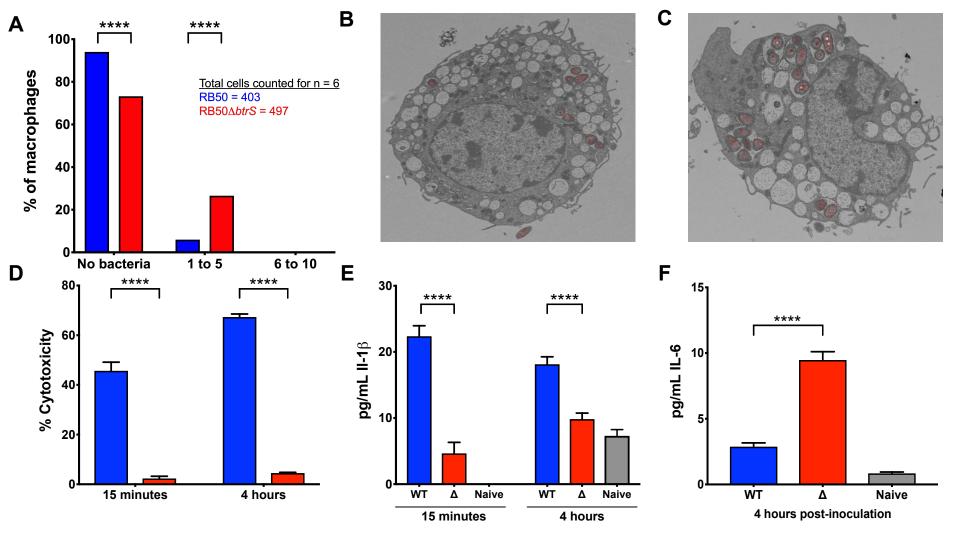
¹Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America.

²Department of Microbiology, Immunology, and Cell Biology, West Virginia University, 9 Morgantown, WV, United States of America.

³Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, West Virginia, USA.


⁴Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, United Kingdom.

⁵Department of Pathology, Athens Veterinary Diagnostic Laboratory, University of Georgia, Athens, Georgia, United States of America.


Corresponding authors:

Monica Cartelle Gestal: <u>mcarges@gmail.com</u> // <u>mcgestal@uga.edu</u>

Eric T. Harvill: <u>Harvill@uga.edu</u>

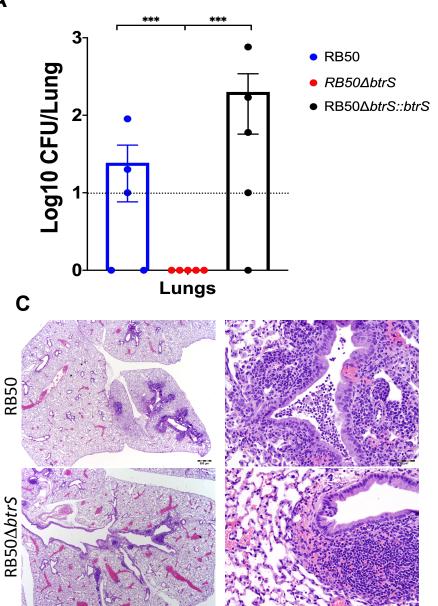


Figure S1: Genetic context for RB50 *btr***S mutant strain.** Diagram showing the clean, in-frame deletion of the *brpL/btr*S gene (Locs_tag BB1638) in the RB50 *B. bronchiseptica* chromosome.

Figure S2: Macrophages at a confluency of 97-99% were challenged at an MOI of 100, n=6. (**A**) Percentage of macrophages containing the indicated number of bacteria at 15 minutes post-exposure. RB50 (blue) and RB50 $\Delta btrS$ (red) were enumerated using Transmission Electron Microscopy (TEM). TEM of RAW macrophages challenged for 4 hours with RB50 (**B**) (bacteria are shown in red) or with the mutant (**C**). (**D**) Cytotoxicity of RB50 and RB50 $\Delta btrS$ at 15 min and 4 hours post-challenge. (**E**) IL-1 β secreted measured at 15 min and 4 hours post-challenged of macrophages challenged with wild-type or mutant *B. bronchiseptica*. (**F**) IL-6 secreted at 4 hours post-challenge with RB50 or RB50 $\Delta btrS$. Statistical significance was calculated using Two-Way ANOVA. * p<0.05, *** p<0.005, *** p<0.0005, and **** p<0.0001. Error bars indicate SEM.

28 days post infection

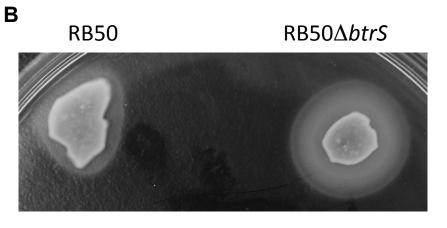
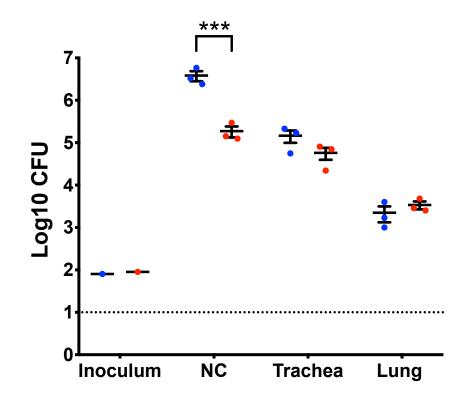



Figure S3: Phenotypes that required *btrS in vivo* and *in vitro.* (A) Mice were intranasally challenged with RB50 (blue), RB50 Δ *btrS* (red), or RB50 Δ *btrS::btrS* (black). 28 days post-inoculation organs were harvest and bacterial load in the lungs was enumerated. (B) Motility assay was performed in 0.4% LB agar inoculated with 10µl of a liquid culture of RB50 or RB50 Δ *btrS* at an OD of 0.7. The plates were read at 24 and 48 hours post-inoculation (n=4) (B) Mice were intranasally challenged with RB50 or RB50 Δ *btrS* and pathological studies (H&E) were performed. In the left is the zoom out and the right is the zoom in image of RB50 (top) and RB50 Δ *btrS* (bottom).

Δ

Figure S4: Bacterial numbers isolated from nasal cavity, trachea, and lungs of Rag^{-/-} **mice.** Groups of 4 mice were challenged with a low dose (150 CFU) in a low volume (5mL) of wild-type (blue) or mutant (red) *B. bronchiseptica* at 24 days post-inoculation. Bacterial load from the respiratory tract organs was enumerated (n=2). Statistical significance was calculated using Two-Way ANOVA. *** p<0.0005. Error bars indicate SEM.

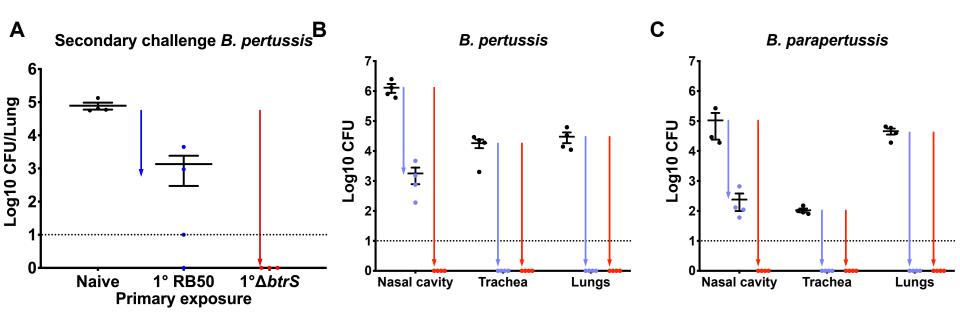
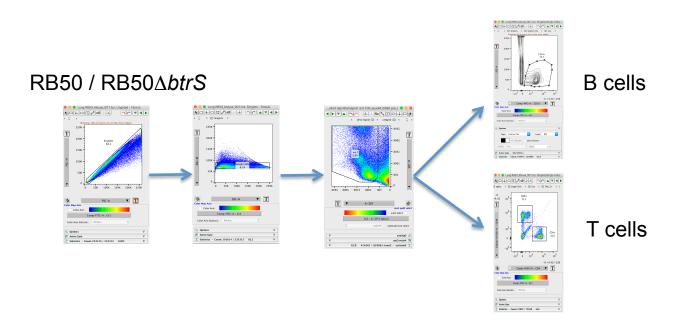



Figure S5: Efficiency of RB50 $\Delta btrS$ as a vaccine against *B. pertussis* and *B. parapertussis*. (A) Mice were challenged with PBS (black), RB50 (blue), or RB50 $\Delta btrS$ (red). 3 months post-exposure, mice were inoculated with *B. pertussis* and sacrificed at day 7 (n=4). Bacterial load in the lungs was enumerated. (B-C) Mice were vaccinated with PBS (black), Adacel acellular vaccine (violet), or RB50 $\Delta btrS$ (red). 60 days later, mice were re-challenged with (B) *B. pertussis* or (C) *B. parapertussis* and euthanized at day 7 (n=4).

Figure S6: Gating strategy utilized for flow cytometry. Strategies adapted from standard gating procedures *(52)* (n=6 per experiment of 4).

Table S1.

Laser	BP filter	Fluorochromes	Cytokine	Vendor	Reference
488 Laser					
В	525/50	FitC	GR1	Tonbo	35-5931
532 Laser	/= _				
E	575/20	PE	CD11b	Tonbo	50-0112
488 Laser	COF /40		54/00	T b	CE 4004
A	695/40	PerCP	F4/80	Tonbo	65-4801
640 Laser C	660/20	APC	CD19	Tonbo	20-0193
640 Laser	000/20	AFC	CD19	TUTIDU	20-0195
A	780/60	APC-Cy7	CD90.2	BD	561641
405 Laser	/00/00	All C Cy/	CD 90.2	60	501041
C	450/50	V450	CD4	Tonbo	75-0041
404 Laser			-		
В	525/50	V500	CD8	BD	563068

Antibodies used in this study are detailed on the table below.