Supporting information

The sensor kinase MtrB of Mycobacterium tuberculosis regulates hypoxic survival and establishment of infection

Banerjee et al.

Three figures

Six tables

Figure S1. Verification of inactivation of *mtrB*, scanning electron microscopy and crystal violet staining.

(A) Schematic representation of the mtrB (Rv3245c) locus on the Mtb H37Rv genome and strategy employed to replace mtrB with the kanamycin resistance gene (Kan^R). The BgIII sites and the probe used for Southern blotting are indicated. (B) Verification of the inactivation of mtrB with primers A1 and A2 (see Table S5). The wild type (WT) mtrB gene product is ~2.1 kb while the deletion strain (DCO) gene product is ~1.5kb.(C) Verification of the inactivation of mtrB with primers B1 and B2 (see Table S5). The deletion strain (DCO) shows a product of ~1.2kb while there is no amplification in the case of the wild type (WT). (D,E) Southern Blotting to confirm deletion of mtrB. The agarose gel (D) corresponding to the blot (E) confirms the absence of probe binding in mtrB.(F) PCR with primers P13 and P14 (see Table S5) confirms the presence of mtrA in the genomic DNA of mtrB. The deletion strain (DCO) shows the same ~700bp amplicon as the wild type (WT).(G) Complemnetation of MtrB in mtrB was confirmed by immunoblotting of bacterial lysates with MtrB antibody.(H) Bacteria was grown in the presence of 0.1% Tween 20 for the cell aggregation assay and CFUs were determined to confirm viability of bacteria. ns, non-significant. (I) Representative scanning electron micrographs of wild type (WT), mtrB and mtrB::mtrB. Images were acquired at 12000X magnification. Scale bar, 4 µm. Images are representative of three independent experiments.(J) The expression of MtrA(Y102C) in mtrB was confirmed by immunoblotting. Equal numbers of bacteria [mtrB alone or mtrB complemented with plasmid overexpressing mtrA(Y102C)] were lysed and different amounts of bacterial lysates [indicated in µl] were immunoblotted with His antibody.

Figure S2. MtrB is required to induce a pro-inflammatory response upon infection.

(A, B) Release of TNF- (A) and IL-6 (B) was measured by ELISA from supernatants of BMDMs infected with wild type (WT), *mtrB* or *mtrB*::*mtrB* strains. Data represent means ± SD of three independent experiments. ***p 0.001.

(C, D) mRNA profiles in lungs of mice infected with WT or *mtrB. Tnf-alfa* (C) or *II-6* (D) was measured from RNA of lungs obtained after 4 weeks of infection, by qRT-PCR. *Gapdh* was used for normalization. Data represent means \pm SD (4 mice per strain), ***p 0.001.

Figure S3. The *dosR* interaction network, and phosphorylation independent interaction of MtrB with DosR

(A) The *dosR* protein-DNA and protein-protein interaction network of $\Delta mtrB$. The color of each node represents its expression level in *mtrB* compared to the wild type *M. tuberculosis*. Blue color edges show protein-protein interactions. Pink color edges show protein-DNA interactions. Rectangular nodes show transcription factors (TF) while circular nodes show other proteins. (B) Venn diagram representing the overlap between genes associated with long-term hypoxia (EHR), and genes downregulated in *mtrB*. Red arrow shows upregulated genes. Green arrow shows downregulated genes. (C) Binding of MtrB to the *hspX* promoter was analysed by EMSA. EMSA

was performed by incubating the PCR fragment derived from the hspX promoter with DosR (2.5 µM) alone or varying concentrations of MtrB. The reaction mixture was separated by PAGE and the DNA-protein complex was visualised on a Typhoon biomolecular imager. (D) EMSA was performed by incubating the PCR fragment derived from the dosR promoter with DosR (2.5 µM) in the presence of varying concentrations of MtrB. (E)Autophosphorylation of MtrB (or its mutant) was evaluated by incubation of MtrB with γ -³²P-ATP followed by SDS-PAGE and autoradiography. (F, G) Binding of MtrB (H305A) to the hspX (F) or dosR (G) promoter was analysed by EMSA. (H) Pull down assays to analyze interaction between MtrB and DosR. S-MtrB (cytosolic domain) expressing E. coli lysate (or S-MtrB (H305A) (cytosolic domain)-expressing E. coli lysate) was incubated with His-DosR (expressed in *E. coli*) immobilized on Ni²⁺-NTA agarose. After washing the protein-bound resin, bound proteins were analyzed by immunoblotting with S-antibody, and reprobed with His antibody. (I) M-PFC assay to determine association of DosR with MtrB (H305A). M. smegmatis expressing DosR fused to one half of mDHFR and MtrB (H305A) (cytosolic domain) fused to another half of mDHFR, was grown in the absence (-) or in the presence (+) of TRIM (20 µg/ml). Plates were incubated at 37°C for 7 days. Growth on TRIM indicated reconstitution of DHFR, which occurs when there is interaction between the protein pair. GCN4-GCN-4 served as positive control.

Table S1. 101 genes that are reported to be upregulated in *M. tuberculosis* after 2-24 h infection of macrophages but were downregulated in *mtrB* compared to the wild type

Gene	Rv number	Fold change	Function (TubercuList)	
acg	Rv2032	-4.10	conserved hypotheticals	
arsC	Rv2643	-1.05	cell wall and cell processes	
bfrB	Rv3841	-3.30	intermediary metabolism and respiration	
ctpF	Rv1997	-4.94	cell wall and cell processes	
cyp125	Rv3545c	-1.23	intermediary metabolism and respiration	
cysN	Rv1286	-1.59	intermediary metabolism and respiration	
desA1	Rv0824c	-1.52	lipid metabolism	
desA2	Rv1094	-1.20	lipid metabolism	
devR	Rv3133c	-5.03	regulatory proteins	
devS	Rv3132c	-4.47	regulatory proteins	
dxs2	Rv3379c	-1.15	intermediary metabolism and respiration	
fadA6	Rv3556c	-1.02	lipid metabolism	
fadD9	Rv2590	-1.24	lipid metabolism	
fdxA	Rv2007c	-2.81	intermediary metabolism and respiration	
fprB	Rv0886	-1.32	intermediary metabolism and respiration	
frdA	Rv1552	-1.18	intermediary metabolism and respiration	
gltA1	Rv1131	-2.03	intermediary metabolism and respiration	
grpE	Rv0351	-1.06	virulence, detoxification, adaptation	
hycD	Rv0084	-1.52	intermediary metabolism and respiration	
lat	Rv3290c	-1.46	intermediary metabolism and respiration	
lhr	Rv3296	-0.95	information pathways	
IppN	Rv2270	-1.37	cell wall and cell processes	
mbtG	Rv2378c	-1.33	lipid metabolism	
mce3C	Rv1968	-0.95	virulence, detoxification, adaptation	
mpt70	Rv2875	-1.49	cell wall and cell processes	
narK2	Rv1737c	-4.75	cell wall and cell processes	
nrp	Rv0101	-1.20	lipid metabolism	
otsB1	Rv2006	-3.41	virulence, detoxification, adaptation	
pdhA	Rv2497c	-1.28	intermediary metabolism and respiration	
PE34	Rv3746c	-0.92	PE/PPE	
PE4	Rv0160c	-0.93	PE/PPE	
pfkB	Rv2029c	-6.53	intermediary metabolism and respiration	
pks2	Rv3825c	-0.92	lipid metabolism	
PPE24	Rv1753c	-0.88	PE/PPE	
rocA	Rv1187	-1.22	intermediary metabolism and respiration	
Rv0079	Rv0079	-2.39	conserved hypotheticals	
Rv0080	Rv0080	-4.02	conserved hypotheticals	
Rv0081	Rv0081	-4.35	regulatory proteins	
Rv0082	Rv0082	-3.50	intermediary metabolism and respiration	
Rv0083	Rv0083	-1.37	intermediary metabolism and respiration	
Rv0569	Rv0569	-3.59	conserved hypotheticals	
Rv0571c	Rv0571c	-4.61	conserved hypotheticals	
Rv0572c	Rv0572c	-3.53	conserved hypotheticals	
Rv0574c	Rv0574c	-3.31	conserved hypotheticals	
Rv0575c	Rv0575c	-1.26	intermediary metabolism and respiration	
Rv0823c	Rv0823c	-1.22	regulatory proteins	
Rv0843	Rv0843	-1.00	intermediary metabolism and respiration	
Rv0885	Rv0885	-1.16	conserved hypotheticals	
Rv1129c	Rv1129c	-1.19	regulatory proteins	
Rv1130	Rv1130	-2.63	conserved hypotheticals	
Rv1190	Rv1190	-1.41	conserved hypotheticals	
Rv1222	Rv1222	-0.99	conserved hypotheticals	
Rv1375	Rv1375	-0.97	conserved hypotheticals	
Rv1405c	Rv1405c	-0.96	intermediary metabolism and respiration	
Rv1733c	Rv1733c	-3.62	cell wall and cell processes	
Rv1734c	Rv1734c	-1.55	conserved hypotheticals	
Rv1735c	Rv1735c	-2.17	cell wall and cell processes	
Rv1738	Rv1738	-4.00	conserved hypotheticals	
Rv1739c	Rv1739c	-1.91	cell wall and cell processes	
Rv1813c	Rv1813c	-4.64	conserved hypotheticals	

Rv1989c	Rv1989c	-1.46	conserved hypotheticals	
Rv1996	Rv1996	-3.40	conserved hypotheticals	
Rv1999c	Rv1999c	-4.20	cell wall and cell processes	
Rv2003c	Rv2003c	-4.50	conserved hypotheticals	
Rv2005c	Rv2005c	-5.53	conserved hypotheticals	
Rv2008c	Rv2008c	-1.10	conserved hypotheticals	
Rv2012	Rv2012	-1.02	conserved hypotheticals	
Rv2028c	Rv2028c	-6.72	conserved hypotheticals	
Rv2030c	Rv2030c	-6.74	conserved hypotheticals	
Rv2059	Rv2059	-1.31	conserved hypotheticals	
Rv2557	Rv2557	-1.37	conserved hypotheticals	
Rv2619c	Rv2619c	-0.87	conserved hypotheticals	
Rv2620c	Rv2620c	-1.08	cell wall and cell processes	
Rv2624c	Rv2624c	-5.32	conserved hypotheticals	
Rv2625c	Rv2625c	-4.98	cell wall and cell processes	
Rv2626c	Rv2626c	-5.50	conserved hypotheticals	
Rv2627c	Rv2627c	-4.47	conserved hypotheticals	
Rv2628	Rv2628	-4.69	conserved hypotheticals	
Rv2629	Rv2629	-3.47	conserved hypotheticals	
Rv2630	Rv2630	-3.30	conserved hypotheticals	
Rv2650c	Rv2650c	-1.08	insertion seqs and phages	
Rv2666	Rv2666	-1.35	insertion seqs and phages	
Rv2897c	Rv2897c	-1.12	conserved hypotheticals	
Rv2990c	Rv2990c	-1.28	conserved hypotheticals	
Rv3115	Rv3115	-2.15	insertion seqs and phages	
Rv3126c	Rv3126c	-0.97	conserved hypotheticals	
Rv3127	Rv3127	-4.64	conserved hypotheticals	
Rv3128c	Rv3128c	-2.29	conserved hypotheticals	
Rv3129	Rv3129	-4.52	conserved hypotheticals	
Rv3131	Rv3131	-3.16	conserved hypotheticals	
Rv3134c	Rv3134c	-4.79	conserved hypotheticals	
Rv3174	Rv3174	-1.06	intermediary metabolism and respiration	
Rv3289c	Rv3289c	-1.74	cell wall and cell processes	
Rv3428c	Rv3428c	-1.49	insertion seqs and phages	
Rv3541c	Rv3541c	-0.88	conserved hypotheticals	
Rv3660c	Rv3660c	-1.12	virulence, detoxification, adaptation	
Rv3698	Rv3698	-1.06	conserved hypotheticals	
Rv3839	Rv3839	-1.26	conserved hypotheticals	
TB31.7	Rv2623	-4.17	conserved hypotheticals	
usfY	Rv3288c	-1.84	conserved hypotheticals	
yrbE3B	Rv1965	-1.05	virulence, detoxification, adaptation	

Gene	Rv number	Fold change	Function (TubercuList)
apt	Rv2584c	-0.99	intermediary metabolism and respiration
fadD15	Rv2187	-1.53	lipid metabolism
fadD9	Rv2590	-1.24	lipid metabolism
gltA1	Rv1131	-2.03	intermediary metabolism and respiration
hpx	Rv3171c	-1.80	virulence, detoxification, adaptation
lat	Rv3290c	-1.46	intermediary metabolism and respiration
lipU	Rv1076	-2.40	intermediary metabolism and respiration
lprE	Rv1252c	-1.33	cell wall and cell processes
mtrA	Rv3246c	-1.54	regulatory proteins
pdhA	Rv2497c	-1.28	intermediary metabolism and respiration
pdhB	Rv2496c	-0.98	intermediary metabolism and respiration
phoH2	Rv1095	-1.51	intermediary metabolism and respiration
pks2	Rv3825c	-0.92	lipid metabolism
regX3	Rv0491	-4.02	regulatory proteins
rocA	Rv1187	-1.22	intermediary metabolism and respiration
Rv0079	Rv0079	-2.39	conserved hypotheticals
Rv0083	Rv0083	-1.37	conserved hypotheticals
Rv0197	Rv0197	-0.98	intermediary metabolism and respiration
Rv0678	Rv0678	-0.99	conserved hypotheticals
Rv1130	Rv1130	-2.63	conserved hypotheticals
Rv1435c	Rv1435c	-1.32	cell wall and cell processes
Rv2159c	Rv2159c	-1.89	conserved hypotheticals
Rv2160c	Rv2160c	-1.95	regulatory proteins
Rv2161c	Rv2161c	-1.56	intermediary metabolism and respiration
Rv2256c	Rv2256c	-1.35	conserved hypotheticals
Rv2484c	Rv2484c	-0.94	conserved hypotheticals
Rv2557	Rv2557	-1.37	conserved hypotheticals
Rv2558	Rv2558	-1.90	conserved hypotheticals
Rv2638	Rv2638	-0.89	conserved hypotheticals
Rv2867c	Rv2867c	-1.43	conserved hypotheticals
Rv3079c	Rv3079c	-1.08	conserved hypotheticals
Rv3258c	Rv3258c	-0.96	conserved hypotheticals
Rv3289c	Rv3289c	-1.74	cell wall and cell processes
Rv3675	Rv3675	-1.03	cell wall and cell processes
Rv3848	Rv3848	-1.55	cell wall and cell processes

Table S2. 32 genes reported to be acid-responsive but downregulated in *mtrB* compared to the wild type

Table S3. 71 genes that were proposed to be essential for optimal *M. tuberculosis* growth but were found to bedownregulated inmtrB compared to the wild type.

Gene	Ry number	Fold change	Function (Tubercul ist)	
accA2	Rv0973c	-1 10	lipid metabolism	
accD6	Rv2247	-1.01	lipid metabolism	
acpM	Rv2244	-1.35	lipid metabolism	
clpC1	Rv3596c	-0.98	intermediary metabolism and respiration	
cobO2	Rv3713	-1 52	intermediary metabolism and respiration	
csnA	Rv3648c	-1.52	virulence detoxification adaptation	
cydB	Rv1622c	0	intermediary metabolism and respiration	
cyub	Dv1226	-0.33	intermediary metabolism and respiration	
	RV1200	1.59	linid motabolism	
desA2	RV00240	1.02	lipid metabolism	
dave	RV1094	-1.20		
devS	RV31320	-4.47	information pathwaya	
	RV0000	-1.07	virulance detexification adaptation	
dvo1	RV0352	-1.00	intermediary metabolism and respiration	
dxs i ftok	RV20020	-1.07		
ftsh	RV21400	-1.42		
fto\//	RV21510	-1.90		
11SVV fto7	RV21540	-1.19		
	RV2150C	-1.39	cell wall and cell processes	
gitB	RV3859C	-1.26	Intermediary metabolism and respiration	
grp⊨	RV0351	-1.06	Virulence, detoxification, adaptation	
nemL	RV0524	-1.33	intermediary metabolism and respiration	
hupB	Rv2986c	-1.78	Information pathways	
hycP	Rv0085	-2.41	intermediary metabolism and respiration	
hycQ	Rv0086	-1.70	intermediary metabolism and respiration	
ilvE	Rv2210c	-1.31	intermediary metabolism and respiration	
kasA	Rv2245	-0.99	lipid metabolism	
IpqB	Rv3244c	-1.71	cell wall and cell processes	
lsr2	Rv3597c	-1.45	conserved hypotheticals	
mbtG	Rv2378c	-1.33	lipid metabolism	
murC	Rv2152c	-2.00	cell wall and cell processes	
murD	Rv2155c	-0.88	cell wall and cell processes	
murF	Rv2157c	-1.46	cell wall and cell processes	
murG	Rv2153c	-1.44	cell wall and cell processes	
murX	Rv2156c	-1.82	cell wall and cell processes	
pks7	Rv1661	-1.23	lipid metabolism	
pks8	Rv1662	-1.50	lipid metabolism	
PPE24	Rv1753c	-0.88	PE/PPE	
PPE50	Rv3135	-1.61	PE/PPE	
ppnK	Rv1695	-1.03	intermediary metabolism and respiration	
pros	Rv2845c	-1.00	information pathways	
pyrB	Rv1380	-1.13	intermediary metabolism and respiration	
qcrA	Rv2195	-1.14	intermediary metabolism and respiration	
ripA	Rv1477	-1.98	virulence, detoxification, adaptation	
rocA	Rv1187	-1.22	intermediary metabolism and respiration	
rpIL	Rv0652	-0.96	information pathways	
rpmC	Rv0709	-1.15	information pathways	
rpoC	Rv0668	-1.56	information pathways	
rpsE	Rv0721	-1.13	information pathways	
rpsQ	Rv0710	-1.23	information pathways	
Rv0208c	Rv0208c	-1.89	intermediary metabolism and respiration	
Rv0236c	Rv0236c	-1.86	cell wall and cell processes	
Rv0289	Rv0289	-1.04	conserved hypotheticals	
Rv0290	Rv0290	-0.94	cell wall and cell processes	
Rv0312	Rv0312	-1.01	conserved hypotheticals	
Rv0697	Rv0697	-1.02	intermediary metabolism and respiration	
Rv1456c	Rv1456c	-1.01	cell wall and cell processes	
Rv1738	Rv1738	-4.00	conserved hypotheticals	
Rv2164c	Rv2164c	-1.79	cell wall and cell processes	
Rv2166c	Rv2166c	-1.25	conserved hypotheticals	
Rv2897c	Rv2897c	-1.12	conserved hypotheticals	

Rv2926c	Rv2926c	-0.99	conserved hypotheticals
Rv2927c	Rv2927c	-1.52	conserved hypotheticals
Rv3131	Rv3131	-3.16	conserved hypotheticals
Rv3267	Rv3267	-1.94	conserved hypotheticals
Rv3559c	Rv3559c	-0.98	intermediary metabolism and respiration
Rv3660c	Rv3660c	-1.12	virulence, detoxification, adaptation
Rv3752c	Rv3752c	-1.26	intermediary metabolism and respiration
TB31.7	Rv2623	-4.17	conserved hypotheticals
thrS	Rv2614c	-1.07	information pathways
uvrD2	Rv3198c	-1.59	information pathways
wag31	Rv2145c	-0.97	cell wall and cell processes

Table S4. 32 Genes that are upregulated during the Enduring Hypoxic Response (EHR) but are downregulatedin*mtrB* compared to the wild type.

Gene	Rv number	Fold change	Function (TubercuList)
hycD	Rv0084	-1.52	intermediary metabolism and respiration
nrdB	Rv0233	-1.02	information pathways
Rv0349	Rv0349	-1.30	conserved hypotheticals
dnaJ1	Rv0352	-1.08	virulence, detoxification, adaptation
Rv0575c	Rv0575c	-1.26	intermediary metabolism and respiration
end	Rv0670	-1.09	information pathways
Rv0827c	Rv0827c	-1.74	regulatory proteins
PE_PGRS14	Rv0834c	-0.91	PE/PPE
Rv1375	Rv1375	-0.97	conserved hypotheticals
Rv1405c	Rv1405c	-0.96	intermediary metabolism and respiration
cydA	Rv1623c	-1.87	intermediary metabolism and respiration
Rv1733c	Rv1733c	-3.62	cell wall and cell processes
Rv1744c	Rv1744c	-0.94	cell wall and cell processes
Rv1760	Rv1760	-1.27	conserved hypotheticals
Rv1989c	Rv1989c	-1.46	conserved hypotheticals
cmtR	Rv1994c	-1.41	Transcriptional regulator(MerR Family)
Rv2012	Rv2012	-1.02	conserved hypotheticals
pdhA	Rv2497c	-1.28	intermediary metabolism and respiration
Rv2557	Rv2557	-1.37	conserved hypotheticals
Rv2558	Rv2558	-1.90	conserved hypotheticals
Rv2626c	Rv2626c	-5.50	conserved hypotheticals
Rv2627c	Rv2627c	-4.47	conserved hypotheticals
Rv2628	Rv2628	-4.69	conserved hypotheticals
arsC	Rv2643	-1.05	cell wall and cell processes
Rv3174	Rv3174	-1.06	intermediary metabolism and respiration
Rv3175	Rv3175	-1.14	intermediary metabolism and respiration
lat	Rv3290c	-1.46	intermediary metabolism and respiration
cyp125	Rv3545c	-1.23	intermediary metabolism and respiration
lsr2	Rv3597c	-1.45	conserved hypotheticals
Rv3848	Rv3848	-1.55	cell wall and cell processes
whiB6	Rv3862c	-1.04	regulatory proteins
Rv3864	Rv3864	-1.14	conserved hypotheticals

Primers for genetic manipulations				
SI. No.	Primer sequ	Purpose		
P1	AGATATCCGCGGCCC	Cloning		
P2	CGTCTAGAGCCCC	Cloning		
P3	ATAAAGCTTCCGGAA	TACAAGGAACGTCAG	Cloning	
P4	ATAACTAGTGTGACT	CGCTGTGCGTCCAT	Cloning	
P5	ATGAATTCGGTGTTTA	CTCGTGATGTGCTGCT	KO verification	
P6	AAAAAGCTTCGATTC	GGTGAGGAACTGAC	KO verification	
P7	CAGGATGAGG	GATCGTTTCGC	KO verification	
P8	AGCGGCCATC	GTGCCTCCCC	KO verification	
P9	GTCACCAATCGT	GTCCTCGACATC	Southern Blot	
P10	GCGTACTGGT	AGGCGGCCTG	Southern Blot	
P11	AGAATTCATGATCTTCG	GCTCGCGCCGACGCAT	Cloning	
P12	AAAAAGCTTTCAACCGC	TCCACTCCGCGTGCTC	Cloning	
P13	AGGTACCCATATGO	GACACCATGAGGCA	mtrA check	
P14	AAAAAGCTTCGGA	GGTCCGGCCTTG	mtrA check	
P15	AAGAATTCATGTC	GCGTCAGGTGGTG	Cloning	
P16	AAAAAGCTTCAAC	CGCTCCACTCCG	Cloning	
P17	AAGGATCCGTGGTA	AAGGTCTTCTTGGT	Cloning	
P18	AAGGTACCATCGATTGGTCCATCACCGGGTGGCC		Cloning	
P19	AAGGTACCCAATTGTGTCGCGTCAGGTGGTG		Cloning	
P20	AGAATTCATCGATACCGCTCCACTCCGCGTGCT		Cloning	
Primers for qRT-PCR				
	Primer	Sequence	(5'- 3')	
	pfkBtbF ^a	CCAAGCAGTAT	CGTTTCGTG	
pfkBtbR⁵		GATAGTAGTCG	GCAGCCACA	
fdxAtbF		GTCCTGTGTGC	AGGAGTGTC	
	fdxAtbR	GGTAGATCGCCTTCCCAGTA		
	Rv0080tbF	GTCCAGTCAATCACCTCGTG		
	Rv0080tbR	ATCAAGGTCGTCGGCTTC		
Rv0081tbF		GTCGGTGAGT	IGCTGTCCT	
Rv0081tbR		GCAATCGAATA	GATCATCGC	
fadA6tbF		GTGCAGAACAT	GAGCCAGAT	
fadA6tbR		AAATCTCCTGG	TCGCCATAC	
murGtbF		GACGGTCGCC	GAAGTATC	
murGtbR		CATTCAGCCG	CTGTTCAC	
ilvEtbF		CGCCGCTATAT	CGAAGAGAT	
	ilvEtbR	AATAGCCAACT	GCAACAACG	
	ftsZtbF	ACAACTACCTG	GCCGTCATC	
	ftsZtbR	ATGAATTCCAC	GCCTTTGA	
ftsWtbF		CGTTCATCAAC	ATCGGCTAT	

 Table S5. Primers for genetic manipulations and qRT-PCR.

ftsWtbR	GATGATGCCTATCAGCGAAA
ftsQtbF	TTGCCTTATTTCGATGTGGA
ftsQtbR	GGCTTGCAACTTCAGGATG
esxGtbF	CGGCTCAGGCGTTTCAC
esxGtbR	CCGCCGCCACAAACC
esxHtbF	CAGGCCGCGTTGCA
esxHtbR	CTGCCACGCCTGATACGT
dosRtbF	CCGATCTGCGCTGTCTGATC
dosRtbR	GTCCAGCGCCCACATCTTT
dosStbF	TTCGGCACTCTGTACCTGAC
dosStbR	CCTTAGCCTGCTGGTAGAGC
tgs1tbF	GCTAGCTGGGCTCTCCGATGAA
tgs1tbR	AACGCCTCGCTTGGATTGACA
narXtbF	TCCACACGGGGTGAATTG
narXtbR	ATAGTCGGTCTCCTGCGTCT
narK2tbF	GTGACCTGGGAGATGTCGTTT
narK2tbR	ACCGTGGAGAACCCGTAGAT

^a F stands for Forward; ^b R stands for Reverse.

Table S6. Primers for EMSA

Primer	Sequence (5'- 3')
hspX EMSA F ^a	TCTGAACGGCGGTTGGCAGACAAC
Cy5 <i>hspX</i> EMSA R ^b	CGGGAAGGGTGGTGGCCATTTGATG
dosR EMSA F	GTCAGCGCGGTTGTCGCGGAG
Cy5 dosR EMSA R	GACCTTTACCACCAGGGCACC

^a F stands for Forward; ^b R stands for Reverse.