YvcI from *Bacillus subtilis* has *in vitro* RNA pyrophosphohydrolase activity

Jens Frindert¹, Masroor Ahmad Kahloon¹, Yaqing Zhang¹, Yasar Luqman Ahmed², Irmgard Sinning² and Andres Jäschke^{1*}

¹Institute of Pharmacy and Molecular Biotechnology (IPMB), Heidelberg University, D-69120 Heidelberg, Germany ²Heidelberg University Biochemistry Center (BZH), Heidelberg University, D-69120 Heidelberg,

Germany

Supporting Information

Contains Supporting Methods, Supporting Figures 1-6 and Supporting Tables 1-4.

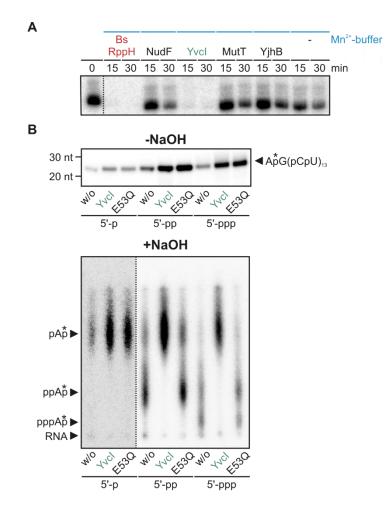
SUPPORTING METHODS

Plasmid construction

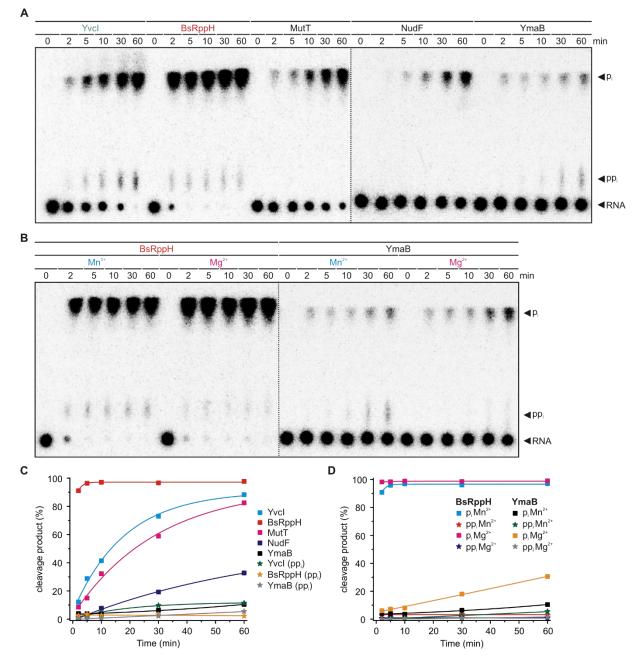
The genes of YvcI (yvcI), BsRppH (rppH), YjhB (yjhB), MutT (mutT), NudF (nudF) and YmaB (ymaB) were amplified from genomic DNA from B. subtilis 1A1 isolated using a published method (1). Xbal and Xhol restriction sites were introduced during PCR amplification using Q5 Hot Start High-Fidelity DNA Polymerase (New England Biolabs) with the primers Fwd-Yvcl/Rev-Yvcl, Fwd-BsRppH/Rev-BsRppH, Fwd-NudF/Rev-NudF and Fwd-YmaB/Rev-YmaB (Table S2). The amplified PCR products were treated with Xbal and Xhol (both Thermo Scientific) and cloned into pET-28a(+) (Novagen), resulting in the plasmids pET-28a-YvcI, pET-28a-BsRppH, pET-28a-NudF and pET-28a-YmaB. Due to solubility issues, YihB and MutT were expressed as maltose binding protein fusions. yihB and mutT amplified with the primers Fwd-YjhB/Rev-YjhB and Fwd-MutT/Rev-MutT were cloned into 2M-T (Addgene plasmid #29708; 2M-T was a gift from Scott Gradia) by ligation independent cloning (LIC). In brief, 1 μg 2M-T in 1× Sspl buffer was treated with 10 U Sspl at 37°C for 30 min. The linearized vector was gel purified and used for the LIC reaction: in separate reactions, 150 ng of the vector, or the insert(s), respectively, in 1× T4 DNA polymerase buffer plus 5 mM DTT and 2.5 mM dCTP (insert) or 2.5 mM dGTP (vector) were treated with 3 U T4 DNA polymerase at 22°C for 30 min. After heat inactivation at 75°C for 20 min, 2 μ l (each) of the LICed insert and LICed vector were combined in 10 μ l and incubated at 20°C for 10 min resulting in the plasmids 2M-T-YjhB and 2M-T-MutT. All mutants of Yvcl were generated by site-directed mutagenesis as described in (2). The primer for the introduction of the respective mutations are listed in Table S2. The resulting linearized plasmids pET-28a-YvcI-E49A, -E49Q, -E52Q, -E53Q, -E49Q-E52Q, -E49Q-E52Q, -E52Q-E53Q, were ligated (T4 DNA ligase, Thermo Scientific). *E. coli* DH5α was used for subcloning. Following Sanger sequencing, all plasmids (Table S4) were transformed into *E. coli* BL21 Star (DE3) (Thermo Scientific).

Protein expression and purification

The expression and affinity purification of Yvcl (mutants), BsRppH and YmaB from *B. subtilis* and NudC from *E. coli* were performed as described (3,4). HisTrap buffer A (50 mM Tris-HCl pH7.5, 0.3 M NaCl, 5 mM MgSO₄, 5 mM 2-mercaptoethanol, 5% glycerol, 5 mM imidazole, 1 tablet per 1 l complete EDTA-free protease inhibitor cocktail (Merck)) and HisTrap buffer B (HisTrap buffer A with 500 mM imidazole) were used. For the expression of YjhB, MutT and NudF from *B. subtilis, E. coli* BL21 Star (DE3) harboring the respective plasmid were induced between OD₆₀₀ 0.6-08 with 0.1 mM IPTG. The cells were chilled for 30 min at 4°C and incubated at 17°C for 17 h. The purification by affinity chromatography using HisTrap columns (GE Healthcare) was performed as described (3). Fractions containing the protein of interest were concentrated in a centrifugal filter (10 kDa MWCO,


S2

Amicon, Merck) and the buffer exchanged to Buffer G (50 mM Tris-HCl pH7.5, 300 mM NaCl, 0.1 DTT). For further purification, size-exclusion chromatography was performed using a Superdex 200 10/300 GL column (GE Healthcare) in Buffer G. The purity of all proteins was analyzed by SDS-PAGE (Coomassie staining) and the concentration determined by a BCA protein assay (Thermo Scientific). All proteins were stored in 50% glycerol at -20° C.


Gel electrophoresis

Classical denaturing polyacrylamide gel electrophoresis (PAGE) (5) was used to separate RNA.

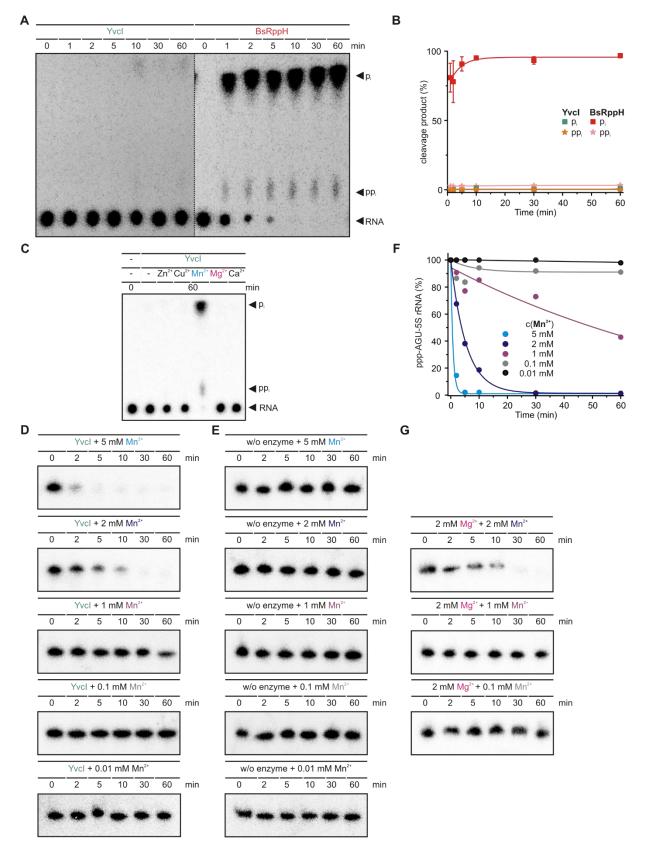

SUPPORTING FIGURES

Figure S1. RNA pyrophosphohydrolase activity of Yvcl. (A) Yvcl and BsRppH efficiently remove phosphate from ppp-RNA in presence of Mn^{2+} . ppp-*gapB* sRNA-like 5'-terminal fragment (75mer, 5'-labeled, 0.5 µM) was incubated with Nudix hydrolases (0.5 µM each) in 1× Mn-buffer (2 mM Mn^{2+}). The dotted line indicates where different parts of the gel were combined to facilitate interpretation. 18% seqPAGE, phosphor imaging of radioactivity. (B) Conversion of 5'-ppp- and 5'-ppp- RNA to 5'p-RNA by Yvcl. p/p/p-RNA (p-, pp-, ppp-AG(CU)₁₃, with the ³²P as part of the phosphate (*) between the first and the second nucleotide) was incubated in absence (w/o) or presence of Yvcl, or Yvcl-E53Q, respectively (2 µM each) in 1× Mn-buffer (2 mM Mn^{2+}). The reaction products were subjected to alkaline hydrolysis (lower part) or not (upper part). Analysis for samples hydrolyzed with sodium hydroxide by PEI-cellulose TLC and for non-hydrolyzed samples by 15% PAGE, phosphor imaging of radioactivity.

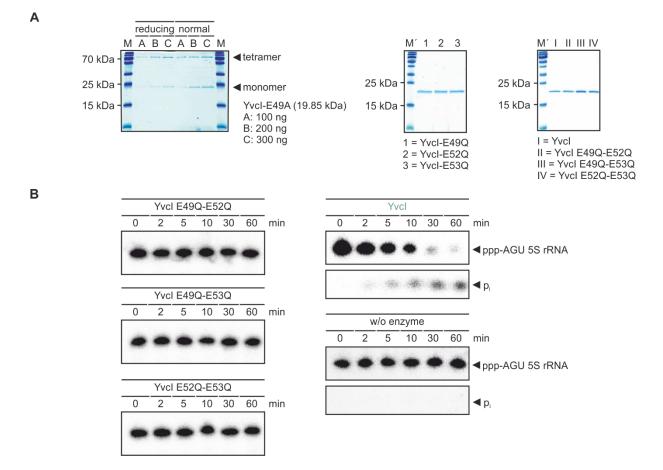


Figure S2. Comparison of the RNA pyrophosphohydrolase activity of *B. subtilis* Nudix hydrolases. (**A**) More Nudix hydrolases than BsRppH (6) show RNA pyrophosphohydrolase activity using manganese (Mn^{2+}) as cofactor. ppp-RNA (AGU 5S rRNA, 5'-labeled, 0.5 μ M) was incubated with Yvcl, BsRppH, MutT, NudF, or YmaB (2 μ M each, 0.1 μ M for BsRppH) in 1× Mn-buffer (2 mM Mn²⁺). PEI-cellulose TLC, phosphor imaging of radioactivity. (**B**) Comparison of the RNA pyrophosphohydrolase activity of BsRppH and YmaB. Procedure as for (**A**). 1× Mg-buffer or 1× Mn-buffer (2 mM Mg²⁺ or Mn²⁺) were used as reaction buffer. (**C**) Quantification of the cleavage products from (**A**). (**D**) Quantification of the cleavage products from (**B**). The dotted lines indicate where different parts of the different plates were combined to facilitate interpretation.

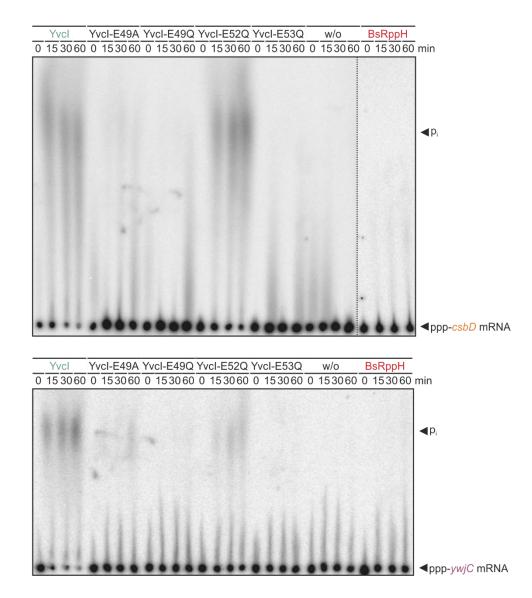


Figure S3. BsRppH is more active than Yvcl, which is only active in presence of manganese. (**A**) Comparison of the RNA pyrophosphohydrolase activity of Yvcl and BsRppH. ppp-RNA (AGU 5S rRNA, 5'-labeled, 0.5 μ M) was incubated with Yvcl or BsRppH (0.1 μ M each) in 1× Mn-buffer (2 mM Mn²⁺). The dotted line indicates where different parts of different plates were combined to facilitate interpretation. PEI-cellulose TLC, phosphor imaging of radioactivity. (**B**) Quantification of the cleavage products from (**A**), showing mean ± standard deviation of three independent experiments (technical replicates). (**C**) Yvcl dephosphorylates ppp-RNA only in presence of manganese. ppp-RNA (AGU 5S rRNA, 5'-labeled, 0.5 μ M) was incubated with Yvcl (2 μ M). Mn²⁺ was omitted (-) or exchanged by different divalent cations (Zn²⁺, Cu²⁺, Mg²⁺, Ca²⁺; 2 mM).

Analysis as for (A). (D, E) Yvcl requires 2 mM Mn²⁺ for efficient phosphate removal from ppp-RNA. ppp-RNA (AGU 5S rRNA, 5'-labeled, 0.5 μ M) was incubated with (D) or without (E) Yvcl (2 μ M) in 1× Mn-buffer with 0, 0.01, 0.1, 1, 2, or 5 mM Mn²⁺. 8% PAGE, phosphor imaging of radioactivity. (F) Quantification of the ppp-RNA from (D). (G) The presence of Mg²⁺ has no impact on the Mn²⁺-dependent phosphate removal of ppp-RNA by Yvcl. Description as for (D) with the indicated cation concentrations. 8% PAGE, phosphor imaging of radioactivity.

Figure S4. Yvcl mutants with amino acid exchanges in the Nudix motive have no or a reduced RNA pyrophosphohydrolase activity. (**A**) Expression and purification of Yvcl single and double mutants. The proteins were expressed in *E. coli* as His₆ fusions and purified by a combination of affinity and size exclusion chromatography. M, PageRuler Plus prestained protein ladder, M', PageRuler prestained protein ladder. 15% SDS-PAGE, Coomassie staining. (**B**) Two amino acid exchanges in the Nudix motif abolish the activity of Yvcl. ppp-RNA (AGU 5S rRNA, 5'-labeled, 0.5 μ M) was incubated with Yvcl mutants, Yvcl (2 μ M, each) or without any enzyme in 1× Mn-buffer (2 mM Mn²⁺). 8% PAGE, phosphor imaging of radioactivity.

Figure S5. The Nudix motif of YvcI is responsible for phosphate removal from ppp-RNA. (**A**) YvcI mutants with amino acid exchanges in the Nudix motif were tested for their capability to remove phosphate from ppp-RNA. ppp-*csbD* mRNA (5'-labeled, 0.15 μ M) was incubated with YvcI, YvcI mutants (0.6 μ M each) or BsRppH (0.1 μ M) in 1× Mn-buffer (2 mM Mn²⁺) (1× Mg-buffer for BsRppH). The dotted line indicates where different parts of two plates were combined to facilitate interpretation. (**B**) Description as for (**A**), but ppp-*ywjC* mRNA was used as RNA substrate. PEI-cellulose TLC, phosphor imaging of radioactivity.

Α

В

Α

В

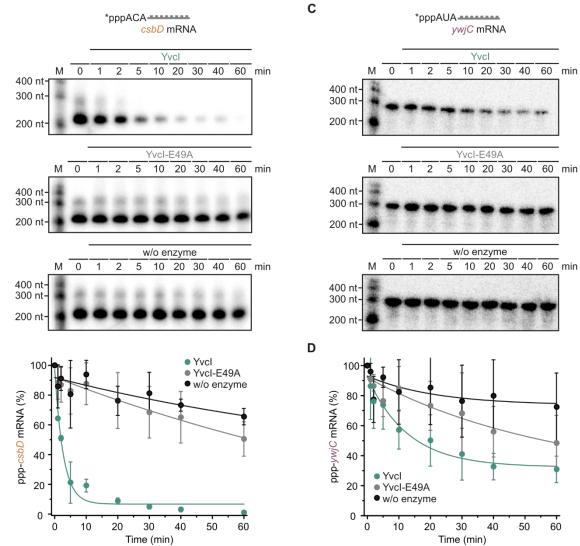


Figure S6. Yvcl removes phosphate of ppp-csbD and ppp-ywjC mRNA with different efficiencies. (A) Yvcl removes phosphate from ppp-csbD mRNA. Upper panel, scheme of ppp-csbD mRNA. An asterisk (*) indicates ³²P. ppp-csbD mRNA (5'-labeled, 0.25 μ M) was incubated with Yvcl (1 μ M), Yvcl-E49A (1 μ M), or no enzyme, respectively, in 1× Mn-buffer (2 mM Mn²⁺). 8% PAGE, phosphor imaging of radioactivity. (B) Quantification of the ppp-csbD mRNA from (A), showing mean ± standard deviation of three independent experiments (technical replicates). (C) YvcI removes phosphate from ppp-ywjC mRNA. Upper panel, scheme of ppp-ywjC mRNA. Description as for (A). 8% PAGE, phosphor imaging of radioactivity. (D) Quantification of the ppp-ywjC mRNA from (C). Statistics are as in (B).

SUPPORTING TABLES

 Table S1. Bacterial strains used in this work.

Strain	Relevant genotype	Source/reference
Bacillus subtilis 1A1	trpC2	BGSC, Ohio
Escherichia coli BL21 Star (DE3)	F ompT hsdS _B (r_B m_B) gal dcm (DE3)	Thermo Scientific
Escherichia coli DH5α	F [°] endA1 glnV44 thi-1 recA1 relA1 gyrA96 deoR nupG purB20 φ80dlacZΔM15 Δ(lacZYA-argF)U169, hsdR17(r _κ m _κ ⁺), λ [°]	Thermo Scientific

Name	Sequence (5'-to-3' direction)	Used for	
Fwd-Yvcl	TTCCCCTCTAGAAATAATTTTGTTTAACTTTAAGAAGGAGATATAA		
FWU-TVCI	TGACGTACTTGCAAAGAGTG	yvcl cloning	
Rev-Yvcl	AGGATTCTCGAGGCTGCCGCGCGCGCACCAGTTTGATGTGCTGCGGG	yver cioning	
	ТСТА		
Fwd-BsRppH	TTCCCCTCTAGAAATAATTTTGTTTAACTTTAAGAAGGAGATATAA	rppH cloning	
	TGTACGAGTTTAAAGATTATTATCAGAA		
Rev-BsRppH	AGGATTCTCGAGGCTGCCGCGCGCGCCACCAGTTCAATCCATCC		
	TTCCCCTCTAGAAATAATTTTGTTTAACTTTAAGAAGGAGATATAA		
Fwd-NudF	TGAAATCATTAGAAGAAAAAACAATTG		
	AGGATTCTCGAGGCTGCCGCGCGCGCACCAGTTTTTGTGCTTGGAGC	nudF cloning	
Rev-NudF	GC		
	TTCCCCTCTAGAAATAATTTTGTTTAACTTTAAGAAGGAGATATAA		
Fwd-YmaB	TGGGAAAAATGGACGAAATG		
Day Vina D	AGGATTCTCGAGGCTGCCGCGCGCGCACCAGTTCAAGAATATCAACA	ymaB cloning	
Rev-YmaB	ACAAACTGTG		
Fwd-YjhB	TACTTCCAATCCAATGCAATAAAAGTGCAAACCAAATGGCT	wih D cloning	
Rev-YjhB	TTATCCACTTCCAATGTTATTAGTCAAATATCGTTTTCTTGTCCGG	yjhB cloning	
Fwd-MutT	TACTTCCAATCCAATGCATATACACAAGGTGCTTTTGTGATC	mutT cloning	
Rev-MutT	TTATCCACTTCCAATGTTATTACTTGCCCAGTCTTCTTTCAAC		
Fwd-YvcI-E49A	p-CGTACAGAGAAGAGACTGGTATC	yvcl mutation (E49A	
Rev-Yvcl-E49A	p-CTCTGATGACGGAGTCTCTGAC	exchange)	
Fwd-YvcI-E49Q	p-CAGTACAGAGAAGAGACTGGTATC	yvcl mutation (E49Q	
Rev-Yvcl-E49Q	p-TCTGATGACGGAGTCTCTGAC	exchange)	
Fwd-YvcI-E52Q	p-CAAGAGACTGGTATCTATATCATAAATCC	yvcl mutation (E52Q	
Rev-YvcI-E52Q	p-TCTGTACTCTCTGATGACGG	exchange)	
Fwd-YvcI-E53Q	p-CAGACTGGTATCTATATCATAAATCC	yvcl mutation (E53C	
Rev-Yvcl-E53Q	p-TTCTCTGTACTCTGATGAC	exchange)	
Fwd-Yvcl-E49Q-		yvcl mutation	
E52Q	p-CAAGAGACTGGTATCTATATCATAAATCC	(E49Q, E52Q	
D V 1 5400		exchange); pET-28a-	
Rev-Yvcl-E49Q- E52Q	p-TCTGTACTGTCTGATGACG	Yvcl-E49Q	
		(template)	
Fwd-Yvcl-E49Q-		yvcl mutation	
E52/3Q	p-CAGACTGGTATCTATATCATAAATCCTC	, (E49Q, E52/3Q	
Rev-Yvcl-E49Q-		exchange);	
E53Q	p-TTCTCTGTACTGTCTGATGAC	pET-28a-Yvcl-E49Q	
		(template) pET-28a-Yvcl-E52Q	
Rev-Yvcl-E52Q-	p-TTGTCTGTACTCTCTGATGACG		
E53Q		(template)	

Table S2. Primer used for cloning and mutation of various genes from *B. subtilis*. "p", phosphate, *Xba* site, *Xho* site, thrombin site.

Table S3. Primers used for the amplification of regions of interest from genomic DNA. The resulting PCR products served as templates for *in vitro* transcription reactions. For the preparation of $GA(CU)_{13}$ RNA and $AG(CU)_{13}$ RNA, the respective oligo nucleotides were annealed without PCR amplification. T7 (Φ 2.5) promotor marked in bold, T7 (Φ 6.5) promotor marked in bold italics. Appended nucleotides in blue and magenta, respectively. "m", 2' O-methyl RNA base.

ID	ID Sequence (5'-to-3' direction)		
Fwd-gapB 75mer	TC TAATACGACTCACTATT AGATAGTAACAAATTAGGATGG	0.75	
Rev-gapB 75mer	mAmACCCGTTGATCGCTACTTTTAC	gapB 75mer	
Fwd2-5S rRNA-A	AT TAATACGACTCACTATT ATCTGGTGATGATGGCGAAGAGG		
Fwd2-5S rRNA-AGU	AT TAATACGACTCACTATT AGTTCTGGTGATGATGGCGAAGAGG		
Fwd-5S rRNA-AGU	AT TAATACGACTCACTATT AGTGTCTGGTGATGATGGCGAAGAGG	combination	
Fwd-5S rRNA-ACU	AT TAATACGACTCACTATT ACTGTCTGGTGATGATGGCGAAGAGG	with Rev-5S	
Fwd-5S rRNA-AAU	AT TAATACGACTCACTATT AATGTCTGGTGATGATGGCGAAGAGG	rRNA	
Fwd-5S rRNA-AUU	AT TAATACGACTCACTATTATTG TCTGGTGATGATGGCGAAGAGG	-	
Fwd-5S rRNA blunt end	AT TAATACGACTCACTATA GTCTGGTGATGATGGCGAAGAGG		
Fwd-5S rRNA-A	AT TAATACGACTCACTATT AGTCTGGTGATGATGGCGAAGAGG		
Fwd-5S rRNA-AG	AT TAATACGACTCACTATT AGGTCTGGTGATGATGGCGAAGAGG		
Fwd-5S rRNA-AGUG	AT TAATACGACTCACTATT AGTGGTCTGGTGATGATGGCGAAGAGG	combinatior	
Fwd-5S rRNA-GGU	AT TAATACGACTCACTATA GGTGTCTGGTGATGATGGCGAAGAGG	with Rev-5S	
Fwd-5S rRNA-GAU	AT TAATACGACTCACTATA GATGTCTGGTGATGATGGCGAAGAGG	rRNA	
Fwd-5S rRNA-GCU	AT TAATACGACTCACTATA GCTGTCTGGTGATGATGGCGAAGAGG	-	
Fwd-5S rRNA-GUU	AT TAATACGACTCACTATAGTTG TCTGGTGATGATGGCGAAGAGG	-	
Fwd-5S rRNA-G	AT TAATACGACTCACTATT GGTCTGGTGATGATGGCGAAGAGG	combinatior	
Fwd-5S rRNA-GG	AT TAATACGACTCACTATT GGGTCTGGTGATGATGGCGAAGAGG		
Fwd-5S rRNA-GGU	AT TAATACGACTCACTATT GGTGTCTGGTGATGATGGCGAAGAGG	with Rev-5S	
Fwd-5S rRNA-GGUG	AT TAATACGACTCACTATT GGTGGTCTGGTGATGATGGCGAAGAGG	rRNA	
Rev-5S rRNA	GCCTGGCGATGTCCTACTCTC		
Rev-5S rRNA-+1nt 3'	GGCCTGGCGATGTCCTACTCTC		
Fwd-GA(CU) ₁₃	TA TAATACGACTCACTATA GACTCTCTCTCTCTCTCTCTCTCTCTCT	GA(CU) ₁₃	
Rev-GA(CU) ₁₃	AGAGAGAGAGAGAGAGAGAGAGAGAGTCTATAGTGAGTCGTATTATA	RNA	
Fwd-AG(CU) ₁₃	TATAATACGACTCACTATTAGCTCTCTCTCTCTCTCTCTC	AG(CU) ₁₃	
Rev-AG(CU) ₁₃	AG	RNA	
Fwd-veg	TA TAATACGACTCACTATT AGTGAGGTGGATGCAATGGC		
Rev-veg	AGGGCAAAACAAAAGCAGTAAAC	<i>veg</i> mRNA	
Fwd-csbD	TA TAATACGACTCACTATT ACACACATAATTGAGAGGG	csbD mRNA	
Rev-csbD			
Find and C	TA TAATACGACTCACTATT ATAAGACAACAATCGATGG		
Fwd-ywjC	AGG	<i>ywjC</i> mRNA	
Rev-ywjC	TTAGAGCGCTTCTCTCTCAGC		

Table S4. Plasmids used in this work.

Name	Relevant fragment	Used for	Reference/Supplier
pET His6 MBP TEV LIC (2M-T)	-	ligation independent cloning (LIC)	Addgene
pET-28a(+)	-	general cloning	Novagen
pET-28a-Yvcl	yvcl	expression of Yvcl	This work
pET-28a-Yvcl-E49A	yvcl-E49A	expression of YvcI-E49A	This work
pET-28a-Yvcl-E49Q	yvcl-E49Q	expression of YvcI-E49Q	This work
pET-28a-Yvcl-E52Q	yvcl-E52Q	expression of YvcI-E52Q	This work
pET-28a-Yvcl-E53Q	yvcl-E53Q	expression of YvcI-E53Q	This work
pET-28a-Yvcl-E49Q- E52Q	<i>yvcl</i> -E49Q-E52Q	expression of Yvcl-E49Q- E52Q	This work
pET-28a-Yvcl-E49Q- E53Q	<i>yvcl</i> -E49Q-E53Q	expression of YvcI-E49Q- E53Q	This work
pET-28a-Yvcl-E52Q- E53Q	<i>yvcl</i> -E52Q-E53Q	expression of Yvcl-E52Q- E53Q	This work
pET-28a-BsRppH	rppH	expression of BsRppH	(4)
pET-28a-NudF	nudF	expression of NudF	This work
pET-28a-YmaB	утаВ	expression of YmaB	This work
2M-T-YjhB	yjhB	expression of YjhB	This work
2M-T-MutT	mutT	expression of MutT	This work

SUPPLEMENTARY REFERENCES

- 1. Looke, M., Kristjuhan, K. and Kristjuhan, A. (2011) Extraction of genomic DNA from yeasts for PCR-based applications. *BioTechniques*, **50**, 325-328.
- 2. Höfer, K., Li, S., Abele, F., Frindert, J., Schlotthauer, J., Grawenhoff, J., Du, J., Patel, D.J. and Jäschke, A. (2016) Structure and function of the bacterial decapping enzyme NudC. *Nat. Chem. Biol.*, **12**, 730-734.
- 3. Cahová, H., Winz, M.L., Höfer, K., Nübel, G. and Jäschke, A. (2015) NAD captureSeq indicates NAD as a bacterial cap for a subset of regulatory RNAs. *Nature*, **519**, 374-377.
- 4. Frindert, J., Zhang, Y.Q., Nübel, G., Kahloon, M., Kolmar, L., Hotz-Wagenblatt, A., Burhenne, J., Haefeli, W.E. and Jäschke, A. (2018) Identification, biosynthesis, and decapping of NAD-capped RNAs in *B. subtilis. Cell Rep.*, **24**, 1890-1901.
- 5. Rio, D.C., Ares, M., Jr., Hannon, G.J. and Nilsen, T.W. (2010) Polyacrylamide gel electrophoresis of RNA. *Cold Spring Harb. Protoc*.
- 6. Richards, J., Liu, Q.S., Pellegrini, O., Celesnik, H., Yao, S.Y., Bechhofer, D.H., Condon, C. and Belasco, J.G. (2011) An RNA pyrophosphohydrolase triggers 5 '-exonucleolytic degradation of mRNA in *Bacillus subtilis*. *Mol. Cell*, **43**, 940-949.