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1. Basic concept of neural network and convolutional neural network 

A classical neural network consists of 𝑁 layers with the kth layer containing 𝑛𝑘 neurons (see Fig. S1-

a for an example), A neuron 𝑖 in a layer 𝑘 processes the output of layer 𝑘 − 1 neurons (𝑥𝑗
𝑘−1, 𝑗 =

1⋯𝑛𝑘−1) by first assigning weights and biases to this output and then passing the result to a nonlinear 

activation function 𝑓 to generate its output  

𝑥𝑖
𝑘 = 𝑓(∑ 𝑊𝑖,𝑗

𝑘 𝑥𝑗
𝑘−1𝑛𝑘−1

𝑗=1 + 𝐵𝑖
𝑘)               (S1) 

where 𝑊𝑖,𝑗
𝑘  and 𝐵𝑖

𝑘 are the weight and bias of neuron 𝑖 for the output of the neuron 𝑗 in the layer 𝑘 −

1. Equation (S1) can be written compactly as 

X𝑘 = 𝑓(𝑊𝑘X𝑘−1 + 𝐵𝑘)                (S2) 

where Xk−1 is a 𝑛𝑘−1 × 1 vector, W𝑘 is a 𝑛𝑘 × 𝑛𝑘−1 matrix, and 𝐵𝑘 is a 𝑛𝑘 × 1 vector. A neuron 

network is defined once the number of neuron layers (𝑁), the number of neurons in each layer (𝑛𝑘), the 

weight and bias of all neurons (𝑊𝑘  and 𝐵𝑘 , 𝑘 = 1, 2,⋯ ,𝑁 ), and the activation function (𝑓 ) are 

determined. Of these parameters, 𝑁, 𝑛1,2,⋯,𝑁, and 𝑓 are termed hyperparameters and are specified when 

developing a neural network. 𝑊𝑘 and 𝐵𝑘 are termed learnable parameters to be determined during the 

training of the neural network. Neural networks can be used for tasks such as classifying images. Because 

each neuron in an arbitrary layer k is fully connected with all neurons in layer 𝑘 − 1 and 𝑘 + 1 and the 
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learnable parameters 𝑊𝑘 and 𝐵𝑘 are by default different for each neuron layer, the number of learnable 

parameters is enormous when the input of a neural network features massive data (e.g., when an input image 

has a large number of pixels and multiple color channels). Hence, classical neural networks can involve 

prohibitive computational cost and is prone for overfitting.  

The convolutional neural network (CNN) is a variant of the classical neural network. As shown in Fig. 

S1-b, a CNN typically consists of three types of layers: the convolutional layer, the pooling layer, and the 

fully-connected layer. Each type of layers can be included in any number and sequence. The fully-connected 

layers in CNN are identical to those in the classical neural network and we only outline the first two types 

of layers.  

A convolutional layer contains a 3D volume of neurons arranged in the width, height, and depth 

directions (see Fig. S1-b). Both the neurons of layer k and their output are often termed volume k. Even 

though the neurons in a convolutional layer process information in a similar way as depicted in Equation 

(S2), they differ from those in the classical neural networks in that (1) each neuron in a volume 𝑘 only 

processes the output from a small number of neurons in volume 𝑘 − 1 and (2) within each depth slice of a 

volume 𝑘, all neurons have the same weights and biases. Due to these differences, the number of learnable 

parameters in CNN is greatly reduced compared to that in classical neural networks.1,2  

 

Figure S1. The schematics of a simple classical neural network (a) and a simple convolutional neural network (b).  

To further reduce the number of learnable parameters and overfitting, pooling layers are usually 

inserted periodically between convolutional layers. A pooling layer essentially downsamples the output of 

the convolutional layer preceding it and progressively reduces the neuron volume.3 A typical pooling layer 
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operates independently on each slice of the output volume of its preceding convolutional layer volume 

using algorithms such as the max pooling, average pooling, or L2 norm pooling.4  

2. Computational framework for predicting diffusivity of porous media 

 

Figure S2. Overview of the computational framework of using CNN to predict the effective diffusivity of porous 

media from their images.  

3. ResNet model for predicting the diffusivity of porous media 

In addition to CNN model described in Fig. 2 of the main text, we also tested the deep residual network, 

which often gives better accuracy than the CNN in the main text. Deep residual networks are stacked with 

many residual learning blocks, which contain several convolutional layers and a short cut connection 

between the input and the output before the activation layer. Deep residual networks are substantially deeper 

than the regular CNN model, are easier to optimize, and can gain considerable accuracy from the increased 

layers. Training very deep residual networks, however, involves much higher computation cost than the 

CNN described in the main text.  

Here, we implemented the Resnet50 model5 to predict the effective diffusivity of porous media using 

the datasets in our original manuscript, both with and without removing the trapped regions in the 

preprocessing step. The architecture of the Resnet50 model is same as that in Ref. 5. The training model is 

converged through minimizing the loss function Eq. 7 by the Adam Optimizer6 (learning rate γ = 10−4). 

The learning rate is reduced by 50% every 300 epochs to ensure stable convergence and the training model 

stops at 1600 epochs. The average mean square error (MSE), mean truncated relative error (MTRE) and 

the Pearson R2 scores are summarized in the Table below.  
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The results of the Resnet50 model are summarized in Table S1 and Fig. S3. We observe that, compared 

to the model in the main text, the Resnet50 model perform slightly better: the MSE is reduced by ~20% for 

dataset with and without the preprocessing step. The improvement of the MTRE is smaller: ~8% and ~3% 

for dataset without and with preprocessing, respectively. Although the prediction accuracy for Resnet50 is 

slightly higher than the CNN model in the main text, the Resnet50 requires more computational resources 

to train. For example, compared to the CNN model in the main text, the Resnet50 model involves 10 times 

more parameters and requires 5 times longer training time.  

Table S1. comparison between the results by CNN models and resnet50 model 

 
Trained using the loss function Equ. 7 

with original data 

Trained using the loss function Equ. 7 

with preprocessed image as input 

MSE MTRE R2 MSE MTRE R2 

CNN 

model 

8.64×10-4 68.8% 0.9903 6.92×10-

4 

29.7% 0.9912 

Resnet50 7.26×10-4 60.50% 0.9918 5.34×10-

4 

26.56% 0.9932 
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Figure S3. (a) The effective diffusivity predicted by the Resnet50 model trained using a loss function based on the 

mean square error (Equation 7) with the dataset without preprocessing. (b) The effective diffusivity predicted by the 

Resnet50 model trained using a loss function based on the mean square error (Equation 7) with the dataset 

preprocessed by removing the trapped regions. (c) Distribution of the absolute error (top panels) and truncated relative 

error (lower panels) of the predictions of the Resnet50 model (trained with dataset that removed the trapped regions) 

for the porous structures in the testing dataset with different 𝐷𝑒. 

References 

1 Kalchbrenner, N., Grefenstette, E. & Blunsom, P. A convolutional neural network for modelling 

sentences. arXiv preprint arXiv:1404.2188 (2014). 

2 Krizhevsky, A., Sutskever, I. & Hinton, G. E. in Advances in neural information processing systems.  

1097-1105. 

3 Tolias, G., Sicre, R. & Jégou, H. Particular object retrieval with integral max-pooling of CNN 

activations. arXiv preprint arXiv:1511.05879 (2015). 

4 Zeiler, M. D. & Fergus, R. Stochastic pooling for regularization of deep convolutional neural 

networks. arXiv preprint arXiv:1301.3557 (2013). 



6 

 

5 He, K., Zhang, X., Ren, S. & Sun, J. in European conference on computer vision.  630-645 

(Springer). 

6 Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization. arXiv preprint 

arXiv:1412.6980 (2014). 

 


