

advances.sciencemag.org/cgi/content/full/6/1/eaaz1441/DC1

Supplementary Materials for

UPR^{ER} promotes lipophagy independent of chaperones to extend life span

Joseph R. Daniele, Ryo Higuchi-Sanabria, Jenni Durieux, Samira Monshietehadi, Vidhya Ramachandran, Sarah U. Tronnes, Naame Kelet, Melissa Sanchez, Melissa G. Metcalf, Gilberto Garcia, Phillip A. Frankino, Camila Benitez, Mandy Zeng, Daniel J. Esping, Larry Joe, Andrew Dillin*

*Corresponding author. Email: dillin@berkeley.edu

Published 1 January 2020, *Sci. Adv.* **6**, eaaz1441 (2020) DOI: 10.1126/sciadv.aaz1441

This PDF file includes:

Fig. S1. ER remodeling of the intestine through UPR^{ER} activation requires neuronal nonautonomous signaling.

Fig. S2. LAMPro technology can be reliably used to quantify LDs using DHS-3::GFP.

Fig. S3. ER remodeling is coincident with more intestinal lysosomes in neuronal *xbp-1s* animals.

Fig. S4. Lipid depletion in neuronal *xbp-1s* is dependent on *xbp-1* and *ehbp-1*.

Fig. S5. Knockdown of lipophagic components does not affect chaperone induction by *xbp-1s*.

Table S1. Statistics for all life-span data.

Table S2. Organisms and strains used.

Sequences used for cloning

Supplemental Information

Supplemental Figures

Fig. S1. ER remodeling of the intestine through UPR^{ER} activation requires neuronal

nonautonomous signaling. (A) ER morphology in intestine of control and neuronal *xbp-1s* animals. An alternate ER transmembrane marker (VS25: *vha-6p::GFP::C34B2.10 (SP12)*) is used here to demonstrate that phenotypes depicted are not an artifact of luminal ER fluorophores. While the ER remodeling is much more subtle using this marker, clear spherical structures can be detected as marked by arrowheads. Animals were grown from hatch on ev or *xbp-1* RNAi and live-imaged using a compound microscope. Scale = 10 µm. (B) Representative micrographs of ER morphology (mRuby::HDEL) in intestine of control and intestinal *xbp-1s* (*vha-6p::xbp-1s*) animals. ER remodeling is depicted by arrowheads. (C) Representative compound micrographs of ER (mCherry::HDEL) with and without 6 hours treatment with 25 ng/µL tunicamycin. Briefly, animals were treated in tunicamycin in M9 liquid spinning at 20°C or with 1% DMSO as a control. Drugs were washed out and animals were live-imaged immediately

on a compound microscope. Scale bar is $10 \mu m.$ For A-C, animals are imaged at late Day 2 of adulthood.

Fig. S2. LAMPro technology can be reliably used to quantify LDs using DHS-3::GFP. Quantification of lipid droplets (LDs) (via DHS-3::GFP fluorescence) in animals grown on ev or *sbp-1* RNAi from hatch. *sbp-1* is used as a control for decreased lipids. *** = p < 0.001 using non-parametric Mann-Whitney testing. Plots are representative of three biological replicates and n = 921 (ev), 435 (*sbp-1*). Animals were imaged at late Day 2 of adulthood.

Fig. S3. ER remodeling is coincident with more intestinal lysosomes in neuronal *xbp-1s* animals. (A) Confocal micrographs of intestinal ER (*vha-6p::mCherry::HDEL*) and lysosomes (*vha-6p::lmp-1::GFP*), in fixed animals, with and without *rab-3p::xbp-1s*. Scale = 5 μ m (and 0.5 μ m for inset). (B) Quantification of lysosomes (via LMP-1::GFP) in control and *rab-3p::xbp-1s* animals. *** = p < 0.001 using non-parametric Mann-Whitney testing. n > 50 animals per condition. For A-B, animals are imaged at late Day2 of adulthood.

Fig. S4. Lipid depletion in neuronal *xbp-1s* is dependent on *xbp-1* and *ehbp-1*.

Quantification of LDs (via DHS-3::GFP) in control and *rab-3p::xbp-1s* animals grown on ev, *xbp-1*, or *ehbp-1* RNAi from hatch. *** = p < 0.001, n.s. = p > 0.10 using non-parametric Mann-Whitney testing. Plots are representative of four biological replicates and n = 320-484 animals per strain. Animals are imaged at late Day 2 of adulthood.

Fig. S5. Knockdown of lipophagic components does not affect chaperone induction by *xbp-1s.* (**A**) Fluorescent light micrographs of hsp-4p::GFP UPR^{ER} reporter animals, imaged as Day 2 adults, and treated with the indicated RNAi(s) from hatch. Scale = $100 \ \mu\text{m}$. (**B**) Quantification of *hsp-4p::GFP* fluorescence in control (white) and *rab-3p::xbp-1s* (blue) nematodes, using a Biosorter, following various RNAi treatments. *** = p < 0.001 by Mann-Whitney. Wild-type controls on *xbp-1* and *ehbp-1* RNAis can be found in panel (d). (**C**) Median profiles of GFP fluorescence of the *hsp-4p::GFP* animals, under various RNAi treatments, in a *rab-3p::xbp-1s* background, following alignment. Plots are representative of three biological replicates and derived from n = 28-71 per strain. (**D**) Quantification of *hsp-4p::GFP* fluorescence in control (white) and *rab-3p::xbp-1s* (blue) nematodes, using a Biosorter, following various RNAi treatments. *** = p < 0.001, * = p < 0.10 using non-parametric Mann-Whitney testing. p-values are in comparison to their corresponding ev controls. Data is representative of two independent trials with n = 224-573 per strain. (**E**) Lifespan data for wild-type N2 animals or neuronal *xbp-1s* (*rab-3p::xbp-1s*) animals treated with EV or *hsp-4* RNAi from hatch. RNAi knockdown of *hsp-4* is sufficient to eliminate the lifespan extension normally seen in neuronal

xbp-1s animals. See **table S1** for lifespan statistics. For A-D, animals are imaged at Day 1 of adulthood.

Table S1. Statistics for all life-span data.

Supplemental Tab	le S1. Statistical Analyses of Lifespan Data				
Corresponding	Strain, Treatment	Median Lifespan	# Deaths/# Total	% Change in	p-value
Figure		[days]		Median Lifespan	Log-rank (Mantel-Cox)
2f	N2, vector RNAi, 1% DMSO	22	95/120	n/a	n/a
	rab-3p::xbp-1s, vector RNAi, 1% DMSO	26	94/120	1.2	<0.0001
	N2, xbp-1 RNAi, 1% DMSO	14	92/120	0.6	<0.0001
	rab-3p::xbp-1s, xbp-1 RNAi, 1% DMSO	15	95/120	0.7	<0.0001
	N2, ehbp-1 RNAi, 1% DMSO	16	92/120	0.7	<0.0001
	rab-3p::xbp-1s, ehbp-1 RNAi, 1% DMSO	15	96/120	0.7	<0.0001
2g	N2, vector RNAi, 25ng/µL tunicamycin	14	97/120	n/a	n/a
	rab-3p::xbp-1s, vector RNAi, 25ng/µL tunicamycin	18	109/120	1.3	<0.0001
	N2, xbp-1 RNAi, 25ng/µL tunicamycin	12	98/120	0.9	<0.0001
	rab-3p::xbp-1s, xbp-1 RNAi, 25ng/µL tunicamycin	12	101/120	0.9	<0.0001
	N2, ehbp-1 RNAi, 25ng/µL tunicamycin	14	111/120	1.0	0.2271
	rab-3p::xbp-1s, ehbp-1 RNAi, 25ng/µL tunicamycin	14	111/120	1.0	0.8208
S5e	N2, vector RNAi	19	100/120	n/a	n/a
	rab-3p::xbp-1s, vector RNAi	22	88/120	1.2	<0.0001
	N2, hsp-4 RNAi	17	102/120	0.9	<0.0001
	rab-3p::xbp-1s, hsp-4RNAi	17	96/120	0.9	<0.0001
3d	N2. vector RNAi	17	101/120	n/a	n/a
	vha-6p::ehbp-1, vector RNAi	21	98/120	1.2	0.0221
	• • •				

Table S2. Organisms and strains used.

BACTERIAL AND VIRUS STRAINS						
OP50	CGC	N/A				
HT115	CGC	N/A				
DH5a	Invitrogen					
EXPERIMENTAL MODELS: ORGANISMS/STRAINS						
C. elegans: Bristol (N2) strain as wild type (WT)	CGC	N2				
C. elegans: AGD927: uthls270 [rab-3p::Xbp-1s,	(Taylor and Dillin,	N/A				
myo-2p::tdTomato]	2013)					
C. elegans: AGD928: uthls270[rab-3p::Xbp-1s,	(Taylor and Dillin,	N/A				
myo-2p::tdTomato]; zcls4[hsp-4p::GFP]	2013)					
C. elegans: AGD1289: N2, uthlS368[rab-3p::HSF-1	(Douglas et al.,	N/A				
FL, myo-2p::tomatoj	2015)	N1/A				
C. elegans: AGD1376: hjSl158[vna-6p::SEL-1(1-	I his study	N/A				
79)::mchefty::HDELJ; uthis270[rab-3p::Xbp-18, mvo-2p::tdTomato]						
C alagans: AGD1/15: pw/s23[vit_2::GED]	This study	Ν/Δ				
C. elegans: AGD1771: N2_utbls/64[raef-1n::Xbn-	This study	N/Δ				
1s myo-2n: tdTomatol						
C. elegans: AGD2048: dhs-3p:/dhs-3:/GFP	This study	N/A				
hiSi158 [vha-6p::SEL-1(1-79)::mCherrv::HDELlet-						
858 3' UTR]						
C. elegans: AGD2065: dhs-3p::dhs-3::GFP;	This study	N/A				
hjSi158 [vha-6p::SEL-1(1-79)::mCherry::HDELlet-						
858 3' UTR]; uthls270[rab-3p::Xbp-1s, myo-						
2p::tdTomato]						
C. elegans: AGD2129: pwls23[vit-2::GFP];	This study	N/A				
uthls270 [rab-3p::Xbp-1s, myo-2p::tdTomato]						
C. elegans: AGD2192: unc-119(ed3) III;	This study	N/A				
3 UTR CD-UNC-T19(+)] IV	This study	ΝΙ/Λ				
C. $e_{1}e_{2}a_{1}$ S. $AGD2230$. $u_{1}B3400[v_{1}a_{2}-0p_{1}]XDp_{1}S$, $m_{1}v_{2}-2p_{1}BED]$: $u_{1}p_{2}-110(p_{2}-1)$	This study	IVA				
6n: ERss: mRuby: HDEL : unc-54 3'LITR ch-unc-						
C. elegans: AGD2267: uthls270 [rab-3p::xbp-1s.	This study	N/A				
mvo-2p::tdTomatol: unc-119(ed3)III: uthSi60 [vha-						
6p::Erss::mRuby::HDEL::unc-54 3'UTR cb-unc-						
119(+)]						
C. elegans: AGD2349: uthls270[rab-3p::Xbp-1s,	This study	N/A				
myo-2p::tdTomato]; vha-						
6p::GFP::C34B2.10(SP12)+unc119(+); unc-						
119(ed3) III; uthSi60[vha-						
6p::ERss::mRuby::HDEL::unc-543'UTR cb-unc-						
C. elegans: AGD2363: N2, uthEx911[vha-6p::ehbp-	i nis study	N/A				
L.unc-04 3 UTK; My0-2p::GFY]	This study					
$1 \circ . e e gans. AGD 2004. NZ, utiliza i zivila open Dp-1 1 \circ u nc_54 3'I ITR · mvo_2n ···CEP1$	THIS SLUUY					
1unc-54 5 01 K, myo-2pGFF]						

This study	N/A
This study	N/A
This study	Ν/Δ
CGC	EG6703
(Taylor and Dillin, 2013)	SJ4005
CGC	VS25
	N (000
CGC	VS30
Primer Sequence	Primer Purpose
TAGCATTCGTAGA	forward primer to
ATTCCAACTGAGC	clone vector side
	of pJRD16
ctagatggatctagtggtc	reverse primer to
gtggg	clone vector side
	Of pJRD16
	clone vbn-1s insert
TATTAATTTTGGAA	for p.IRD16
GAAATTTAGGTCG	
ATTG	
ctagatggatctagtggtc	Forward primer to
gtggg	clone xbp-1s insert
	for pJRD16
CGAATGCGTATTG	PCR
TaccogaccagtcAAC	FRSS [.] ·mRuby for
TCTCTTATCAAGG	pGIL122
AAAAC	
aagtcagaggcacgggc	Reverse primer to
gcgagatgTTAaagttc	PCR
	ERSS::mRuby for
AAGICCAG	PGIL122 Forward primor to
	PCR PCR vector
	for pGIL122
	This study This study This study CGC (Taylor and Dillin, 2013) CGC CGC CGC CGC Primer Sequence TAGCATTCGTAGA ATTCCAACTGAGC Ctagatggatctagtggtc gtggg GCGCTCAGTTGGAA ATTCTACGAATGC TATTAATTTGGAA GAAATTTAGGTCG ATTG Ctagatggatctagtggtc gtggg ATAGCATTCGTAG CGAATGCGTATTG TaccggaccagtcAAC TCTCTTATCAAGG AAAC aagtcagaggcacgggc gcgagatgTTAaagttc gtcatgTCCTCCTCC AAGTCCAG Catctcgcgcccgtg

gg45R	tttttatgggttttggtaggtttt ag	Reverse primer to PCR vector for pGIL122
	cctaccaaaacccataaa aaatggcgggtattcttcgt cg	Forward primer to PCR ehbp-1 for pSM1
SM8 vha6p-ehbp F1		-
SM9 vha-6n-ehbn R1	ATTATCAACTTCTA CTCACtcttttttcgaatg aatttttgctgaaca	Reverse primer to PCR ehbp-1 for pSM1
SM10 vha6-ehbp1 F2	attcattcgaaaaaagaG TGAGTAGAAGTTG ATAATTTGAAAGT G	Forward primer to PCR vector for pSM1
SM11 vha6-ehbp1 R2	cgacgaagaatacccgc catttttatgggttttggtag gttttagtc	Reverse primer to PCR vector for pSM1
RECOMBINANT DNA		
pCFJ356: Integration vector for EG6703 MOSCI: contains Right xcTi10816, cb-unc-119(+), and Left cxTi10816	Addgene	34871
pCFJ601: MOS-1 transposase	Addgene	34874
pCFJ90: myo-2p::mCherry::unc-54 3' UTR	Addgene	19327
pCFJ104: myo-3p::mCherry::unc-54 3' UTR	Addgene	19328
pGH8: rab-3p::mCherry::unc-54 3' UTR	Addgene	19359
pEK1: myo-2p::GFP::unc-54 3' UTR	This study	N/A
pEK2: myo-2p::tdtomato::unc-54 3' UTR	This study	N/A
pRT5: pAD1 rgef-1p::xbp-1s cDNA::unc-54 3'UTR	(Taylor and Dillin, 2013)	N/A
pSM1: vha-6p::ehbp-1::ehbp-1 3'UTR	This study	N/A
pGIL122: pCFJ356::vha-6p::hsp-4 ERSS::mRuby::HDEL::unc-54 3' UTR	This study	N/A

Sequences used for cloning

pSM1 (cloned into pCFJ90 backbone replacing myo-2p::mCherry with vha-6p::ehbp-1 sequence using Gibson)

vha-6p:

ehbp-1:

tattcacaagaaaataatacgaatcgaaaataaataaaaaattgttcatgaaacctttatcatacaatttttacagacgacgaaaagtat catcaaaggaacgaaaatgggaagaatgttcggacgctaacaaatgtttgattatgtggcctgagcaattttcagagaatatagatatt cttacaacattatatcgtattgcaagtgatgaatatgaagataaagaatggacgattgttgttgaagaagtaactgctaaaggaaaaag attgacgcctcatttgaaattgtgttccctgattattcttcttggaagttctcttatttcggaagtaaatgcagatgatgttagtattacttcgtcag aaatacagtttatttcacataatttgtttttttaagctgcaagacaacaaatcgacacgacagctacaaaaatgatggaatggatcaaag aggaaaaggaaatcgctccgcctattgttccagcacaccgaaaaccttccggagagaatgaaaaccctgcaaaaggtaattagaa atcgttttttaaacctaatcgttagaatttttggctagaatattttcatggaaaaaagtcatatagcctaaattcgtgtgtggtcatcaaaaaat acacccgtggctcttatagaatgtatttcagttcgtccccaatggagagtatcagctgaagaagaaaaaacgtcacaaccagcagctc cagcgccaattgcaaccaacagacatagtcggtcaagccgtgcttcgacagaagaaaaagcgtctacaacaatagaattccgtgtg gattccaattctcggcatgttccagttacagcaatcgctacaccatattatcttcaaagtggaacaatgagtagagggtattgtttggttact gactttactttcatggtgtcagagagttactaacggatattcgcatgtaaaagttaatgatttatgaaatcttggaacaacggattggcctt gtgtgcagttcttcattcttatcgcccggatctcattggagattacgaaacactggatatctctaataatatgtctggacgcatttcgaatattc aaagagccctcgattcacttactttgataggaataacagaagtaccaacagttgatatgtttctgactcctgatcggaaacaaatagaat ggaattaatgaatccgaagaaaaagttgttgccatgattacagaaattcgaaatcaaaaagatctcgaagaagctgtggattatagac aaacttcaaatatgcgctttgagagaagtaatgtaagcataaccatggtgactccaggagttggagcaattcgtgcatcggtgagttttttttttcacttcaattctaccatttttaagatactttgtgtgtataatataactgaaattataggaaaaaacaggttctttcaatcgtcagatttct tggtatattttcttattttattttattttatagcaatttataaggttatacataactgaacatttcctactaccatataacagcttgataaaaattgcga cacaacttaaaaaacttattaaatactcgcccttataaaactcaattacatttgttcccagcgaaatagtctaatcaattctttttcctaatag at at cca att tta cga gatt ctt att tt tga aa at ctt ta ca act tt ca ga at cgt gcat ca cctt ca a ag cga gat ga act a cg cca a ag a stat constraint to the constraint of the cgaggtcagacggatgctgaacgaaaagcagcatccaacgggtgagaagtttttaaaaacacaaaagttgtcgtgattctctatagta atctcctttgttgtgattgttttaattatttctaccgtgtgttcccatttcagcaatcccctctacttcatcatcaccatatcccactttccgtcgtatc gatggatcaaataccgatcttcgtcgtattggtttgtaacattttcagatcatgctccgatttaattgttttagtgttgtgacaaagcatgtagtg aatttattttcagaactcgatgtacacaagttcaagaaacgtgatccatctccgacgctcgtccgcaaacaatgtacattttattatttcctc atagtgcagtgatttttaacatgtcaattgcattattaggaacaatttcatcttaattttgttttaattacagacgatcccaatgatactcctcatg tttcgccttccggcaaaaaggtgggagaaagaagacgcgaaatgccgagttaacagtttaatcccgaatagagcattattggcaaca ccgattcaggaaaaatatgtgtacctttaaagatacagttacttcaaatcctcgttggtgaggtattttcatagatttttcatagtttttcgataaaatacgagagcttgaaaccttgcgtcaagaccagctaccgtatattttgtcgcaaactattttgtcagtgtaataagttgtctgattttcaattt

ehbp-1 3' UTR (predicted):

pGIL122 (cloned into pCFJ356 multiple cloning site using Gibson):

vha-6p:

hsp-4 ERSS:

ATGAAAGTTTTCTCGCTGATTCTGATAGCATTCGTAGCGAATGCGTATTGT mRuby:

AACTCTCTTATCAAGGAAAACATGCGCATGAAGGTTGTTCTTGAGGGATCTGTTAACGGAC ATCAGTTCAAGTGCACTGGAGAAGGAAGGAAGGAAATCCATACATGGTATGTGATACATGGAA ATAGGCACATTCATTAAATATTTGTATTTTCAGGGAACTCAAACTATGCGCATCAAGGTTAT CGAAGGAGGACCACTTCCATTCGCTTTCGACATCCTTGCTACCTCTTTCATGTACGGATCT CGCACTTTCATTAAGTATCCAAAGGGAATTCCAGATTTCTTCAAGCAGTCTTTCCCAGAAGG ATTCACTTGGGAGCGCGTTACCCGCTACGAGGATGGAGGAGTTATCACCGTTATGCAAGA TACCTCCCTTGAGGATGGATGCCTTGTTTACCACGCTCAAGTTCGTGGAGTTAACTTCCCA TCTAACGGAGCTGTTATGCAGAAGAAGACTAAGGGATGGGAACCAAACACTGAAATGATGT ACCCAGCTGATGGAGGACTTCGCGGATACACCCACATGGCTCTTAAGGTTGATGGAGGAG GACACCTTTCTTGCTCTTTCGTTACCACCTACCGCTCTAAGAAGACTGTTGGAAATATTAAG ATGCCAGGAATCCATGCTGTCGATCACCGTCTTGAGCGTCTTGAGGAGTCTGATAACGAGA TGTTCGTTGTTCAACGTGAGCACGCTGTCGCTAAGTTCGCTGGACTTGGAGGAGGA unc-54 3'UTR:

AACTCTCTTATCAAGGAAAACATGCGCATGAAGGTTGTTCTTGAGGGATCTGTTAACGGAC ATCAGTTCAAGTGCACTGGAGAAGGAAGGAAGGAAATCCATACATGGTATGTGATACATGGAA ATAGGCACATTCATTAAATATTTGTATTTTCAGGGAACTCAAACTATGCGCATCAAGGTTAT CGAAGGAGGACCACTTCCATTCGCTTTCGACATCCTTGCTACCTCTTTCATGTACGGATCT CGCACTTTCATTAAGTATCCAAAGGGAATTCCAGGATGTACGCAGTCTTTCCCAGAAGG ATTCACTTGGGAGCGCGTTACCCGCTACGAGGATGGAGGAGTTATCACCGTTATGCAAGA TACCTCCCTTGAGGATGGATGCCTTGTTTACCACGCTCAAGTTCGTGGAGTTAACTTCCCA TCTAACGGAGCTGTTATGCAGAAGAAGACTAAGGGATGGGAACCAAACACTGAAATGATGT ACCCAGCTGATGGAGGACTTCGCGGATACACCCACATGGCTCTTAAGGTTGATGGAGGAG GACACCTTTCTTGCTCTTTCGTTACCACCGTCTAAGAAGACTGTTGGAGAATATTAAG ATGCCAGGAATCCATGCTGTCGATCACCGTCTTGAGCGTCTTGAGGAGTCTGATACGAGA TGTTCGTTGTTCAACGTGAGCACGCTGTCGCTAAGTTCGCTGGACTTGGAGGAGGAG