Table of Contents

Appendix Table S1 Appendix Table S2 Appendix Table S3 Appendix Table S4 Appendix Table S5 Appendix Table S6 Appendix Table S7 Appendix Table S8 Appendix Table S9 Appendix Table S10 Appendix Table S11 Appendix Table S12 Appendix Table S13 Supplemental References Appendix Figure S1 Appendix Figure S2 **Appendix Figure S3 Appendix Figure S4 Appendix Figure S5** Appendix Figure S6 **Appendix Figure S7**

Page 2-3 Page 4 Page 5 Page 6 Page 7 Page 8 Page 9 Page 10 Page 11 Page 12 Page 13 Page 14 Page 15 Page 16 Page 17 Page 18 Page 19 Page 20 Page 21 Page 22 Page 23

Supplementary Tables Appendix Table S1. Knocking down *Nipped-A* lengthens the period of locomotor rhythm

Genotype	Period(hr)±SEM	Power±SEM	%Rhythmic	Ν
timG4/+;Udcr2/UNipped-ARNAi-1	25.89±0.07***###	58.96±4.24***	76	150
timG4/+;Udcr2/UNipped-ARNAi-2	25.27±0.35*** ^{###}	7.90±2.11***###	9	100
timG4/+;Udcr2/UNipped-ARNAi-3	25.25±0.20***###	11.69±2.11***###	23	69
timG4/+;Udcr2/UNipped-ARNAi-4	27.25±0.13***###	40.09±6.42***###	74	38
timG4/+;Udcr2/UNipped-ARNAi-5	27.25±0.14***###	52.90±8.12***###	69	39
timG4/UNipped-ARNAi;Udcr2/+-6	25.85±0.08***###	45.73±4.12***###	78	81
timG4/+;Udcr2/+	23.61±0.03	138.00±4.68	100	127
Udcr2/+;cryG4-16/UNipped-ARNAi-1	27.01±0.09***###	73.62±6.15***	92	86
Udcr2/+;cryG4-16/UNipped-ARNAi-2	25.77±0.19***###	27.44±4.24***#	60	60
Udcr2/+;cryG4-16/UNipped-ARNAi-3	26.58±0.17***###	47.06±5.33***	80	66
Udcr2/+;cryG4-16/UNipped-ARNAi-4	26.42±0.14***###	149.72±9.99**	100	32
Udcr2/+;cryG4-16/UNipped-ARNAi-5	26.76±0.13***###	137.31±9.55*	100	48
Udcr2/UNipped-ARNAi;cryG4-16/+-6	26.45±0.07***###	105.75±5.29	96	99
U <i>dcr2/+;cry</i> G4-16/+	24.91±0.08	111.18±5.03	98	129
pdfG4-Udcr2/+;UNipped-ARNAi-1/+	24.96±0.12*###	52.49±4.77***	85	82
pdfG4-Udcr2/+;UNipped-ARNAi-2/+	24.37±0.17 ^{###}	25.34±3.33***	70	63
pdfG4-Udcr2/+;UNipped-ARNAi-3/+	24.57±0.18 ^{###}	27.78±2.85***##	81	42
pdfG4-Udcr2/+;UNipped-ARNAi-4/+	25.61±0.15***###	87.57±8.48* ^{##}	98	65
pdfG4-Udcr2/+;UNipped-ARNAi-5/+	25.56±0.16***###	86.31±9.81*###	90	48
pdfG4-Udcr2/UNipped-ARNAi-6	25.57±0.10***###	66.60±5.01***###	88	113
pdfG4-Udcr2/+	24.61±0.02	114.98±5.59	96	147
UNipped-ARNAi-1/+	23.61±0.00	68.70±4.25	99	68
UNipped-ARNAi-2/+	23.60±0.04	50.04±6.18	86	49
UNipped-ARNAi-3/+	23.53±0.04	66.55±7.16	100	43
UNipped-ARNAi-4+	23.94±0.05	126.34±5.63	98	60
UNipped-ARNAi-5/+	23.73±0.03	143.47±4.98	100	92
UNipped-ARNAi-6/+	23.65±0.03	109.76±5.53	99	71
18℃ →29 ℃				
Udcr2/+;cryG4-16/UNipped-ARNAi-4	26.54±0.13******	90.88±10.56	77	56
Udcr2/tubG80 ^{ts} ;cryG4-16/UNipped-ARNAi-4	26.29±0.10******	99.53±11.99	76	45
U <i>dcr2/tub</i> G80 ^{ts} ;cryG4-16/+	25.24±0.08	116.17±13.38	80	40
U <i>dcr2/+;cry</i> G4-16/+	24.69±0.17	80.98±12.53	79	33
UNipped-ARNAi-4/+	23.51±0.03	106.74±11.58	87	39
tubG80 ^{ts} /+	23.64±0.03	88.18±9.38	75	63
tubG80 ^{ts} /+;UNipped-ARNAi-4/+	23.68±0.04	107.89±9.35	93	44
29℃→18℃				
Udcr2/+;cryG4-16/UNipped-ARNAi-4	26.50±0.28*****	26.75±4.48	45	51
Udcr2/tubG80 ^{ts} ;cryG4-16/UNipped-ARNAi-4	24.73±0.12	25.48±3.73	61	49

Udcr2/tubG80 ^{ts} ;cryG4-16/+	24.52±0.17	55.27±6.79	83	47
U <i>dcr2/+;cry</i> G4-16/+	25.64±0.23	31.68±5.81	53	40
UNipped-ARNAi-4/+	24.10±0.10	24.27±3.87	75	32
tubG80 ^{ts} /+	23.70±0.06	39.91±4.58	93	45
tubG80 ^{ts} /+;UNipped-ARNAi-4/+	23.72±0.06	34.30±4.13	70	62
Drug treated				
Udcr2/+;pdf-GS/+	25.08±0.10	94.44±5.09	100	49
UNipped-ARNAi/+-4	24.04±0.04	134.11±5.44	100	50
Udcr2/+;pdf-GS/UNipped-ARNAi-4	25.94±0.12***###	73.34±7.50*###	88	41
Ethanol treated				
Udcr2/+;pdf-GS/+	23.63±0.05	122.34±7.85	97	31
UNipped-ARNAi-4/+	23.84±0.04	115.24±6.16	98	40
Udcr2/+;pdf-GS/UNipped-ARNAi-4	23.98±0.05 ^{###}	119.19±7.97	97	32

One-way ANOVA, *P*<0.001. Tukey's multiple comparison test, **P*<0.05, ***P*<0.01, ****P*<0.001 when compared with G4 and U*dcr*2; **P*<0.05, ***P*<0.01, ****P*<0.001 when compared with U*RNAi*. 18°C \rightarrow 29°C, flies raised at 18°C and tested at 29°C; 29°C \rightarrow 18°C, flies raised at 29°C and tested at 18°C. Drug treated, flies were treated with RU486 after eclosion ; ethanol treated, flies were treated with ethanol instead of RU486 after ecloson. ***P*<0.001 when compared with U*dcr*2/+;*pdf*-GS/+, ****P*<0.001 when compared with U*Nipped-ARNAi-4/*+. G4, GAL4; U, UAS.

					_
Genotype	Period(hr)±SEM	Power±SEM	%Rhythmic	Ν	
UNipped-A/+	23.61±0.03	106.69±5.63	98	61	
UNipped-ARNAi-4/+	23.76±0.05	110.54±7.57	97	36	
UNipped-A/+;UNipped-ARNAi-4/+	23.85±0.04	102.41±6.99	96	68	
timG4/+;Udcr2/+	24.63±0.05	125.82±8.47	100	47	
timG4/UNipped-A;Udcr2/+	24.51±0.05 ^{###}	100.12±7.89	95	43	
timG4/+;Udcr2/UNipped-ARNAi-4	27.12±0.15****###	51.72±4.14****###	84	74	
timG4/UNipped-A;Udcr2/UNipped-ARNAi-4	24.09±0.12*** ^{††}	35.33±8.59 ^{†††}	61	28	
pdfG4-Udcr2/+	24.58±0.03	166.35±7.16	100	76	
pdfG4-Udcr2/UNipped-A	24.58±0.04 ^{###}	109.89±7.05***	98	60	
pdfG4-Udcr2/+;UNipped-ARNAi-4/+	25.88±0.16***###	84.51±7.67***	96	53	
pdfG4-Udcr2/UNipped-A;UNipped-ARNAi-4/+	24.87±0.04*** [†]	115.20±7.82 ⁺	97	70	

Appendix Table S2. Over-expressing *Nipped-A* rescues the long period phenotype caused by knocking down *Nipped-A*

.

One-way ANOVA, *P*<0.001, Tukey's multiple comparison test,^{***}*P*<0.001 when compared with G4 control, ^{###}*P*<0.001 when compared with UAS control, ⁺⁺⁺*P*<0.001 when compared with *tim*G4/+;U*dcr2*/U*Nipped-ARNAi-4 or pdf*G4-U*dcr2*/+;U*Nipped-ARNAi-4/+*,

⁺⁺⁺P<0.001 when compared with *tim*G4/UNipped-A;Udcr2/+ or pdfG4-Udcr2/UNipped-A. G4, GAL4; U, UAS.

Genotype	Period(hr)±SEM	Power±SEM	%Rhythmic	Ν
pdfG4-Udcr2/UNipped-ARNAi-6	25.78±0.13******	48.62±5.11****	82	61
pdfG4-Udcr2/+;UGFP/+	24.36±0.04	78.51±6.18	88	56
pdfG4-Udcr2/UNipped-ARNAi-6;UGFP/+	25.88±0.12 ^{†††}	52.72±5.77	89	28
pdfG4-Udcr2/+	24.54±0.04	73.79±5.41	89	66
UNipped-ARNAi-6/+	23.68±0.04	108.01±6.81	100	40
U <i>GFP/</i> +	23.53±0.02	90.17±10.49	91	33
UNipped-ARNAi-6/+;UGFP/+	23.77±0.04	102.76±8.15	88	40
timG4/UNipped-ARNAi-6;Udcr2/+	25.95±0.11****	49.88±6.71	86	37
timG4/+;Udcr2/UGFP	24.15±0.06*****	82.16±7.06	95	39
timG4/UNipped-ARNAi-6;Udcr2/UGFP	26.19±0.14 ^{†††}	38.42±4.42 ^{†††}	78	60
timG4/+;Udcr2/+	24.65±0.05	69.32±7.49	88	41

Appendix Table S3. Genetic interaction between Nipped-A and GFP

.

One-way ANOVA, *P*<0.001, Tukey's multiple comparison test, ^{***}*P*<0.001 when compared with G4 control, ^{###}*P*<0.001 when compared with UAS control, ⁺⁺⁺*P*<0.001 when compared with *pdf*G4-U*dcr2/UNipped-ARNAi-6*;U*dcr2/+*, ⁺⁺⁺*P*<0.001 when compared with *pdf*G4-U*dcr2/+*;U*GFP/+ or tim*G4/+;U*dcr2/UGFP*. G4, GAL4; U, UAS.

Genotype	Period(hr)±SEM	Power±SEM	%Rhythmic	Ν
pdfG4-Udcr2/+;UNipped-ARNAi-5/+	25.52±0.07******	74.65±6.77	88	43
pdfG4-Udcr2/+;UNipped-ARNAi-5/Ptim	24.57±0.17*** ^{†††}	45.21±5.65 ^{+†††}	79	34
pdfG4-Udcr2/+;Ptim/+	24.11±0.06****	108.27±8.83***	100	49
pdfG4-Udcr2/+	24.54±0.04	73.79±5.41	89	66
Ptim/+	23.42±0.03	83.45±7.76	98	43
UNipped-ARNAi-5/Ptim	23.54±0.02	141.09±7.13	100	24
timG4/+;Udcr2/+	23.80±0.05	111.44±7.49	93	46
timG4/+;Udcr2/UNipped-ARNAi-4	26.76±0.12******	62.99±7.11******	80	55
timG4/tim ⁰¹ ;Udcr2/UNipped-ARNAI-4	26.74±0.11 ⁺⁺⁺	22.86±4.04*** ^{†††}	46	72
timG4/+;Udcr2/UNipped-ARNAi-5	26.77±0.11******	62.17±7.40******	76	49
timG4/tim ⁰¹ ;Udcr2/UNipped-ARNAi-5	26.77±0.05 ⁺⁺⁺	23.49±4.66*** ^{†††}	43	56
timG4/tim ⁰¹ ;Udcr2/+	24.17±0.03**	148.68±6.89**	96	53
<i>tim</i> ⁰¹ /+	24.08±0.03	110.34±6.11	98	53
UNipped-ARNAi-4/+	24.00±0.05	124.97±6.91	98	43
UNipped-ARNAi-5/+	23.82±0.04	123.58±5.71	100	47
tim ⁰¹ /+;UNipped-ARNAi-4/+	24.22±0.05	91.04±6.53	97	39
tim ⁰¹ /+;UNipped-ARNAi-5/+	24.01±0.04	96.27±5.85	98	47

Appendix Table S4. Related to Figure 3. Genetic interaction between *Nipped-A* and *tim*

One-way ANOVA, P<0.001. Tukey's multiple comparison test, ***P<0.001 when compared with G4 control; ###P<0.001 when

compared with Ptim or tim⁰¹, +++P<0.001 when compared with pdfG4-Udcr2/+;UNipped-ARNAi-5/+ or

timG4/+;Udcr2/UNipped-ARNAi, ⁺⁺⁺P<0.001 when compared with pdfG4-Udcr2/+;Ptim/+ or timG4/tim⁰¹;Udcr2/+. G4, GAL4; U, UAS.

Genotype	Period(hr)±SEM	Power±SEM	%Rhythmic	Ν
pdfG4-Udcr2/UNipped-ARNAi-4/+	25.65±0.10******	59.95±6.55	85	54
pdfG4-Udcr2/UPdp1ɛ; UNipped-ARNAi-4/+	23.50±0.11*** ^{†††}	26.69±2.88**** [†]	58	106
pdfG4-Udcr2/UPdp1ɛ	24.16±0.05*****	46.95±4.43*****	73	93
pdfG4-Udcr2/+	24.54±0.04	73.79±5.41	89	66
U <i>Pdp1</i> ɛ/+	23.57±0.02	103.79±5.30	97	75
UNipped-ARNAi-4/+	23.92±0.03	115.44±4.48	97	76
UPdp1ɛ/+; UNipped-ARNAi-4/+	23.75±0.05	96.05±5.88	100	44
Udcr2/UNipped-ARNAi-6;cryG4-16/+	26.53±0.08******	102.5±6.67	95	68
U <i>dcr2/+;cry</i> G4-16 <i>/Pdp1</i> ³¹³⁵	25.76±0.09	79.3±5.47	96	59
Udcr2/UNipped-ARNAi-6;cryG4-16/Pdp1 ³¹³⁵	28.42±0.19*** ^{†††}	39.84±3.84 ^{+++†††}	82	79
U <i>dcr2/+;cry</i> G4-16/+	25.59±0.15	94.36±6.21	100	56
UNipped-ARNAi-6/+	23.68±0.04	108.01±6.81	100	40
Pdp1 ³¹³⁵ /+	23.79±0.05	66.38±5.21	90	61
UNipped-ARNAi-6/+;Pdp1 ³¹³⁵ /+	23.75±0.05	79.95±4.85	97	46

Appendix Table S5. Genetic interaction between Nipped-A and Pdp1 ε

One-way ANOVA, *P*<0.001, Tukey's multiple comparison test, ^{***}*P*<0.001 when compared with G4 control, ^{###}*P*<0.001 when compared with UAS control, ^{***}*P*<0.001 when compared with *pdf*G4-U*dcr2/UNipped-ARNAi-4/+* or U*dcr2/UNipped-ARNAi-6;cry*G4-16/+, ^{†††}*P*<0.001 when compared with *pdf*G4-U*dcr2/UPdp1* or U*dcr2/+;cry*G4-16/*Pdp1*³¹³⁵. G4, GAL4; U, UAS.

Genotype	Period(hr)±SEM	Power±SEM	%Rhythmic	Ν	
pdfG4-Udcr2/UNipped-ARNAi-6	25.78±0.13******	48.62±5.11*****	82	61	
pdfG4-Udcr2/+;Uper/+	23.83±0.21*	4.92±1.68******	13	46	
pdfG4-Udcr2/UNipped-ARNAi-6;Uper/+	23.73±0.11***	11.65±2.42***	31	60	
pdfG4-Udcr2/+	24.54±0.04	73.79±5.41	89	66	
UNipped-ARNAi-6/+	23.68±0.04	108.01±6.81	100	40	
Uper/+	23.74±0.05	61.82±5.74	95	46	
UNipped-ARNAi-6/+;Uper/+	23.71±0.04	79.63±4.92	97	46	
Udcr2/UNipped-ARNAi-6;cryG4-16/+	26.53±0.08****	102.50±6.67	95	68	
per ^L ;U <i>dcr2/</i> +;cryG4-16/+	30.59±0.19******	83.51±7.64	93	44	
per ^L ;U <i>dcr2/</i> UNipped-ARNAi-6;cryG4-16/+	32.93±0.16*** ^{†††}	68.49±5.85 ⁺⁺⁺	85	71	
per ^L	29.16±0.06	72.48±5.72	91	45	
per ^L ;UNipped-ARNAi-6/+	29.38±0.07	94.60±7.69	97	40	
Udcr2/+;cryG4-16/+	25.58±0.14	94.36±6.21	100	56	
UNipped-ARNAi-6/+	23.68±0.04	108.00±6.80	100	40	

Appendix Table S6. Genetic interaction between Nipped-A and per

One-way ANOVA, P<0.001. Tukey's multiple comparison test, ***P<0.001 when compared with G4 control, ###P<0.001 when compared

with UAS control, *** P<0.001 when compared with pdfG4-Udcr2/UNipped-ARNAi-6 or Udcr2/UNipped-ARNAi-6;cryG4-16/+,

⁺⁺⁺P<0.001 when compared with *per^L;Udcr2/+;cry*G4-16/+. G4, GAL4; U, UAS.

Genotype	Period(hr)±SEM	Power ±SEM	%Rhythmic	Ν
pdfG4-Udcr2/+;UNipped-ARNAi-4/+	25.78±0.07***###	73.08±6.77 ^{###}	85	49
pdfG4-Udcr2/+;Uclk/+	22.83±0.06****###	61.21±6.06	92	57
pdfG4-Udcr2/+;UNipped-ARNAi-4/Uclk	23.86±0.06*** ^{†††}	74.12±5.88	91	61
pdfG4-Udcr2/+	24.31±0.04	84.29±7.29	87	47
UNipped-ARNAi-4/+	23.88±0.05	114.65±5.63	98	47
U <i>clk/</i> +	23.80±0.05	73.08±5.46	96	32
UNipped-ARNAi-4/Uclk	23.97±0.03	130.51±4.47	100	62

Appendix Table S7. Genetic interaction between Nipped-A and clk

One-way ANOVA, *P*<0.001, Tukey's multiple comparison test, ^{***}*P*<0.001 when compared with G4 control, ^{###}*P*<0.001 when compared with UAS control, ^{***}*P*<0.001 when compared with *pdfG4-Udcr2/+;UNipped-ARNAi-4/+*, ^{†††}*P*<0.001 when compared with *pdfG4-Udcr2/+;UCik/+*. G4, GAL4; U, UAS.

Genotype	Period(hr)±SEM	Power ±SEM	%Rhythmic	Ν
UnotRNAi-1/+	23.37±0.03	54.44±5.31	78	89
UnotRNAi-2/+	23.54±0.05	115.44±6.31	100	47
timG4/+;Udcr2/+	24.02±0.04	77.33±3.45	97	134
U <i>dcr2/+;cry</i> G4-16/+	25.37±0.04	126.94±3.38	100	183
pdfG4-Udcr2/+	24.36±0.02	104.17±3.81	96	123
timG4/+;Udcr2/UnotRNAi-1	N/A	1.77±0.50***###	0	94
timG4/UnotRNAi-2;Udcr2/+	Lethal	Lethal	Lethal	0
Udcr2/+;cryG4-16//UnotRNAi-1	26.16±0.09***###	16.51±1.82 ^{***###}	42	150
Udcr2/UnotRNAi-2;cryG4-16/+	23.72±0.2***	20.82±4.41***###	53	30
pdfG4-Udcr2/+;UnotRNAi-1/+	24.74±0.08***###	33.04±3.05***##	66	112
pdfG4-Udcr2/UnotRNAi-2	24.44±0.07 ^{###}	102.35±9.01	94	35

Appendix Table S8. Knocking down *not* reduces the power of locomotor rhythm

One-way ANOVA, P<0.001, Tukey's multiple comparison test, ***P<0.001 when compared with G4 and Udcr2, ***P<0.01,

 $^{\!\#\!\#\!P}\!\!<\!\!0.001$ when compared with URNAi. G4, GAL4; U, UAS.

Genotype	Period(hr)±SEM	Power ±SEM	%Rhythmic	Ν
Unot/+	23.58±0.04	95.70±5.88	100	46
UNipped-ARNAi-4/+	23.88±0.04	119.37±5.58	98	45
pdfG4-Udcr2/+;Unot/+	24.06±0.05***###	87.93±5.36	97	59
pdfG4-Udcr2/+;UNipped-ARNAi-4/+	25.66±0.07***###	103.14±7.01	97	35
pdfG4-Udcr2/+;UNipped-ARNAi-4/Unot	24.82±0.03**** ^{†††}	133.26±4.68 ^{+†††}	99	73
UNipped-ARNAi-6/+;Unot/+	23.55±0.03	118.16±9.82	97	32
<i>tim</i> G4/+;U <i>dcr2/</i> +	24.65±0.05	69.32±7.49	88	41
timG4/+;Udcr2/Unot	23.72±0.06***	92.48±7.63	100	39
timG4/UNipped-ARNAi-6;Udcr2/+	25.95±0.11***###	49.88±6.71 ^{###}	86	37
timG4/UNipped-ARNAi-6;Udcr2/Unot	24.91±0.10**** ^{†††}	46.36±6.28 ^{†††}	85	40
UnotRNAi-1/+	23.37±0.03	54.44±5.31	78	89
UNipped-ARNAi-6/+	23.64±0.05	111.55±7.61	97	39
UNipped-ARNAi-6/UnotRNAi-1	23.50±0.02	77.34±7.19	89	46
pdfG4-Udcr2/+	24.44±0.05	100.70±6.07	98	55
pdfG4-Udcr2/+;UnotRNAi-1/+	24.74±0.08 ^{###}	33.04±3.05***##	66	112
pdfG4-Udcr2/UNipped-ARNAi-6	25.45±0.10****###	79.68±8.66 ^{##}	91	36
pdfG4-Udcr2/UNipped-ARNAi-6;UnotRNAi-1/+	26.60±0.17*** ^{†††}	22.57±3.93***	69	32

Appendix Table S9	. Genetic interaction	between	Nipped-A and not
-------------------	-----------------------	---------	------------------

One-way ANOVA, *P*<0.001, Tukey's multiple comparison test, ****P*<0.001 when compared with G4 control, ^{###}*P*<0.001 when compared with UAS control, ⁺⁺⁺*P*<0.001 when compared with *pdfG4-Udcr2/+;UNipped-ARNAi-4/+*, *timG4/UNipped-ARNAi-6;Udcr2/+* or *pdfG4-Udcr2/UNipped-ARNAi-6*, ⁺⁺⁺*p*<0.001 when compared with *pdfG4-Udcr2/+;Unot/+*, *timG4/Udcr2/Unot or pdfG4-Udcr2/+;UnotRNAi-1/+*. G4, GAL4; U, UAS.

Genotype	Period(hr)±SEM	Power±SEM	%Rhythmic	Ν
USgf11RNAi-1/+	23.47±0.03	68.56±4.00	97	69
USgf11RNAi-2/+	23.65±0.04	104.73±7.74	95	42
timG4/+;Udcr2/+	24.47±0.05	78.66±7.36	100	38
U <i>dcr2/</i> +; <i>cry</i> G4-16/+	25.36±0.09	121.32±6.21	98	43
pdfG4-Udcr2/+	24.50±0.04	116.80±7.84	97	32
timG4/USgf11RNAi-1;Udcr2/+	24.86±0.18 ^{###}	6.33±1.33******	18	79
timG4/USgf11RNAi-2;Udcr2/+	24.81±0.06* ^{###}	44.44±5.60***###	70	61
Udcr2/USgf11RNAi-1;cryG4-16/+	25.21±0.07 ^{###}	78.48±6.33***	91	46
Udcr2/USgf11RNAi-2;cryG4-16/+	25.29±0.14 ^{###}	110.66±9.90	97	30
pdfG4-Udcr2/USgf11RNAi-1	24.61±0.17 ^{###}	35.16±4.44***##	77	30
pdfG4-Udcr2/USgf11RNAi-2	24.55±0.08 ^{###}	94.83±9.26	97	30

Appendix Table S10. Knocking down *Sgf11* reduces the power of locomotor rhythm

One-way ANOVA, P<0.001, Tukey's multiple comparison test, *P<0.05, **P<0.01, ***P<0.001 when compared with G4 and

Udcr2; ##P<0.01, ###P<0.001 when compared with URNAi. G4, GAL4; U, UAS.

Genotype	Period(hr)±SEM	Power±SEM	%Rhythmic	Ν
USgf11RNAi-1/+	23.47±0.03	68.56±4.00	97	69
UNipped-ARNAi-4/+	23.80±0.05	103.70±7.75	97	34
USgf11RNAi-1/+;UNipped-ARNAi-4/+	23.68±0.06	96.65±6.71	98	42
pdfG4-Udcr2/+	24.38±0.05	100.63±6.15	98	45
pdfG4-Udcr2/USgf11RNAi-1	24.61±0.17 ^{###}	35.16±4.44***##	77	30
pdfG4-Udcr2/+;UNipped-ARNAi-4/+	25.62±0.0.08***###	93.19±6.15	96	69
pdfG4-Udcr2/USgf11RNAi-1;UNipped-ARNAi-4/+	26.59±0.10**** ^{†††}	36.54±4.23***	76	42
Sgf11 ^{e01308} /+	23.73±0.05	93.68±8.43	97	36
UNipped-ARNAi-4/Sgf11 ^{e01308}	24.10±0.08	127.98±9.89	93	27
pdfG4-Udcr2/+;Sgf11 ^{e01308} /+	24.69±0.05*###	130.40±8.02*##	100	35
pdfG4-Udcr2/+;UNipped-ARNAi-4/Sgf11 ^{e01308}	26.58±0.07*** ^{†††}	80.19±4.43 ^{†††}	96	68

Appendix Table S11. Genetic interaction between Nipped-A and Sgf11

One-way ANOVA, P<0.001, Tukey's multiple comparison test, ***P<0.001 when compared with G4 and U*dcr*2, ****P<0.001

when compared with USgf11RNAi-1/+ or Sgf11^{e01308}/+, ***P<0.001 when compared with

pdfG4-Udcr2/+;UNipped-ARNAi-4/+, ^{ttt}P<0.001 when compared with pdfG4-Udcr2/USgf11RNAi-1 or

*pdf*G4-U*dcr*2/+*;*S*g*f11^{e01308}/+. G4, GAL4; U, UAS.

Genes	Sense (5'-3')	Antisense (5'-3')	Source
si-Nipped-A	GCGUGUAAAUUGCCCAUAATT	UUAUGGGCAAUUUACACGCTT	This paper
Nipped-A	CGCGAAAAACATAAAACTGC	GGAATGTTTCCGTGACTTGC	This paper
tim	CTGGGGAGTGACCATGG	GCTGGAATCGCCACTG	This paper
per	CAGCAGCAGCCTAATCG	GAGTCGGACACCTTGG	This paper
clk	TACTGCGTGAGGATATCG	GTTGTTGTTCTGGTTGC	This paper
сус	GAGGTCTTCGTCGGAAAGG	AAAGCACATGGGAATCATGG	This paper
Pdp1ε	GAACCCAAGTGTAAAGACAATGC	CTGGAAATACTGCGACAATGTG	This paper
	G	G	
vri	TGTTTTTTGCCGCTTCGGTCA	TTACGACACCAAACGATCGA	This paper
cry	TGCAGGTACCAAGAATGTGG	GGAAGATATAAGCCGGTTCG	This paper
not	CCACTTGCTTCATGAACTGC	ACATTTGTGCGATGACTTGC	This paper
sgf11	TGCACTCTTCGGGAAATACC	TTTGCCATTGTTCTTCTTGG	This paper
actin	CTAACCTCGCCCTCTCCTCT	GCAGCCAAGTGTGAGTGTGT	This paper
rp49	TACAGGCCCAAGATCGTGAA	GCACTCTGTTGTCGATACCC	This paper
pre-tim	ACTGCTTTCCAATGCGGTATG	AAGCCTCCGAAAAACATATGAA	(Andreazza
		AA	, Bouleau et
			al., 2015)
pre-pdp1	GGCCGAGTCAAGTGAGTATAGC	CATGTGATCATGGTTTGTTTTAC	This paper
		G	
cbp20	AGATCCACGAGCTCTTCTCC	CCGATCGGACATAGTACTCC	This paper
tim-E box	ACACTGACCGAAACACCCACTC	GCGGCACGTTGTGATTACACG	(Zhou, Yu
			et al., 2016)
tim-Tss	TGCTATTGAAGTTGCATTTTACAT	TCGTGTTATAGTTTCAGTGCTG	This paper
	AAGCCAACAACG	TTATATACACTGATG	
timbody	GAGGAGCTGGCCCTTATACC	ATCGAGTTGCAGTGCTTCG	This paper
Ppd1ε E-box	GCACTCTCATTCTCTCTGTCG	ACGCGGATTTCAATATGACC	(Zhou et al.,
			2016)
Ppd1ε TSS	TTTCAGTTACGCGTTGTTGC	ACCTCGCACGGATAAGTCC	This paper
Ppd1ε body	GCAACTGGTAATGGAAATGGTG	CTGTTCAAATGGTTGTGATGCT	This paper
		С	

Appendix Table S12. Oligonucleotides used in this study

Antibodies	Source	Identifier
Rat anti-TIM	Joanna C. Chiu,	N/A
	University of California,	
	Davis	
Guinea pig anti-PER	Joanna C. Chiu,	N/A
	University of California,	
	Davis	
Guinea pig anti-PDP1ε	Paul E. Hardin, Texas A&	N/A
	M University	
Rabbit anti-Nipped-A	Sigma	Cat#PLA0167, RRID:AB_2209668
Mouse anti-HSP70	Sigma	Cat# SAB4200714
Rabbit anti-acetyl-Histone H3	Millipore	Cat#06-599,RRID: AB_2115283
Rabbit anti-Histone H3 (acetyl K9)	Abcam	Cat#ab4441, RRID:AB_2118292
Rabbit anti-acetyl-Histone H3	Millipore	Cat#07-353, RRID:AB_310545
(Lys14)		
Rabbit anti-HistoneH3 (acetyl K27)	Abcam	Cat#ab4729, RRID:AB_2118291
Mouse anti-Ubquityl-Histone H2B,	Millipore	Cat#05-1312-I,RRID:AB_1587119
clone56		
Rabbit anti-acetyl-Histone H4	Millipore	Cat#06-866,RRID:AB_310270
Rabbit anti-acetyl-Histone H4	Millipore	Cat#07-329, RRID:AB_310525
(Lys16)		
Normal mouse IgG	Santa Cruz Biotechnology	Cat#sc-2025, RRID:AB_737182
Normal rabbit IgG	Santa Cruz Biotechnology	Cat#sc-2027, RRID:AB_737197
Donkey anti-mouse Alexa Fluor	Molecular Probes	Cat#R37114, RRID:AB_2556542
488 nm		
Donkey anti-mouse Alexa Fluor	Molecular Probes	Cat#R37115,RRID:AB_2556543
594 nm		
Donkey anti-rabbit Alexa Fluor 488	Abcam	Cat#ab150073,RRID:AB_2636877
nm		
Donkey anti-rat Alexa Fluor 488	Abcam	Cat#ab150153,RRID:AB_2737355
nm		
Donkey anti-Guinea pig Alexa	Jackson	Cat#706-585-148,RRID:AB_2340474
Fluor 594 nm	ImmunoResearch Labs	

Appendix Table S13. Antibodies used in this study

Supplemental References

Andreazza S, Bouleau S, Martin B, Lamouroux A, Ponien P, Papin C, Chelot E, Jacquet E, Rouyer F (2015) Daytime CLOCK Dephosphorylation Is Controlled by STRIPAK Complexes in Drosophila. Cell Rep 11: 1266-79

Zhou J, Yu W, Hardin PE (2016) CLOCKWORK ORANGE Enhances PERIOD Mediated Rhythms in Transcriptional Repression by Antagonizing E-box Binding by CLOCK-CYCLE. PLoS Genet 12: e1006430

Supplemental Figures

Appendix Figure S1. Knocking down *Nipped-A* reduces the power of locomotor rhythms.

A-C The power of DD locomotor rhythms of flies with *Nipped-A* knocked down and controls.

Data information: Digits on the bars are the number of flies tested. Statistical difference is measured using one-way ANOVA, *P*<0.001, Tukey's multiple comparison test, */**P*<0.05, **/#**P*<0.01, ***/#***P*<0.001. Error bars represent SEM. * compared with the GAL4 controls; # compared with the UAS controls. G4, GAL4; U, UAS.

Appendix Figure S2. Validation of the knock down effects of Nipped-A RNAi flies. Plots of relative mRNA abundance of Nipped-A in whole head extracts of flies with Nipped-A knocked down and controls determined by qRT-PCR ($n \ge 3$).

Data information: Student's *t* test, */*P<0.05, **/**P<0.01, ***P<0.001. Error bars represent SEM. * compared with the GAL4 controls; # compared with the UAS controls. G4, GAL4; U, UAS.

Appendix Figure S3. Validation of the over-expression effects of *tim*, *Pdp1* ϵ and *per*. A Plots of relative mRNA abundance of *tim* in whole head extracts of w^{1118} , *Ptim/+ and Ptim* flies determined by qRT-PCR (*n*=4).

B Plots of relative mRNA abundance of $Pdp1\epsilon$, *clk*, *tim and per* in whole head extracts of flies with $Pdp1\epsilon$ over expression and controls determined by qRT-PCR (*n*=4).

C Plots of relative mRNA abundance of *per* in whole head extracts of flies with *per* over expression and controls determined by qRT-PCR (*n*=3).

Data information: Student's *t* test, **P*<0.05, ***P*<0.01, ****P*<0.001. Error bars represent SEM. * compared with *tim*G4/+ or w^{1118} *control*.

Appendix Figure S4. *Nipped-A* does not appear to genetically interact with *clk*.

The period of DD locomotor rhythm of *Nipped-A* RNAi flies over-expressing *clk*. Data information: Digits on the bars are the number of flies tested. Percentage of rhythmicity is indicated above the bars. Statistical difference is measured using one-way ANOVA, *P*<0.001, Tukey's multiple comparison test, ***/###*P*<0.001, * compared with the

Nipped-A RNAi flies, # compared with the over-expression flies. Error bars represent SEM. G4, GAL4; U, UAS.

Appendix Figure S5. Validating the specificity of the NIPPED-A antibody.

NIPPED-A was immunoprecipitated from whole head extracts of *Nipped-A* RNAi (*tim*G4/+;U*dcr2/UNipped-A* RNAi-1) and control (w^{1118}) flies collected at CT12 and detected in the protein input control and immunoprecipitates by Western blotting.

Appendix Figure S6. Knocking down Nipped-A enhances CLK binding at $Pdp1\varepsilon$ and *per* promoters.

A-D ChIP assays to detect CLK binding at E-box elements in *tim* (A), *Pdp1ε* (B), *per* (C) and *vri* (D) promoters of *Nipped-A RNAi* (*tim*G4/+;U*dcr2/UNipped-ARNAi-1*) and control (*tim*G4/+;U*dcr2/*+) flies.

Data information: Error bars represent SEM (n=3). Statistical difference for CLK binding at *tim*, *Pdp1* ϵ and *per* promoters throughout the time course is measured using one-way ANOVA, *P*<0.05. Significant effect of genotype is found for *Pdp1* ϵ (*P*<0.01) and *per* (*P*<0.05), using two-way ANOVA. Student's *t* test, **P*<0.05.

Appendix Figure S7. Validation of the knock down or over-expression effects of *not* RNAi or over-expression fly lines.

A, B Plots of relative mRNA abundance of *not* in whole head extracts of flies with *not* knocked down (A) or over-expressed (B) and controls determined by qRT-PCR (*n*=3). Data information: Student's *t*-test, */*P<0.05, **/**P<0.01, ***/***P<0.001. Error bars represent SEM. * compared with the GAL4 controls; # compared with the UAS controls. G4, GAL4; U, UAS.