
PGxCorpus – Supplementary information

Title: PGxCorpus: a Manually Annotated Corpus
for Pharmacogenomics

Authors: Joël Legrand, Romain Gogdemir, Cédric Bousquet,
Kevin Dalleau, Marie-Dominique Devignes, William Digan, Chia-Ju Lee,

Ndeye-Coumba Ndiaye, Nadine Petitpain, Patrice Ringot, Malika Smäıl-Tabbone,
Yannick Toussaint, Adrien Coulet

This supplementary document includes:

• Supplementary methods about the representation and models used for baseline experiments.

• Table S1: Detailed performances of the task of named entity recognition.

• Table S2: Detailed performances of the task of relation extraction.

• Table S3: Very important pharmacogenes (VIP genes) as listed by PharmGKB and their number
of occurrences in PGxCorpus.

1

Supplementary methods

Sentence representation with word embeddings

Both our models for NER and RE are fed with word embeddings (i.e., continuous vectors) of dimension
dw, along with extra entity embeddings of size de. RE is fed with an additional nested entity embeddings
of size dn.

Regarding word embeddings, given a sentence of N words, w1, w2, . . . , wN , each word wi ∈ W is
embedded in a dw-dimensional vector space by applying a lookup-table operation: LTW (wi) = Wwi

,
where the matrix W ∈ Rdw×|W| represents the parameters to be trained in this lookup-table layer.
The dictionary W is composed of all the words of the corpus. Each column Wwi ∈ Rdw corresponds
to the embedding vector of the wi word in our dictionary W.

Beside word embeddings, two additional embeddings, named entity embeddings, are used to feed
our models. (1) One entity embeddings enables to represent what type of entity a word composes. (2)
One represents if the word starts, continues or ends the description of an entity. Both use a standard
encoding of tags with Begin Intermediate Other End and Single (BIOES)-prefixes [6]. These two first
entity embeddings are constructed slightly differently for NER and RE, since in the first, it encompasses
tags for entities pre-annotated with PubTator and tags for entities annotated with PGxCorpus types,
whereas in the latter, it considers tags for entity types of the corpus, plus special tags that marks pairs
of entities between which a relationship may stand.

For the RE model only, a nested entity embedding of size dn is added to word and entity embeddings
to represent entity types that may be included in nested entities involved in relations. For each word a
nested entity embedding is added for each entity type. Given an entity type, this embedding can take
one of two values: (a) absent if the word is not part of one of the two entities potentially related, or if
it is part of one, but no entity of the given type is included in the entity of interest; (b) present if the
word is part of one of the 2 entities and this one includes another entity of the given type.

Finally, word, entity and nested entity embeddings are concatenated to form the input correspond-
ing to a given word. Let’s denote xi the concatenated input corresponding to the ith word.

Named entity recognition model

The core of the CNN model used for NER is described in [2]. We adapted it, along with experiment set-
tings, to fit with the particularity of PGxCorpus that is to encompass about one third of discontiguous
or nested entities (2, 347 discontiguous or nested / 6,761 entities, see Table 2).

Recognizing discontiguous entities is a complex and open problem in NLP and this baseline ex-
periment does not aim at tackling it. For this reason, we discarded in the sentences, annotations
of discontiguous entities from both our train and test sets (265/ 6,761 entities). Nested entities are
considered in our experiment by applying the NER model recursively, as many times as there are
nesting levels. Entities discovered during one iteration of the model are considered as input of the next
iteration. Given the example of Figure 1, a first iteration will recognize the three entities “VKORC1”,
“CYP2C9” and “acenocoumarol”. Then, the second iteration will consider them as an input to recog-
nize “CYP2C9 genotypes” and “acenocoumarol sensitivity”. “VKORC1 genotypes” is discontiguous
and consequently discarded from the experiment.

Formally, given an input sequence x1, . . . , xN , a classical sliding window approach is followed by
applying a two-layer neural network (NN) on each possible window of size k. We denote P the set of
BIOES-prefixed tags. Given the ith window, the NN computes a vector of scores si = [s1, . . . , s|P|],
where st is the score of the BIOES-prefixed tag t ∈ P, associated with the input xi. Scores of the
window i are given by the following formula:

si = W1 h(W2 [xi−(k−1
2), . . . , xi, . . . , xi−(k+1

2)]),

where the matrices W1 ∈ Rdh×k|W| and W2 ∈ R|P|×dh are the trained parameters of the NN, and h
is a pointwise non-linear function such as the hyperbolic tangent, dh is the number of hidden units and

2

k the size of the window. Inputs with indices exceeding the input boundaries, i.e. when i− (k−1
2) < 1

or i− (k+1
2) > N , are mapped to a special padding vector, which is also learned.

Scores of each window are finally given to a lattice module that allows to aggregate the BIOES-
prefixed tags from our tagger module in a coherent manner, to recover the predicted labels. For more
details about this layer, please see [2].

Relation extraction model

The model used for RE is a multichannel CNN (MCCNN) described in [5], where it has been successfully
applied to the task of extraction of drug-drug and protein-protein interactions. It takes an input
sentence and two recognized entities, computes a fixed size representation by composing input word
embeddings. This representation is given to a scorer, which computes a score for each possible type
of relationships. Sentences with more than two entities are considered by the model iteratively for
each possible pair of entities for which a relation may stand, in both directions since relations may be
oriented.

The MCCNN applies a CNN of variable kernel size to each input channels of word embeddings. In
other words, it considers different embedding channels i.e. different versions of the word embeddings
associated with each word, allowing to capture different aspects of input words. Formally, given an
input sequence of word representations (i.e. concatenation of word and entity embedding) x1, . . . , xN ,
applying a kernel to the ith window of size k is done using the following formula:

Ci = h(

N−k+1∑
j=1

W [xi, . . . , xi+k−1]j + b)

where [.]j denotes the concatenation of inputs from channel j, W ∈ R(dw+de)×dh and b ∈ Rdh are the
parameters, dh is the size of the hidden layer, h is a pointwise non-linear function such as the hyperbolic
tangent and N − k + 1 is the number of input channels. For each kernel, a fixed size representation
r∗ ∈ Rdh is then obtained by applying a max-pooling over time (here, the “time” means the position
in the sentence):

r∗ = max [C1, . . . , CN−k+1] .

We denote K the number of kernels with different sizes. A sentence representation r ∈ Rds (with
ds = K ∗ dh) is finally obtained by concatenating the output corresponding to the K kernels r =
[r∗1 , . . . , r

∗
K] .

The sentence representation is finally passed to a single layer NN, which outputs a score for each
possible relation type:

s(r) = W (s)r + b(s) ,

where W (s) ∈ Rds×|S| and b(s) ∈ R|S| are the trained parameters of the scorer, |S| is the number
of possible relation types. The scores are interpreted as probabilities using a softmax layer [1].

Experimental settings

Word embeddings were pre-trained using the method described in [4] on about 3.4 million PubMed ab-
stracts, corresponding to articles published between Jan. 1, 2014 and Dec. 31, 2016. Our models were
trained by minimizing the negative log-likelihood over the training data. All parameters –embeddings,
weights W and biases b– were iteratively updated via backpropagation. We used a hard tanh function
as activation function f . Hyper-parameters were tuned using a 10-fold cross-validation by selecting
the values leading to the best averaged performance, and fixed for the rest of the experiment.

For NER, the CNN was fed with word embeddings and two types of entity embeddings (one with
PubTator tags, used only for the first iteration of the model and one with PGxCorpus tags used in

3

next iterations) of size dw = 100 and de = 20× 2 (20 for each type of tags), respectively. The size of
the hidden layer was fixed to dh = 200, the kernel size to k = 5 and the learning rate to 0.01.

For RE, the MCCNN was fed with word embeddings and two types of entity embeddings (one
with PGxCorpus entity tags; one to identify pairs of entities between which a relation may stand) of
size dw = 200 and de = 20 × 2, respectively. The size of the nested entity embeddings was set to
dn = 5× |E|, where E is the entity type dictionary.

We used two kernels of size 3 and 5. Following [3], both channels were initialized with pre-trained
word embeddings, but gradients were backpropagated only through one of the channels. The size of
the hidden layer was fixed to dh = 200 and the learning rate to 0.01.

For both NER and RE, we applied a dropout regularization after the embedding layers [7] with
a dropout probability fixed to 0.5. Both models were evaluated using a 10-fold cross validation.
Each result of this evaluation is an average of 100 experiments: 10 experiments for each of the 10
folds starting with different random initializations. Random initialization concerns entity embeddings,
weights and biases, but not word embeddings not randomly initialized, but pre-trained.

4

Entity matching: (exact or partial) exact exact partial partial
Considering hierarchy: (yes or no) no yes no yes
Metric: P R F1 (SDF1) P R F1 (SDF1) P R F1 (SDF1) P R F1 (SDF1)

Chemical 77.42 75.08 76.07 (8.52) 77.42 75.08 76.07 (8.52) 84.46 81.53 82.67 (7.24) 84.46 81.53 82.67 (7.24)
Genomic factor 38.97 19.25 22.86 (16.99) 71.58 71.66 71.41 (5.97) 45.75 23.58 27.68 (19.15) 83.37 83.51 83.19 (5.90)�

Gene or protein 86.10 85.56 85.72 (5.03) 86.10 85.56 85.72 (5.03) 91.00 90.40 90.58 (3.84) 90.47 89.88 90.05 (3.89)�

Genomic variation 25.62 2.48 2.67 (8.80) 48.91 50.31 49.13 (8.96) 27.09 3.52 3.83 (10.51) 70.70 73.12 71.18 (9.55)�

Limited variation 45.80 49.41 47.08 (9.13) 45.75 49.35 47.02 (9.14) 70.57 76.52 72.71 (9.53) 69.46 75.34 71.57 (9.50)�

Haplotype 73.16 66.47 66.97 (19.01) 73.16 66.47 66.97 (19.01) 78.76 72.73 72.47 (19.34) 78.76 72.73 72.47 (19.34)
Phenotype 35.15 31.96 31.76 (9.09) 51.23 50.95 50.80 (7.54) 53.01 48.91 48.48 (10.03) 70.09 69.95 69.57 (5.40)�

Disease 66.36 69.03 66.90 (8.53) 66.34 69.01 66.88 (8.53) 75.01 78.18 75.68 (7.50) 71.85 75.07 72.59 (7.30)�

Pharmacokinetic phenotype 38.06 30.33 29.30 (16.72) 38.06 30.33 29.30 (16.72) 45.81 38.17 36.47 (19.32) 45.64 37.96 36.27 (19.40)�

Pharmacodynamic phenotype 40.95 37.82 38.54 (9.80) 40.91 37.78 38.50 (9.80) 62.12 58.56 58.84 (9.80) 61.43 57.88 58.18 (10.11)
Macro average 52.76 46.74 49.15 (5.27) 59.95 58.65 59.11 (6.05) 63.36 57.21 59.76 (5.03) 72.62 71.70 71.93 (5.64)

Table S1: Detailed performances of the task of named entity recognition in terms of Precision (P), Recall (R), F1-score (F1) and F1-score standard deviation in
brackets (SDF1).

5

Considering hierarchy: (yes or no) no yes
Metric: P R F1 (SDF1) P R F1 (SDF1)

isAssociatedWith 38.75 28.91 30.89 (6.84) 53.22 52.14 51.71 (4.02)�

influences 40.93 37.08 36.55 (7.35) 52.14 44.64 46.45 (5.17)�

causes 70.47 34.36 41.91 (13.35) 70.47 34.36 41.91 (13.35)�

decreases 33.72 33.59 29.47 (9.85) 33.72 33.59 29.47 (9.85)�

increases 50.03 15.07 17.94 (15.20) 50.03 15.07 17.94 (15.20)�

treats 30.17 70.10 39.97 (12.60) 30.17 70.10 39.97 (12.60)
isEquivalentTo 72.68 90.52 79.76 (7.69) 72.68 90.52 79.76 (7.69)
Macro average 48.11 44.23 45.67 (4.37) 51.78 48.50 49.56 (4.51)

Table S2: Detailed performances of the task of relation extraction in terms of Precision (P), Recall (R), F1-score (F1) and F1-score standard deviation in brackets
(SDF1). Note that for leaves, performances are unchanged when considering the hierarchy.

6

Gene symbol NCBI Gene Number of occurrences Gene symbol NCBI Gene Number of occurrences
ID in PGxCorpus ID in PGxCorpus

ABCB1 5243 35 EGFR 1956 65
ABCG2 9429 7 ERBB2 2064 24
ABL1 25 28 F5 2153 0
ACE 1636 5 G6PD 2539 0
ADH1A 124 4 GSTP1 2950 6
ADH1B 125 17 GSTT1 2952 4
ADH1C 126 4 HLA-B 3106 18
ADRB1 153 2 HMGCR 3156 3
ADRB2 154 24 KCNH2 3757 0
AHR 196 1 KCNJ11 3767 1
ALDH1A1 216 2 KIT 3815 8
ALK 238 5 KRAS 3845 16
ALOX5 240 2 MT-RNR1 4549 0
BCR 613 1 MTHFR 4524 21
BRAF 673 13 NAT2 10 44
BRCA1 672 9 NQO1 1728 2
CACNA1S 779 0 NR1I2 8856 4
CFTR 1080 4 NRAS 4893 1
COMT 1312 24 P2RY1 5028 0
CYP1A2 1544 2 P2RY12 64805 1
CYP2A6 1548 8 PTGIS 5740 0
CYP2B6 1555 9 PTGS2 5743 4
CYP2C19 1557 29 RYR1 6261 0
CYP2C8 1558 4 SLC19A1 6573 1
CYP2C9 1559 29 SLC22A1 6580 0
CYP2D6 1565 29 SLC01B1 10599 6
CYP2E1 1571 4 SULT1A1 6817 2
CYP2J2 1573 0 TPMT 7172 25
CYP3A4 1576 33 TYMS 7298 11
CYP3A5 1577 42 UGT1A1 54658 9
CYP4F2 8529 6 VDR 7421 3
DPYD 1806 11 VKORC1 77001 0
DRD2 1813 6 SNC5A n/a 0

Table S3: Very important pharmacogenes (VIP genes) as listed by PharmGKB on Nov. 12, 2019 and
their number of occurrences in PGxCorpus. 54/66 (81.8%) genes are annotated in PGxCorpus.

7

References

[1] Christopher M. Bishop. Pattern recognition and machine learning, 5th Edition. Information science
and statistics. Springer, 2007.

[2] Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu, and Pavel
Kuksa. Natural language processing (almost) from scratch. Journal of Machine Learning Research,
12(Aug):2493–2537, 2011.

[3] Yoon Kim. Convolutional neural networks for sentence classification. In Proceedings of the 2014
Conference on Empirical Methods in Natural Language Processing, EMNLP 2014, October 25-29,
2014, Doha, Qatar, A meeting of SIGDAT, a Special Interest Group of the ACL, pages 1746–1751,
2014.

[4] Rémi Lebret and Ronan Collobert. Word embeddings through hellinger PCA. In Proceedings of the
14th Conference of the European Chapter of the Association for Computational Linguistics, EACL
2014, April 26-30, 2014, Gothenburg, Sweden, pages 482–490, 2014.

[5] Chanqin Quan, Lei Hua, Xiao Sun, and Wenjun Bai. Multichannel convolutional neural network
for biological relation extraction. BioMed research international, 2016, 2016.

[6] Lance A. Ramshaw and Mitchell P. Marcus. Text chunking using transformation-based learning.
CoRR, cmp-lg/9505040, 1995.

[7] Nitish Srivastava, Geoffrey E. Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. Journal of Machine Learning
Research, 15(1):1929–1958, 2014.

8

