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Gut stem cell aging is driven by mTORCL1 via a p38 MAPK-p53 pathway
Dan He et al.
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Supplementary Figure 1. Old mice showed defects in villus/crypt structure and nutrient absorbing activities.

(a). Comparison of villus structure and TA cell proliferation of 2-, 8-, 12-, and 16-month old mice. The proximal jejunum samples were
sectioned and stained with H/E or Ki67 antibodies. Right panels: quantitation data (mean = SEM). N=5 mice per group. **p<0.01
(determined using Student's t-test). (b). Comparison of the distal jejunum of 3.5 and 17.5-month old mice. (c). Comparison of the proximal
jejunum of 3.5 and 24-month old mice. (d). Sixteen-month-old mice showed a decrease in nutrient absorbing activities for glucose and
amino acids (arginine and aspartic acid). Data are expressed as mean + SEM. N=5 mice per group. *p<0.05, **p<0.01 (determined using
Student’s t-test).
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Supplementary Figure 2. mTOR activation increases sensitivity to IR in villi/crypts of geriatric mice.

(a). Seventeen and half-month-old mice showed an increase in apoptotic cells 2 days after IR, which was rescued by RAP. Right
panels: quantification data (mean £ SEM). N=5 mice per group. **p<0.01 (determined using Student's t-test). (b). The intestine
samples of 17.5-month-old mice showed decreases in PCNA and cyclin E and an increase in p53 in crypt samples at day 2 after IR,
which was rescued by RAP. Right panel: quantitation data (mean = SEM). N=5 mice per group. ** p<0.01 (determined using
Student's t-test). (c). Seventeen and half-month-old mice showed increased sensitivity to IR-induced decreases in the numbers of
crypts and proliferating cells compared to young mice at day 3 post IR, which were partially rescued by 1.5 months of RAP treatment
(3 mg/kg body weight) starting at 16 months of age. Bottom panels: quantitation data (mean = SEM). N=5 mice per group. **p<0.01
(determined using Student's t-test). (d). Lower magnification images of intestinal sections of 3.5 and 17.5-month-old mice (left panel)
and villus regeneration in these mice at day 6 post IR (right panel). (e-h). No difference was observed between 2- and 16-month-old
mice in the percentage of apoptotic cells (e) or SA-B-Gal senescent cells (f) in the villi, differentiation of villus cells (g), or the villus-to-
crypt ratios (h). N=5. ns, not significant. (i). mMTORCL1 activation was inhibited by RAP treatment. The 16-month-old mice were
sacrificed after 1.5 months of RAP treatment and the proximal jejunum sections were stained for p-S6.
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Supplementary Figure 3. Ablation of Tscl in enterocytes induces villus premature aging.

(a). Immunostaining of p-S6 showed that Villin-Cre; Tsc1” mouse intestine sections displayed enhanced mTORC1 activation. (b). Two-

104

month-old Villin-Cre; Tsc1" mice showed a villus/crypt overgrowth phenotype, 5-month-old mutant mice showed villi similar to age-
matched wild type mice, and 7-month-old mutant mice showed aging-like change in villus structure. Right panels: quantitation data

(mean + SEM). N=5 mice per group. *p<0.05, **p<0.01 (determined using Student's t-test). (c). Villin-Cre; Tsc1” mice showed defects
in nutrient absorption activities at 7 months of age. Data are expressed as mean + SEM. N=5 mice per group. **p<0.01 (determined
using Student's t-test). (d). Villin-Cre; Tsc1”f mice showed increased sensitivity to IR and villus regeneration defects. The 2-month-old

mice were radiated at 5.0 Gy and were sacrificed 2 or 6 days later. Intestinal sections were stained with H/E, TUNEL, or anti-Ki67

antibodies.
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Supplementary Figure 4. Labelling of villi in Lgr5-CreERT; tdTomato mice and mTORC1 activation in Lgr5-CreERT;
Tsc1™ mice.

(a). Tracing with Lgr5-CreERT; tdTomato mice revealed that almost all villi are labeled. One-month-old mice were
administrated 3 daily doses of TAM and the mice were euthanized at 2 months of age. Right panel: quantitation data. N=3.
(b). Immunostaining of p-S6 revealed that Lgr5-Cre/ERT; Tsc1f mouse intestine sections showed enhanced mTORC1
activation 1 or 7 months after TAM treatment in almost all villi.
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Supplementary Figure 5. Ablation of Tscl in ISCs induces villus premature aging.

(a). HI/E staining revealed that Lgr5-Cre/ERT; Tsc1”f mice showed aging of distal jejunum at 8 months of age and overgrowth of colon
crypts at 2 months of age and atrophy at 8 months of age. (b). Lgr5-Cre/ERT; Tsc1 mice showed an increase in apoptotic cells on
intestinal sections 2 days after IR, which was rescued by RAP. Bottom panels: quantification data (mean == SEM). N=5 mice per group.
**p<0.01 (determined using Student's t-test). (c). The intestine samples of Lgr5-Cre/ERT; Tsc1 mice showed decreases in PCNA and
cyclin E and an increase in p53 in crypt samples at day 2 after IR, which was rescued by RAP. (d). Lgr5-Cre/ERT; Tsc1” mice showed
increased sensitivity to IR-induced decreases in the numbers of crypts and proliferating cells at day 3 post IR. Right panels: quantification
data (mean + SEM). N=3 mice per group. *p<0.05, *p<0.01 (determined using Student’s t-test). (e). RAP treatment for 1 month recued the
overgrowth of crypts in young Lgr5-CreERT; Tsc1” mice. (f-h). The villi of 8-month-old Lgr5-Cre/ERT; Tsc1? mice (TAM injected) showed
no change in the number of apoptotic cells (f), B-SA-Gal positive senescent cells (g), or differentiation of villus cells (h). N=5. ns, not
significant.
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Supplementary Figure 6. Ablation of Tscl in in 6.5-month-old mice induces villus premature aging.

(a). Diagram showing the time for TAM administration (for b and c). (b,c). Ablation of Tscl in 6.5-month-old mice induced defects in
villus and crypt structure (b) and decreased nutrient absorption activities at 8 months of age (c). Right panels for (b): quantification
data (mean £ SEM). N=5 mice per group. *p<0.05, **p<0.01 (determined using Student’s t-test). (d). H/E staining revealed that
administration of TAM to 6.5-month-old Lgr5-Cre/ERT; Tsc1 mice did not result in overgrowth of the crypt at 7.5 months of age.
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Supplementary Figure 7. Tsc1 deficiency leads to increased expression of MKK6 and activation of p38 MAPKSs.

(a). Western blot results revealed that Tsc1” MEFs showed an increase in expression of MKK6 and activation of p38 MAPKs, which were
suppressed by RAP. Primary MEFs were derived from Tsc1% mice, infected with Cre-expressing retroviruses, selected for 3 days with
puromycin, and then used for western blot analysis. (b). Quantitative PCR results showed that Tsc1 deficiency did not significantly alter the
mRNA levels of Mkk6 in MEFs. The mRNA level of Mkk6 of wild type cells was set at 1.0. N=6. (c). Tsc1 deficiency increased the levels of
radio-labelled MKK®6 protein in MEFs. Right panel: quantitation data (mean & SD). N=5 repetitive experiments. **p<0.01 (determined using
Student's t-test). (d). Western blot results showed that knockdown of MKK6 led to a decrease in p38MAPK activation in Tscl deficient MEFs.
Right panel: quantitation data (mean + SD). N=3 repetitive experiments. ** p<0.01, determined using Student’s t-test. (e). Sequences of the
mouse Mkk6 5 untranslated region. The putative TOP sequences were highlighted. (f). Inmunostaining revealed that activation of p38
MAPKs was further enhanced in crypt cells of 8-month-old Lgr5-Cre/ERT; Tsc1” mice (TAM injected). The proximal jejunum sections were
stained for p-p38 MAPKSs.
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Supplementary Figure 8. p38 MAPKs mediate the pro-aging effects of mTORC1 in Villin-Cre; Tsc1” mice.
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(a). Western blot analysis revealed that p38a was largely deleted in small intestine samples of Villin-Cre; Mapk14" mice. (b). Mapk14
deficiency rescued villus premature aging and led to overgrowth of villus/crypt in Villin-Cre; Tsc1” mice at 8 months of age. The decrease
in the number of villi was due to fusion of the villi. Bottom panels: quantitation data (mean + SEM). N=5 mice per group. **p<0.01
(determined using Student's t-test).
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Supplementary Figure 9. p38 MAPKs mediate the pro-aging effects of mMTORC1 in Lgr5-CreER; Tsc1 mice.

(a). Western blot analysis revealed that p38a was deleted in crypt samples of Lgr5-CreERT; Mapk14 mice. (b). Mapk14 haplo-deficiency
rescued the increased sensitivity to IR-induced decreases in the numbers of crypts and proliferating cells at day 2 post IR. Right panels:
quantitation data (mean & SEM). N=5 mice per group. **p<0.01 (determined using Student's t-test). (c). Mapk14 haplo-deficiency rescued
the increase in apoptotic cells 2 days after IR in Lgr5-CreERT; Tsc1” mice. Bottom panels: quantitation data (mean £ SEM). N=3 mice per
group. **p<0.01(determined using Student's t-test). (d). Mapk14 haplo-deficiency rescued the decreases in PCNA and cyclin E and increase
in p53 in crypt samples of Lgr5-Cre/ERT; Tsc1¥ mice. (e). Mapk14 haplodeficiency partially rescued colon crypt atrophy of Lgr5-Cre/ERT;
Tsc1 mice at 8 months of age. (f). SB203580 (SB) inhibited p38 MAPK activation, with p-Creb as an indicator. The mice were treated with
SB203580 daily.
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Supplementary Figure 10. The different effects of p53 and p16 on mTORC1-driven villus aging.

(a). Western blot results showed that Tsc1l deletion induced an increase in the protein levels of p53 and p16 in crypt samples, which
were suppressed by RAP. (b). Western blot results revealed that 17.5-month-old mice showed an increase in the levels of p53 and p16
in the crypts, which were suppressed by treating the mice with SB203580. (c). Mapk14 haplo-deficiency suppressed the elevation of
p53 and p16 in crypt samples of Lgr5-CreERT; Tsc1? mice. (d). H/E staining of intestine sections of 2-month-old Villin-Cre; Tsc1,
Trp53+, and Villin-Cre; Tsc1; Trp537 mice. Right panels: quantitation data (mean + SEM). N=5. **p<0.01 (determined using Student's
t-test). (e). H/E staining of intestine sections of 2- and 8-month-old Villin-Cre; Tsc1", Cdkn2a 7~ mice, and Villin-Cre; Tsc1"; Cdkn2a *
mice. Bottom panels: quantitation data (mean = SEM). N=4 mice per group. *p<0.05, **p<0.01 (determined using Student’s t-test).




Supplementary Figure 11. Uncropped western blot images.
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Supplementary Table 1. Increased expression and activation of molecules involved in proliferation
in intestine samples. Proteins with KO/WT ratios greater than 1.5 were shown.




