Supplementary Materials

Materials and Methods

pcDNA3.1-mER α 66 and pcDNA3.1-rER α 66 vectors were constructed in our previous study [5]. Firefly luciferase reporter vectors (pERE-Luc and pControl-Luc) were purchased from Thermo Fisher Scientific. A *Renilla* luciferase vector (pRL-TK) was obtained from Promega.

Dual luciferase reporter assay

HEK293 cells were seeded on 48-well culture plates (Techno Plastic Products). For assays to evaluate the transactivation abilities of respective constructs, cells were transfected with 125 ng/well reporter vectors (pERE-Luc or pControl-Luc), 100 ng/well respective constructs, and 12.5 ng/well pRL-TK vector. For competitive assays to evaluate the suppressive effects of ER β_{ins} variants, cells were transfected with 125 ng/well pERE-Luc vector, 25 ng/well ER α 66, ER β 1, or corresponding empty constructs, 50 ng/well ER β_{ins} or pCMV-Tag 2B empty vectors, and 12.5 ng/well of pRL-TK vector. Twenty-four hours after transfection, the cells were treated with 10 nM E2 or 0.1% EtOH in DMEM with 2.5% charcoal-stripped FBS and 1% penicillin/streptomycin solution for 24 h. The cells were then washed with PBS and lysed in 80 µL of 1 × Passive Lysis Buffer (Promega). Firefly and *Renilla* luciferase activities were measured using Dual Luciferase Reporter Systems (Promega) and a Lumat 9507 Luminometer (Berthold Technologies, Wildbad, Germany). Measurements were performed in duplicate. Relative luciferase activities were calculated as ratios of firefly/*Renilla* luciferase activities and normalized against respective mean values of empty vector-transfected and vehicle-treated samples.

Statistical analysis

Data were expressed as the mean ± SEM of six separate experiments. Statistical differences were evaluated by Student's *t*-test or two-way AOVA followed by Tukey's test and Student's *t*-test. *P*-values below 0.05 were regarded as statistically significant.

Figure 1. Sequences and structures of ER β constructs. Nucleotide and amino acid sequences and schematic structures of ER β constructs are shown. (a) An extra nucleotide insertion in the 5'-region of

the rat ER β sequence. Pairwise alignment of U57439 and AB190769 sequences and the corresponding electropherogram of the cloned rat ER β sequence are shown. (b) Schematic structure of FLAG-tagged ER β proteins encoded in expression constructs. (c) Detailed amino acid sequences of the N-terminal regions of human, mouse, and rat ER β proteins, and the inserted peptides of mouse and rat ER β ins proteins. Panel c was constructed with reference to Leygue et al. [28].

Figure 2. Transactivation activities of ER β constructs. Functional expressions of human, mouse, and rat ER β constructs in transfected cells were assessed by ERE luciferase reporter assays. (a) Transactivation of an ERE-driven promoter by human, mouse, and rat ER β constructs. (b) Transactivation of an ERE-less minimum promoter by human, mouse, and rat ER β constructs. (c-f) Repression of wild-type ER α (ER α 66; c and e)- and ER β (ER β 1; d and f)-mediated transactivation by mouse (c and d) and rat (e and f) ER β ins constructs. Transfected cells were treated with 0.1% EtOH or 10 nM E2. Relative luciferase activities were calculated as ratios of firefly/*Renilla* luciferase activities and normalized against the respective mean values of the empty vector(s)-transfected and EtOH-treated samples. Six separate assays were performed (n = 6). Student's *t*-test: *, *P* < 0.05 between EtOH-and E2-treated groups; Tukey's test: different letter labeling (a-b and x-z), *P* < 0.05 among EtOH- and E2-treated groups, respectively.

Figure 3. Alternative promoter usage and alternative splicing profiles of human ERβ gene in testis. The expression and splicing profiles of human ERβ isoforms in testis was investigated using RT-PCR. (–), Total RNA without reverse transcriptase; (+), reverse-transcribed cDNA.

Figure 4. RT-PCR analysis of human ERβ 0K isoforms using primer pairs reported in previous studies. The expression and splicing profiles of human ERβ 0K isoforms in the testis was investigated using RT-PCR with primer pairs reported by Hirata et al. [14] and Smith et al. [11,12]. The band patterns observed using the primer pairs from previous studies are similar to those using our primer pairs (Suppl. Fig. 3). (–), Total RNA without reverse transcriptase; (+), reverse-transcribed cDNA.

(a) human exon 0K

GGCGGCGAGT	CTCCCGGATG	CTCCTCAGCT	CTGGGGACGC	GGTGCAGAAG
TGTGAGGGCG	CCCGGCTTCC	AGGCAGTAAT	GGGCGGGTCC	CTGCGCGGGA
GCGTGGCGGG	CGCTGGACTC	TACAGCAGAT	GTGGAACTGG	AGAGCTTGGC
GCGCCTTCCG	ACTTTGTCAC	ACACCTGCGC	CGCCAGACTG	GGGTCGGGCC
CCTCCGCGTT	CTGCTCTGGA	GTGCCTGGGT	CTGGGCCCAG	CACCGCGCTT
TTAGAATCTC	CTCAGCTGAA	TCTGACGCTC	AGCAGTGGGT	GAAGCGCAGC
CCCCTGTTTC	AGGCCCTGCC	GAGCTGGAAG	GAGTGTCAGA	GCTGGAGCGC
GCGTGGCCCC	CTCTGTGTTG	GGGTCACCCC	GGGGTTGCCA	GGGCTCAGGG
AGGGTCGTAG	TCTGGATTTT	GTCACCCGCA	CGTCCCCACC	CCCCAGCAGG
TCTGGGGTTG	GAGAATCCAC	GCGGGCTTCA	TAAGCTAGAT	GCCAGTTAAC
TGTCGAGAGG	GGACGCTCCC	TCCTCGTAGG	CGTCCACACT	GGAGAAGGAA
TAAGATGGGC	GATTGCCTGG	GAAGCCTGAC	AGGGCGGCGG	CAGCTGGGAT
GCTGGAGAGG	ACTGGCCCCT	TGAGTTACTG	AGTCCGATGA	ATGTGCTTGC
TCTGCTGGAG	GAACCGCGCT	CAGGTTACAG	TCATCCCAAT	ATGGTTCTGA
AG				

(b) human exon 0X1

TTCTCAAAGT TTGCACAAGC GGATATTTTA GAGGTACAGT GTAATATAAG AGCTTCTGAA AATGTCCACT TAAGTTGTTT TATACCTGAG CAAGTGAAAT TAAGAAGGGA ATTGAAGCAA ATATTCCTG

(c) human exon 0X2

ACATCCAAGT GGAGATATGG CATTTAAATT CATGAGATTG GATGAGATCC CACCAAAGGA ACAGGTTTAG GTGGAGACAA CCAAATACCG ATGCCTAGGA CACTGCAGTG TTTAGAATTC AAGGAGATGA GAAGGAAACA GGAGGAAGA TTGAAAAGAA GAGTCCAGTG TGTTATGAGG AAAACCCCAA GAGCATGCTG

ссттасаада саб \underline{GT} даааа атдтдтстд тдааадааад адтааттаас тдттааатдт тасадастда тсааатаааа тдаадастда даатддсстд тттдтаад

(d) human exon 0X3

ATCACTTTTA AAAGGAAAAC ATAGGAGCCT GAAACAGAAG TGGGAAACAA ATATTTACTC AAACTAAGAG ACTAAACTCA GTAGCCAGCA ACAAGAGATC AAG

(e) human exon 0X4

ATGGAGTCCT CCTCTGTCAC CCAGGCTGGA ACGCAGTGGT ATGATCTCGG CTAACTGCAA CCTCAGCCTG CCAGGTTCAA GCAATTCTTC TGCCTCAGCC

TCCCGAGTAG CTGGGATTAC A TGCCTGC TGCCATGATG ATTAATTTA TGTGTTAACT TAGCTGGGCT GTGTTGCCCA GATAGTTGGT TAAACATTAT TCTGGATGTT TCTGTGAAGA TGTTTTTGGA TGAGGTTAAC ATTTAGATCG GTGGACTTTG AGTAAAGCAG ATTACCTTTC ATAATTTGGG TGGGGCTCAT CCAATCAGTT GAACATCTGA AGAGACCAAA AGACTGACCT TCTGCAAGCA AAGAAAAATT CTGCCAACAG ACAGCCATTG GACTTGAACT TCAACATTGA CTCTTCAGTC TATTGGCCCA CCCTGCAAAT TTTGGACTTG CCA

(f) human exon 0Y1

GGACTCTAGA AATGCCAGAT AATTCCACTT TTGTGGTGAC AGAAGAATCT GGCAATAATA GCTACCGTTT ACTGAACAAC AACTGCACAT TAAGCACTGT GTCATATGCT TTAG

(g) human exon 0X5

AGGGAGACAT CAACCTGTTG TGGAAAAGAA TGATCACTTA AAGTCTTTAG AAATTCTGAA CCAACTCTCT AGCAGGTGAT CCTTGTTAGA ATTTGAGCCC TTAACGCTAT CCAGGACTGG AGGTTGAAGG GACGATAGAG GGAGCAGGAG GAGAATGCAC ATGGATTAAG GAGCGAGAAC ACAG

(h) human exon 0X6

AAATCCTGGG CTCTCTTCTC CCAGCCACAA GGTTAGGTTG AAAAACAGAG CAGATGGAGG TAGTTTGTAG CCTACAGGTG CCCTGAATGA AGCTTCCACA GTGCTAAAGT GGAAGAACGA GGGACTCCAA GGGAAGGATT CAAGGCTGGG CCCATGCACC TGTGTAATTC AGAAGAGACC CCAGAGGAGA TCAGCGCCCT CTAATTAGCC CTG

(i) human exon 0X7

TATCTGGGCT CTACAGGACA GACATGCCTC CATTTATGCA ACAAATAAGA ACAGCATCTC ATGACAGTGG AGAAAACATG GGATGTGCAG GTAG

(j) human exon 0X8

GGTTTTGTTT TGCCTCTTGG TAGTTTCTTT CCTACGGAAA ATTCTCCCTC TGATCTTTCC AAGTCAAAGG CTTCAGCAAA CATTTGTTGA ACGCGTGGAT TGTGCTAGGT GGGTGTTATG GACCATGGAG AATGCTAGAG ATGTAAGACA TGCGCTGTCC AATCGCAGCG CAGGTTGTGT TGACAG

(k) human exons 0N and 0Y2

(1) 11011011 0110110	010 0110 012			
GGCTCGGTCA	CGTGGGCTCA	GGCACTACTC	CCCTCTACCC	TCCTCTCGGT
CTTTAAAAGG	AAGAAGGGGC	TTATCGTTAA	GTCGCTTGTG	ATCTTTTCAG
TTTCTCCAGC	TGCTGGCTTT	TTGGACACCC	ACTCCCCCGC	CAGGAGGCAG
TTGCAAGCGC	GGAGGCTGCG	AGAAATAACT	GCCTCTTGAA	ACTTGCAGGG
CGAAGAGCAG	GCGGCGAGCG	CTGGGCCGGG	GAGGGACCAC	CCGAGCTGCG
ACGGGCTCTG	GGGCTGCGGG	GCAGGGCTGG	CGCCCGGAGC	CTGAGCTGCA
GGAGGTGCGC	TCGCTTTCCT	CAAC <u>AG</u> GTGG	CGGCGGGGCG	CGCGCCGGGA
GACCCCCCT	AATGCGGGAA	AAGCACGTGT	CCGCATTTTA	GAGAAGGCAA
GGCCGGTGTG	TTTATCTGCA	AG		
(l) human exons	E1 and 1			
ATTTTCATGT	ATATTTTTCA	GGATGTATTT	GTAATCTCAT	ACAAACGTAT
GTATTTTTTT	AATGAAAATA	TTTAAATTTT	CATAGTTAAC	AGCTGTAGCT
CTAACTTGGC	AATATCTTCT	GTGTTTCTTT	AC <u>AG</u> CCATTA	TACTTGCCCA
CGAATCTTTG	AGAACATTAT	AATGACCTTT	GTGCCTCTTC	TTGCAAGGTG
TTTTCTCAGC	TGTTATCTCA	AGACATGGAT	АТАААААСТ	CACCATCTAG
CCTTAATTCT	CCTTCCTCCT	ACAACTGCAG	TCAATCCATC	TTACCCCTGG
AGCACGGCTC	CATATACATA	CCTTCCTCCT	ATGTAGACAG	CCACCATGAA
TATCCAGCCA	TGACATTCTA	TAGCCCTGCT	GTGATGAATT	ACAGCATTCC
CAGCAATGTC	ACTAACTTGG	AAGGTGGGCC	TGGTCGGCAG	ACCACAAGCC
CAAATGTGTT	GTGGCCAACA	CCTGGGCACC	TTTCTCCTTT	AGTGGTCCAT
CGCCAGTTAT	CACATCTGTA	TGCGGAACCT	CAAAAGAGTC	CCTGGTGTGA
AGCAAGATCG	CTAGAACACA	CCTTACCTGT	AAACAG	
(m) rat exon 0N/	P1			
ACACTCTTTT	CTAGGTCTTT	AAAAGACGCA	CTAACATCCG	TTAGTCGTGG
GTAATCTTTG	CAGCTTCTCC	AGCTGCTGGC	CTTTTTGAAA	CGCACTCTCA
GGTCCCTGCC	TTCAGCGAGG	CTTCTAGAAT	CAGCCACCTC	TTGAAACTTC
TTGGTGGGGA	GCTGGCCCAG	GGGGAGCGGC	TGGTGCTGCC	ACTGGCATCC
CTAGGCACCC	AGGTCTGCAA	TAAAGTCTGG	CAGCCACTGC	ATGGCTGAGC
GACAACCAGT	GGCTGGGAGT	CCGGCTCTGT	GGCTGAGGAA	AGCACCTGTC
TGCATTTAGA	GAATGCAAAA	TAGAGAATGT	TTACCTGCCA	G
(n) rat exons E1/	P2 and 1			
TGATTATATG	GAAGCCCCAT	TGCCCCTAGC	'I'AAAA'I'GAA'I'	ATGTCTTAGT
CACTCTGGCA	GCTTGAACTA	ACCAGACATC	GTTTGCTTTC	CTCTGC <u>AG</u> TC
ATTACATCTG	AGTCCCATGA	GTCTCTGAGA	ACATAATGTC	CATCTGTACC
TCTTCTCACA	AGGAGTTTTC	TCAGCTGCGA	CCCTCTGAAG	ACATGGAGAT
САААААСТСА	CCGTCGAGCC	TTAGTTCCCC	TGCTTCCTAT	AACTGTAGCC
AGTCCATCCT	ACCCCTGGAG	CACGGCCCCA	TCTACATCCC	TTCCTCCTAC
GTAGACAACC	GCCATGAGTA	TTCAGCTATG	ACATTCTACA	GTCCTGCTGT
GATGAACTAC	AGTGTTCCCG	GCAGCACCAG	TAACCTGGAC	GGTGGGCCTG
TCCGACAGAG	CACAAGCCCA	AATGTGCTAT	GGCCAACTTC	TGGGCACCTG
TCTCCTTTAG	CGACCCATTG	CCAATCATCG	CTCCTCTATG	CAGAACCTCA
AAAGAGTCCT	TGGTGTGAAG	CAAGATCACT	AGAGCACACC	TTACCTGTAA
ACAG				

Figure 5. Nucleotide sequences of 5'-UTR exons of human and rat ERβ genes. Nucleotide sequences of untranslated leader exons (0K, 0N, and E1) and internal exons (0X1-8 and 0Y1-2) in the 5'-regions of human and rat ERβ genes are shown. Alternative splicing donor and acceptor sites are indicated by open and closed arrowheads, respectively. The GT/AG boundaries of the alternative splice sites are underlined. The shaded region in human exon 0X7 refers to Moore et al. [19], Lee et al. [10], and sequences AB006589 and KC777387, and the shaded regions in rat exons 0N/P1 and E1/P2 refer to O'Brien et al. [15]. Of note, the human exon 0X5 sequence (KC777385) registered by Lee et al. [10] is in the antisense direction.

Organ	Experiments	Targets	Clones
Testis	5' DACE	5' LITP varianta	0K-1, 0K-0X1-1, 0K-0X2 _L -1, 0K-0X2 _S -1, 0K-0X1-0X2 _L -1, 0K-0X1-
Tesus	J-KACE	J-OTK variants	$0X2_{s}-1,$
			0K-0X2 _S -0X4 _L -1, 0K-0X6-0X7 _S -1, 0K-0X2 _S -0X4 _S -0Y1-0X5-1,
			0K-0X2 ₈ -0Y1-0X5-0X6-0X7 ₈ -0X8-1, 0N-1, E1-1
	RT-PCR	ORF	1-2-3-4
		0K isofrms	0K-1, 0K-0X1-1, 0K-0X2 _L -1, 0K-0X2 _S -1, 0K-0X4 _S -1, 0K-0Y2-1,
			0K-0X1-0X2 _L -1, 0K-0X1-0X2 _S -1, 0K-0X2 _L -0X4 _L -1, 0K-0X2 _S -0X4 _L -1,
			0K-0X2 _S -0X5-1, 0K-0X2 _S -0X6-1, 0K-0X2 _S -0X7 _S -1, 0K-0X6-0X7 _S -1,
			0K-0X2 _L -0X3-0X4 _S -1, 0K-0X2 _S -0Y1-0X5-1, 0K-0X2 _S -0X5-0X6-1,
			0K-0X2 _S -0X4 _S -0Y1-0X5-1,0K-0X2 _S -0Y1-0X5-0X6-0X7 _S -0X8-1
		0N isoforms	0N-1
		E1 isoforms	E1-1-2
Ovary	5'-RACE	5'-UTR variants	0N/P1-1, E1/P2-1
Prostate			0N/P1-1
Ovary/Prostate	RT-PCR	ORF	7-8
Ovary/Prostate		0N/P1 isoform	0N/P1-1
Ovary		E1/P2 isoforms	E1/P2-1-2

Table 1. Clones identified in 5'-RACE and RT-PCR experiments
--

Purpose	Species	Gene	Exon	Direction	Oligonucleotide sequence (5' to 3')	Comment/Reference
5'-RACE		Universal		Forward	5'-AAGCAGTGGTATCAACGCAGAGTACXXXXX-3'	5'-RACE adapter primer
				Forward	5'-CTAATACGACTCACTATAGGGCAAGCAGTGGTATCAACGCAGAGT-3'	5'-RACE universal primer mix
				Forward	5'-CTAATACGACTCACTATAGGGC-3'	5'-RACE universal primer mix
				Forward	5'-AAGCAGTGGTATCAACGCAGAGT-3'	5'-RACE nested universal primer
	Human	ESR2	1	Reverse	5'-GTTTACAGGTAAGGT-3'	5'-RACE gene-specific RT primer
			1	Reverse	5'-AACACATTTGGGCTTGTGGT-3'	5'-RACE gene-specific primer
			1	Reverse	5'-TCCAGGGGTAAGATGGATTG-3'	5'-RACE gene-specific primer
	Rat	Esr2	2	Reverse	5'-TAATGATACCCAGAT-3'	5'-RACE gene-specific RT primer
			1	Reverse	5'-CAATGGGTCGCTAAAGGAGA-3'	5'-RACE gene-specific primer
			1	Reverse	5'-TAAGGCTCGACGGTGAGTTT-3'	5'-RACE gene-specific primer
RT-PCR	Human	ESR2	1	Forward	5'-CACCTGGGCACCTTTCTCCTTTAG-3'	NM_001437
			4	Reverse	5'-GCTCGTCGGCACTTCTCTGTCTC-3'	NM_001437
			0K	Forward	5'-TGGCCCCTTGAGTTACTGAG-3'	BX457807
			1	Reverse	5'-TCCAGGGGTAAGATGGATTG-3'	NM_001437
			0K	Forward	5'-CGATTGCCTGGGAAGCC-3'	Ref. [11]
			1	Reverse	5'-AGGAAGGTATGTATATGGAGCCG-3'	Ref. [11]
			0K	Forward	5'-AGTTACTGAGTCCGATGAATGTGCTTG-3'	Ref. [12]
			1	Reverse	5'-CTCAAAGATTCGTGGGCAAGTATAATG-3'	Ref. [12]
			0K	Forward	5'-GGAGGAACCGCGCTCAGGTTA-3'	Ref. [14]
			1	Reverse	5'-GGCTATAGAATGTCATGGCTGG-3'	Ref. [14]
			0N	Forward	5'-AGGCTGCGAGAAATAACTGC-3'	NM_001437
			1	Reverse	5'-TCCAGGGGTAAGATGGATTG-3'	NM_001437
			E1	Forward	5'-TAACAGCTGTAGCTCTAACTTG-3'	Ref. [12]
			2	Reverse	5'-CATCCCTCTTTGAACCTGGA-3'	NM_001437
		ESR1	2	Forward	5'-TCAGATAATCGACGCCAGGGTG-3'	NM_000125
			3	Reverse	5'-CACTTCGTAGCATTTGCGGAGCC-3'	NM_000125
		GAPDH		Forward	5'-TTCGACAGTCAGCCGCATCTTCTTTG-3'	NM_002046
				Reverse	5'-CGCCAGCATCGCCCCACTTG-3'	NM_002046
	Rat	Esr2	7	Forward	5'-GCAAACCAGGAGGCAGAAAGTAGC-3'	AB190769
			8	Reverse	5'-AAGTGGGCAAGGAGACAGAAAGTAAGTA-3'	AB190769
			0H	Forward	5'-TTATCCTTCCTGACGGACAG-3'	Ref. [13]
			1	Reverse	5'-TAAGGCTCGACGGTGAGTTT-3'	AB190769
			0N	Forward	5'-AGGAAAGCACCTGTCTGCAT-3'	Ref. [15]
			1	Reverse	5'-CAATGGGTCGCTAAAGGAGA-3'	AB190769
			E1	Forward	5'-TTATATGGAAGCCCCATTGC-3'	Ref. [15]
			2	Reverse	5'-CGCCGTAATGATACCCAGAT-3'	AB190769

Table 2. Oligonucleotide primers used for 5'-RACE and RT-PCR.

Esrl	6	Forward	5'-ACCTGCAGGGAGAAGAGTTTGTGT-3'	AB477039
	8	Reverse	5'-CTTGTGGGGAGCCTGGGAGTTC-3'	AB477039
Gapdh		Forward	5'-TGTGCAGTGCCAGCCTCGTCTCATA-3'	NM 017008
-		Reverse	5'-ACCCTTTTGGCCCCACCCTTCAG-3'	NM_017008