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Abstract

Multiple alignments of mammalian genomes have been the basis of many comparative
genomic studies aiming at annotating genes, detecting regions under evolutionary
constraint, and studying genome evolution. A key factor that affects the power of
comparative analyses is the number of species included in a genome alignment. To utilize
the increased number of sequenced genomes and to provide an accessible resource for
genomic studies, we generated a mammalian genome alignment comprising 120 species.
We used this alignment and the CESAR method to provide protein-coding gene
annotations for 119 non-human mammals. Furthermore, we illustrate the utility of this
alignment by two exemplary analyses. First, we quantified how variable ultraconserved
elements (UCEs) are among placental mammals. Leveraging the high taxonomic
coverage in our alignment, we estimate that the majority of UCEs contain between 3.6%
and 13.5% variable alignment columns. Furthermore, we show that the center region of
UCEs are generally most constrained. Second, we identified enhancer sequences that
are only conserved in placental mammals. We found that these enhancers are
significantly associated with placenta-related genes, suggesting that some of these
enhancers may be involved in the evolution of placental mammal-specific aspects of the
placenta. The 120-mammal alignment and all other data are available for download and
visualization in the UCSC genome browser at https://bds.mpi-
cbg.de/hillerlab/120MammalAlignment/Human120way/.




Introduction

Comparative genomics has substantially contributed to detecting and classifying
functional regions in genomes and understanding genome evolution [1, 2]. A foundation
for most comparative genomics analyses are alignments between entire genomes.
Several computational methods rely on genome alignments for annotating coding and
non-coding genes, and genome alignments have been used to detect novel coding exons,
revise exon-intron boundaries and correct the positions of annotated start or stop codons
[3-9]. Many gene or exon finders utilize genome alignments to increase the reliability of
their predictions [10-14]. In addition, genome alignments provide an effective way to
project genes from a reference species annotation to aligned (query) species [15-17].
Genome alignments have also been used to identify regions that evolve under purifying
selection and thus likely have a biological function [18, 19]. Around 3-15% of the human
genome is estimated to be evolutionarily constrained [20], and most of the constraint
detected in genome alignments is located in conserved non-exonic elements that often
overlap cis-regulatory elements such as enhancers [21, 22]. Furthermore, genome
alignments have been instrumental for understanding the evolution of genomes, which
uncovered genomic determinants of trait differences [23-30], and provided insights into
evolutionary history and species’ biology [31-34].

A key factor affecting the power of comparative analyses is the number of species
included in the genome alignment. Since higher taxonomic coverage increases the power
to detect evolutionary constraint [35] and yields more robust results in phylogenetic and
evolutionary studies [36, 37], it is desirable to include many sequenced genomes to
capture the diversity of species in a respective clade. While the availability of sequenced
genomes was a limiting factor in the past, advances in sequencing and assembly
technology have led to a wealth of sequenced genomes, illustrated by the availability of
more than 100 mammalian genomes.

To provide a comparative genomics resource that reflects the increased availability of
sequenced mammals and is easily accessible to genomic experts and non-experts, we
generated a multiple genome alignment of 120 mammals (Figure 1). We used human as
the reference species and included 119 non-human mammals that have genome
assemblies with a scaffold N50 value of at least 100,000. We provide comparative gene
annotations generated by CESAR for 119 non-human mammals. Furthermore, we
demonstrate the utility of the high species coverage in our alignment by (i) quantifying
how variable ultraconserved elements are among placental mammals and (ii) identifying
cis-regulatory elements (enhancers) that arose in the placental mammal lineage and



showing that these enhancers are significantly associated with placenta-related genes.
To facilitate comparative analyses using our resources, we provide the multiple genome
alignment, a phylogenetic tree, conserved regions including GERP and PhastCons
conservation scores, and the comparative gene annotations for download and as a
trackhub, which enables visualization in the UCSC genome browser [38].

Results and Discussion

Comparative gene annotation and conserved elements for 119 non-human
mammals

We first used our alignment of 120 mammals to annotate protein-coding genes in all 119
non-human mammals. To this end, we used CESAR [15, 39, 40] to project all coding
exons of human genes and annotated intact exons in all 119 non-human aligned
mammals (Supplementary Table 1). Between 15,868 and 18,047 of the human genes
have intact exon alignments in placental mammals (Figure 1). For marsupials, we
annotated between 15,119 and 16,259 genes. In the platypus, a member of the
monotremes, we annotated 9,669 genes (Figure 1).

In addition to annotating protein-coding genes, we used both PhastCons [18] and
GERP++ [41] to identify 13,257,408 and 1,612,714 conserved elements, respectively,
that likely evolve under purifying selection.

Case study 1: Quantifying divergence in ultraconserved elements

The large number of mammalian species in our genome alignment provides an
opportunity to quantify how variable highly conserved genomic elements are across
placental mammals. We focused on a special class of highly conserved elements, called
ultraconserved elements (UCEs), that have attracted much attention as deletions of
several of these elements does not affect cellular fithess and resulted in viable organisms
[42-44]. UCEs have been defined as genomic regions that are 2200 bp long and have
identical sequences between human, mouse and rat [45]. UCEs are also highly
conserved in other mammals and typically align to non-mammalian vertebrates [46]. For
example, human UCE sequences align to chicken with an average sequence identity of
96% [45]. Transgenic enhancer assays have shown that many non-exonic UCEs overlap
regulatory elements that drive gene expression during development [22] and a recent
study showed that ultraconserved enhancers are required for normal development in mice



[43]. UCEs are not mutational cold spots as there is genetic variation in the human
population; however, derived mutations are under strong purifying selection [47].

Here, we sought to quantify the variability of UCEs among placental mammals. However,
accurately estimating sequence variability in these highly-conserved regions is not
straightforward as base errors in genome assemblies can mimic real mutations [32, 34,
48]. Such base errors would overestimate the true variability within UCEs. To address
this problem, we utilized the increased taxonomic sampling in our alignment to compute
an upper and a lower bound of the number of alignment columns that exhibit a
substitution. To compute a lower bound, we only considered an alignment column as
variable if the same substitution is shared among at least two related sister species
(Figure 2). Since genomes of two related sister species were independently sequenced
and assembled, the presence of a shared substitution makes a base error in the assembly
very unlikely. To compute an upper bound, we considered a column as variable if at least
one substitution occurred (Figure 2), regardless of whether this substitution is shared
among related species or species-specific. For robustness, we limited our analysis to the
441 of 480 UCEs for which we aligned at least 110 placental mammals.

Considering all nucleotide changes (upper bound), we found that on average 15.6%
(median 13.5%) of the columns of a UCE contain at least one nucleotide change (Figure
3A, Supplementary Table 2). Using the more robust lower bound for nucleotide changes,
we found that on average 4.7% (median 3.6%) of the UCE columns are variable. None of
the UCEs is perfectly conserved across placental mammals based on the upper bound
which considers all nucleotide changes. Our analysis shows that the majority of UCEs
contain at least 3.6% and as many as 13.5% variable alignment columns across placental
mammals. This analysis provides the first quantification of evolutionary variability within
UCEs.

We further assessed whether positions exhibiting substitutions are uniformly distributed
within UCEs. To account for the variable length of UCEs, we divided each UCE into 100
equally sized bins and computed the cumulative number of UCEs with substitutions per
relative position. Interestingly, using our lower and upper bound estimation, we
consistently found that the center region of UCEs exhibit the lowest number of variable
alignment columns (Figure 3B), suggesting that the center region is most constrained.

Case study 2: Evolution of placental mammal-specific enhancers

An increasing body of evidence suggests that changes in gene regulatory elements such
as enhancers are important for phenotypic evolution [28, 30, 49-52]. The evolutionary
origin of enhancers can sometimes be linked to the origin of lineage-specific traits. For
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example, gain of enhancers in mammals has been linked to the emergence of the
neocortex [53], enhancer gain near neurogenesis-regulating genes in humans has been
linked to the expansion of the human neocortex [54], and gains of enhancers near hair-
related genes in mammals coincides with the origin of body hair [55]. Here, we used our
120 mammal alignment to identify enhancers whose sequence is only conserved among
placental mammals. To assess the conservation of enhancers, we screened FANTOM
enhancers [56] for conserved 10-mers, which roughly reflects the size of a transcription
factor binding site motif [57].

As a proof of principle, we first identified 1,820 FANTOM enhancers that are conserved
across all mammalian families including marsupials and the monotreme platypus. Using
GREAT [58], we found that these enhancers are significantly associated with genes
involved in developmental processes, represented by Gene Ontology (GO) biological
processes ‘pattern specification process’ (GO:0007389) and ‘cell fate commitment’
(G0O:0045165) (Supplementary Tables 3 and 4). This is consistent with previous findings
that enhancers, which arose in mammalian ancestor or earlier, are associated with
developmental genes [55].

To identify placental mammal specific enhancers, we determined which FANTOM
enhancers have at least one conserved 10-mer in all major placental mammal clades but
have no aligning sequence in marsupials and the platypus. Based on this definition, 731
FANTOM enhancers are emerged in placental mammals (Supplementary Table 5).
Interestingly, we found that these enhancers exhibit, among other categories, significant
association with placenta-related genes. For example, the MGl Mouse Phenotype
‘abnormal placental labyrinth vasculature morphology’ (MP:0008803) and the GO
biological process terms ‘embryonic placenta development’ (G0:0001892) and
‘labyrinthine layer blood vessel development’ (GO:0060716) are significantly enriched
(Supplementary Tables 6 and 7). Consistently, 166 of 731 (23%) of these placental
mammal-restricted enhancers overlap predicted placenta enhancers [59]. Together, this
suggests that a subset of enhancers that emerged in placental mammals may have been
involved in the evolution placental mammal-specific aspects of the placenta. These
enhancers could serve as a starting point for more elaborate studies on the molecular
basis of placenta evolution.

Summary

We generated a multiple genome alignment comprising 120 mammals and used this
alignment to project human genes to 119 other mammalian genomes. To exemplify how
our alignment may facilitate comparative genomics studies, we quantified the variability
within ultraconserved elements and showed that placental mammal specific enhancers
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are significantly associated with placenta-related genes. The multiple genome alignment,
sets of conserved elements, and comparative gene annotations are a valuable resource
for further studies, which can be downloaded or visualized in the UCSC genome browser
as a trackhub via https://bds.mpi-
cbg.de/hillerlab/120MammalAlignment/Human120way/trackHub/hub.txt.

Materials and Methods

Phylogeny

The order level of the phylogeny is based on dos Reis et al. [60]. The primate phylogeny
is based on Perelmann et al. [61]. Rodents were placed based on Fabre et al [62]. We
based the Afrotheria phylogeny on Meredith et al., Poulakakis et al., and O’Leary et al.
[63-65]. Sorex, Erinaceus, Condylura were placed based on Brace et al. [66]. The
Carnivora phylogeny is based on Flynn et al. and Meredith et al. [63, 67]. Artiodactyla is
based on O’Leary et al. and Ropiquet et al. [65, 68]. The Chiroptera phylogeny is based
on Teeling et al. and Agnarsson et al. [69, 70].

Genome alignment

To compute pairwise and multiple genome alignments, we used the human hg38
assembly as the reference. We first built pairwise alignments between human and a query
species using lastz and axtChain to compute co-linear alignment chains [71, 72]. To align
placental mammals, we used previously-determined lastz parameters (K = 2400, L =
3000, Y = 9400, H = 2000 and the lastz default scoring matrix) that have a sufficient
sensitivity to capture orthologous exons [16]. To align chimpanzee, bonobo and gorilla,
we changed the lastz parameters (K=4500 and L=4500).

After building chains, we applied RepeatFiller [73], a method that performs another round
of local alignment, considering unaligning regions <20 kb in size that are bounded by co-
linear alignment blocks up- and downstream. RepeatFiller removes any repeat masking
from the unaligned region and is therefore able to detect novel alignments between
repetitive regions. We have previously shown that RepeatFiller detects several
megabases of aligning repetitive sequences that would be missed otherwise [73]. After
RepeatFiller, we applied chainCleaner with parameters -LRfoldThreshold= 2.5 -doPairs -
LRfoldThresholdPairs = 10 -maxPairDistance = 10000 -maxSuspectScore = 100000 -
minBrokenChainScore = 75000 to improve alignment specificity [74]. Pairwise alignment
chains were converted into alignment nets using a modified version of chainNet [72] that
computes real scores of partial nets [74]. Nets were filtered using NetFilterNonNested.perl



with parameters -doUCSCSynFilter -keepSynNetsWithScore 5000 -
keeplnvNetsWithScore 5000 [74], which applies the UCSC ‘syntenic net’ score thresholds
(minTopScore of 300000 and minSynScore of 200000) and keeps nested nets that align
to the same locus (inversions or local translocations; net type ‘inv’ or ‘syn’ according to
netClass [72]) if they score 25000. For the Mongolian gerbil, tarsier, Malayan flying lemur,
sperm whale, Przewalski’'s horse, Weddell seal, Malayan pangolin, Chinese pangolin,
Hoffmann’s two-fingered sloth, and Cape rock hyrax that have genome assemblies with
a scaffold N50 <1,000,000 and a contig N50 <100,000, we just required that nets have a
score =2100,000. For marsupials and platypus, we lowered the score threshold for nets to
10,000 and kept inv or syn nets with scores 23000. Next, we used the filtered nets to
compute a human-referenced multiple genome alignment with MULTIZ-tba [75]. Finally,
to distinguish between unaligning genomic regions that are truly diverged and genomic
regions that do not align because they overlap assembly gaps in the query genome [76],
we post-processed the multiple genome alignment and removed all unaligning regions
(e-lines in a maf block) that either overlap an assembly gap in the respective query
genome(s) or are not covered by any alignment chain.

Identification of conserved regions

We used msa_view to extract 4-fold degenerated codon positions based on the human
RefSeq gene annotation and used PhyloFit [77] to estimate the length of all branches in
the tree as substitutions per neutral site. This tree was used to detect constrained
elements with PhastCons [18] and GERP++ [41]. For running PhastCons, we used the
parameters rho=0.31, expected-length=45, and target-coverage=0.3. For GERP++, we
used default parameters.

Comparative gene annotation with CESAR

Genes were annotated using the CESAR gene annotation pipeline [15, 39, 40] using all
protein-coding transcripts from the human ENSEMBL 96 gene annotation as input [78].
To count the number of annotated genes per species, we first extracted per locus the
transcript with the longest open reading frame (ignoring all shorter overlapping
transcripts) and then determined the number of unique gene symbols.

UCE divergence analysis

UCE coordinates were downloaded from UCbase2.0 [79]. We converted the coordinates
of the 481 UCEs from hg19 to hg38 using liftOver. We merged UCE 208 and 209 into one
UCE because they are directly adjacent. We then extracted alignments of UCEs from our
120 mammal alignment. For robustness, we only considered the 441 UCEs for which we
aligned at least 110 of placental mammals over the entire length of the UCE and further
removed sequences that contained assembly gaps. Next, we used a previously
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developed bottom-up Fitch-like parsimony approach [80] to identify alignment columns
containing one or more substitutions. To account for the possibility of base errors in
assemblies, we additionally identified alignment columns that have shared substitutions
between at least two sister species. We used shared substitutions as a lower bound
estimate for variable columns in UCE alignments. To investigate how variable positions
are distributed within UCEs, we had to account for the different lengths of UCEs. To this
end, we normalized the positions of each UCE into 100 equally sized bins. Since not all
positions can be uniquely assigned to a single bin (unless the UCE length is a multiple of
100), we duplicated the value for each position in a UCE (1 for nucleotide change, 0
otherwise) 100 times and then grouped them into bins. The cumulative value of each bin
was then normalized by bin size (length of the UCE) to obtain a per-UCE value for
nucleotide changes at each relative position.

Analysis of FANTOM enhancers

We downloaded the coordinates of the 38,548 robust FANTOM enhancers from
SlideBase [56] (http://slidebase.binf.ku.dk/human_enhancers/). Coordinates were then
mapped from the human hg19 genome assembly to hg38 using liftOver. Next, we
identified the most conserved 10-mers in all FANTOM enhancers using a sliding-window
approach. We then counted the number of species that were aligned with identical
10mers per following clades: Primatomorpha, Glires, Artiodactyla, Ferae, Chiroptera,
Eulipotyphla, Atlantogenata and non-placental mammals. We defined an enhancer as
conserved across all mammals if at least 50% of the species in each of these clades were
aligned with an identical 10-mer. For identifying placental mammal specific enhancers,
we required that at least 50% of the species in each placental mammal clade were aligned
with an identical 10-mer and that no sequence was aligned to the entire enhancer region
for any non-placental mammal.

Enrichment analysis for placental mammal-restricted enhancers

We used the GREAT webserver to test whether placental mammal-restricted enhancers
are enriched near genes belonging to certain functional groups [58]. We used the hg19
genome assembly coordinates and the 38,548 robust FANTOM enhancers as
background [56]. We considered terms significantly enriched if they exceed a 2-fold
enrichment (RegionFoldEnrich) and exhibit a corrected p-value (hypergeometric FDR Q-
value) < 0.05. In addition to the enrichment analysis, we downloaded predicted placenta
enhancers [59] and compared how many placental mammal-restricted enhancers overlap



predicted placenta enhancers. Here, we required that at least 50% of the enhancer
overlaps a predicted placenta enhancer.

Data Availability

The 120 mammal alignment, phylogenetic tree, conserved elements, GERP and
PhastCons tracks, CESAR gene annotations for 119 non-human mammals are available
at https://bds.mpi-cbg.de/hillerlab/120MammalAlignment/. This data can be loaded as a
trackhub into the UCSC genome browser via https://bds.mpi-
cbg.de/hillerlab/120MammalAlignment/Human120way/trackHub/hub.txt.
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Figure 1: Phylogeny of 120 mammals included in our alignment and number of annotated
genes.

Bars visualize the number of human genes for which we projected at least one intact
exon. Major groups of mammals are indicated. The 57 Laurasiatheria species are shown
on the right side for space reasons.
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Figure 2: Example of a sequence alignment of 120 mammals showing an 88 bp region
inside a UCE.

This UCE is located in an intron of the DACH1 gene, which encodes a transcription factor
important for development. Dots in the 120-mammal alignment refer to bases that are
identical to the human genome. For space reasons, 25 primates, 13 carnivora and 10
bats that all have identical sequence to human are not shown. The alignment of this
ultraconserved region shows that most columns are identical across all 120 mammals but
also reveals a few substitutions. Some these substitutions are species-specific and may
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be attributed to base errors in the assembly. Other substitutions are shared among
independently sequenced genomes of related species (red boxes), which makes base
errors very unlikely. We used shared substitutions to calculate a lower bound for the
percentage of UCE positions that can vary across placental mammals. We used both
shared and species-specific substitutions to calculate an upper bound for this percentage.
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Figure 3: Variability of UCEs across placental mammals.

For each alignment position in the 441 UCEs for which at least 110 placental mammals
had aligning sequence in our genome alignment, we examined whether positions in the
UCE are identical or were substituted at least once across the 116 placental mammals.
(A) Violin and box plots show the distribution of the fraction of variable positions per UCE
across placental mammals.

(B) Bar plots show the number of substitutions observed in UCEs with respect to their
relative position in UCEs. UCEs were divided into 100 equally sized bins. Both upper and
lower bounds show that UCEs are more variable at their flanks than in their center.
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