## Molecular determinants of epistasis in HIV-1 protease: Elucidating the interdependence of L89V and L90M mutations in resistance

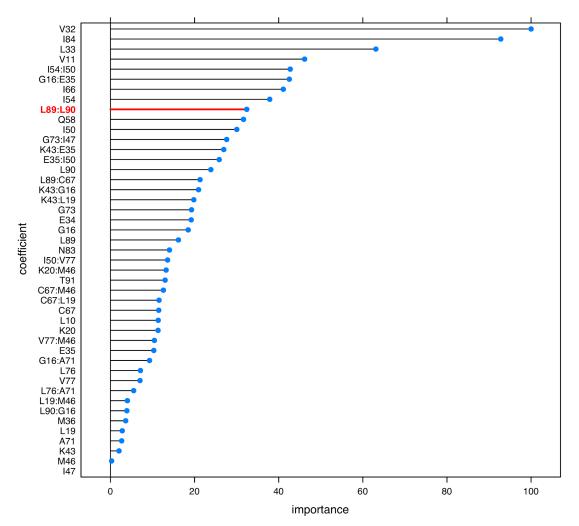
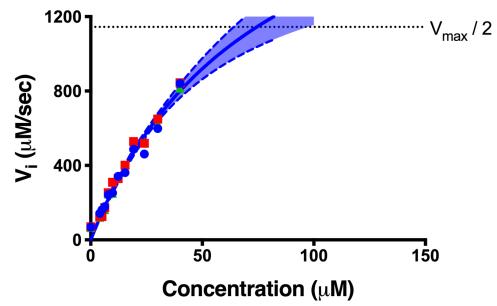
Mina Henes<sup>1</sup>, Klajdi Kosovrasti<sup>1</sup>, Gordon J. Lockbaum<sup>1</sup>, Florian Leidner<sup>1</sup>, Gily S. Nachum<sup>1</sup>, Ellen A. Nalivaika<sup>1</sup>, Daniel N.A. Bolon<sup>1</sup>, Nese Kurt Yilmaz<sup>1</sup>, Celia A. Schiffer<sup>\*,1</sup>, Troy W. Whitfield<sup>\*,2,3</sup>

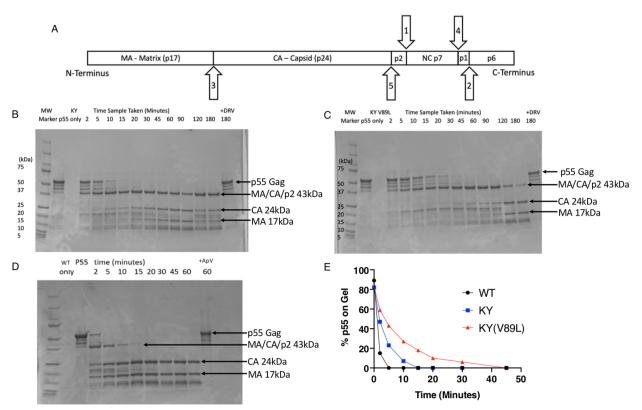
<sup>1</sup>Department of Biochemistry and Molecular Pharmacology, <sup>2</sup>Department of Medicine, and <sup>3</sup>Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA

\*Corresponding Author

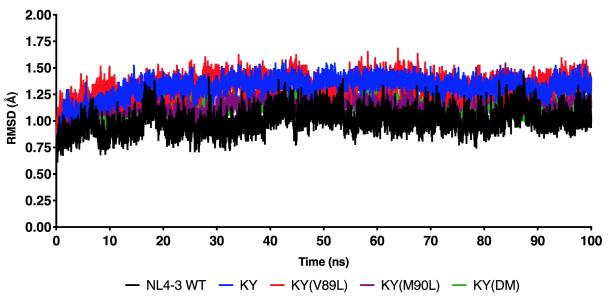
Celia A. Schiffer: Phone: +1 508 856 8008; Celia.Schiffer@umassmed.edu

Troy W. Whitfield: Phone: +1 508 856 4401; Troy.Whitfield@umassmed.edu

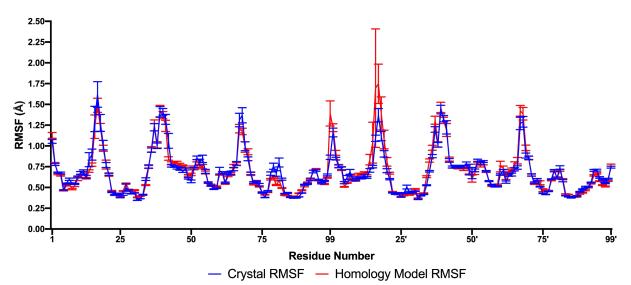





Figure S1. Feature importance for a sequence-based linear model of darunavir binding by HIV-1 protease. Curated in vitro susceptibility data (IC<sub>50</sub>) for darunavir<sup>1</sup> were analyzed for detection of pairwise nonadditive effects of mutations on susceptibility. In total, 605  $IC_{50}$  measurements were included, each corresponding to a complete HIV-1 protease sequence from patient isolates. The fitted model was of the form  $\log_{10}(IC_{50}) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_{1,2} x_1 x_2 + \ldots + \beta_{p-1,p} x_{p-1} x_p$ , where there are p "main effects" (i.e. mutations occurring at a single residue) and at most p(p-1)/2 interaction terms. The features  $x_i$  are defined as indicator variables for a mutation at site i, such that  $x_i=0$  for wild-type amino acid at site i and  $x_i=1$  for any amino acid substitution at that site. Feature selection for this model was done in a two-stage "main effects first" procedure<sup>2</sup>, where a model was first fitted for the main effects (i.e. no interaction terms) by multiple regression under the elastic net penalty<sup>3</sup>,  $\lambda \Sigma_i (1-\alpha) \beta_i^2/2 + \alpha |\beta|$ , with sparsity enforced by favoring the  $l_1$ -norm penalty, choosing  $\alpha$ =0.95. Next, the interaction terms were selected by fitting the residuals of the main effects model under the elastic net penalty. At each of these stages, feature selection was carried out under 5-fold cross validation. After feature selection, the coefficients,  $\beta_i$ , of the final model were fitted under a relaxed ( $\lambda$ =0) penalty. The "importance" of these features above is reported as  $|t|/|t|_{max}$ . The cooccurrence of mutations at residues 89 and 90, highlighted in red above, is an important feature in determining susceptibility to darunavir inhibition.

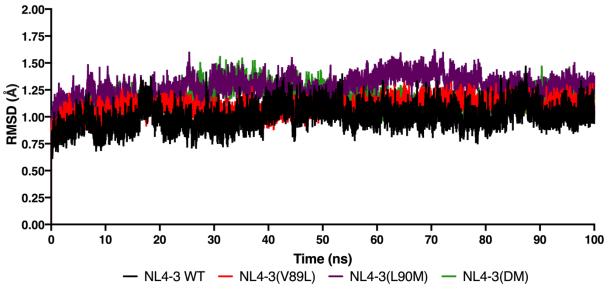



**Figure S2.** Sequence alignment of NL4-3 wild-type HIV-1 protease and KY variants. Amino acid substitutions at residues 89 and 90 are highlighted in red.

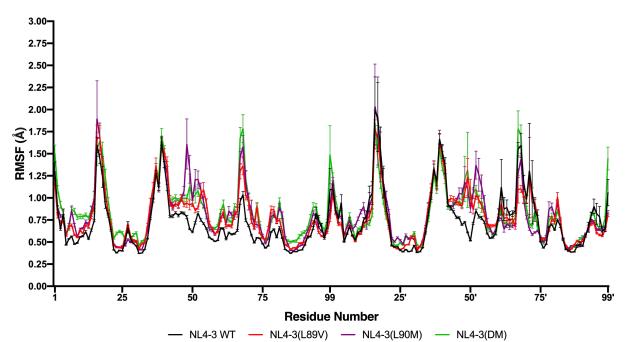



**Figure S3.** Michaelis-Menten plot for the KY variant. Points for three independent replicates, each corrected for the inner-filter effect, are plotted using different colors. After performing a global non-linear fitting to the Michaelis-Menten equation, the resulting best fit is given (solid blue curve), along with 95% confidence intervals (dashed blue curves). The estimated  $K_M$  is 74.4 ± 13.4µM.

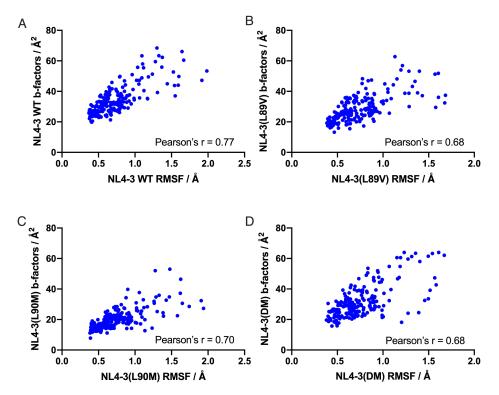



**Figure S4.** (A) Schematic of the p55 Gag polyprotein used in the gel cleavage assays with product sizes noted in kDa. Sites and order of cleavage by WT protease are denoted by arrows<sup>4</sup>. p55 Gag polyprotein cleavage by (B) KY, (C) KY(V89L), and (D) NL4-3 WT. (D) Percent p55 left on the gel reveals that the enzymatic rate of the KY(V89L) variant is approximately 3 times slower compared to KY and approximately 9 times slower than NL4-3 WT. Only the upper band in the p55 lane was used for quantifying the starting amount of p55. Minor bands are impurities.




**Figure S5.** Root-mean-square deviation (RMSD) for WT, KY, KY(V89L), KY(M90L), and KY(DM) calculated from 100 ns molecular dynamics simulations.




**Figure S6.** Comparing the Root-mean-square fluctuation (RMSF) profile of  $C_{\alpha}$  atoms utilizing a protease variant with 8 mutations relative to NL4-3 WT: I13V, G16E, V32I, L33F, K45I, M46I, V82F, I84V. Three independent 100 ns simulations were carried out starting from a crystal structure (PDB: 6OPV) and a homology model generated using NL4-3 (PDB: 6DGX) as a starting point. The RMSF profiles generated starting from the homology model and from the crystal structure exhibit no significant differences.



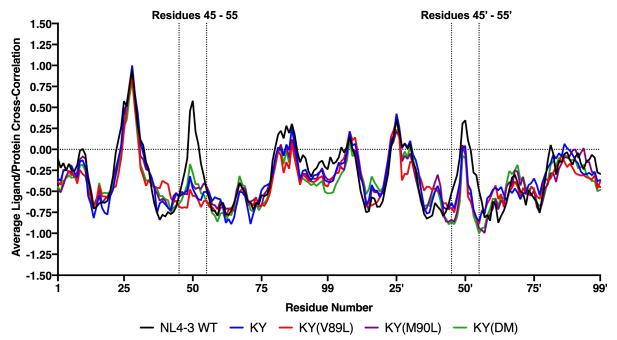
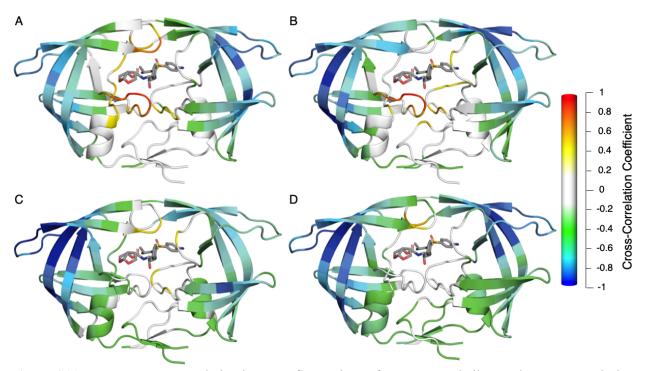
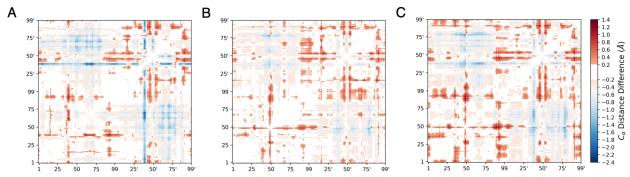
**Figure S7.** Root-mean-square deviation (RMSD) for WT, NL4-3(L89V), NL4-3(L90M), and NL4-3(DM) calculated from 100 ns molecular dynamics simulations

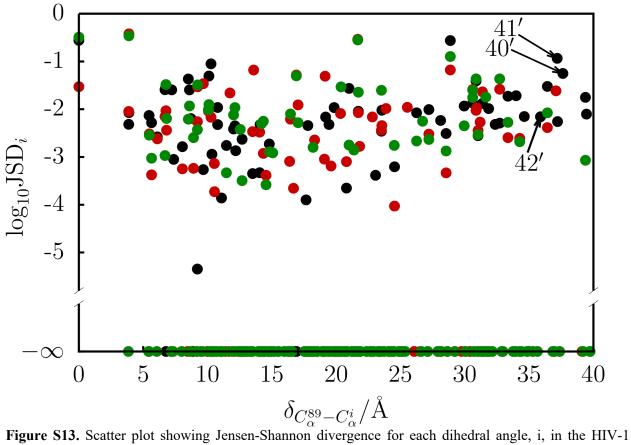


**Figure S8.** Root-mean-square fluctuation (RMSF) of  $C_{\alpha}$  atoms for the NL4-3, NL4-3(L89V), NL4-3(L90M), and NL4-3(DM) mutations on the WT background. The L90M mutation on the NL4-3 background alters chain B flap dynamics whereas it alters chain A flap dynamics in the KY background.



**Figure S9.** Crystal structure b-factors and root-mean-square fluctuation (RMSF) of  $C_{\alpha}$  atoms from MD simulations of (A) NL4-3 WT, (B) NL4-3(L89V), (C) NL4-3(L90M), and (D) NL4-3(DM) are moderately correlated with Pearson's r between 0.68 to 0.77.



Figure S10. Average per-residue cross-correlation for all DRV heavy atoms with the HIV-1 protease  $C_{\alpha}$  atoms.



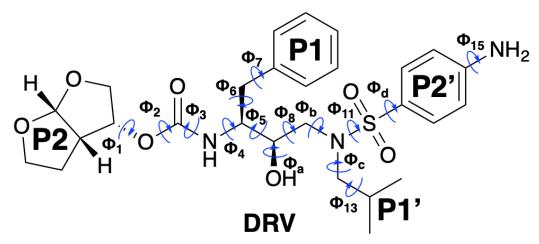
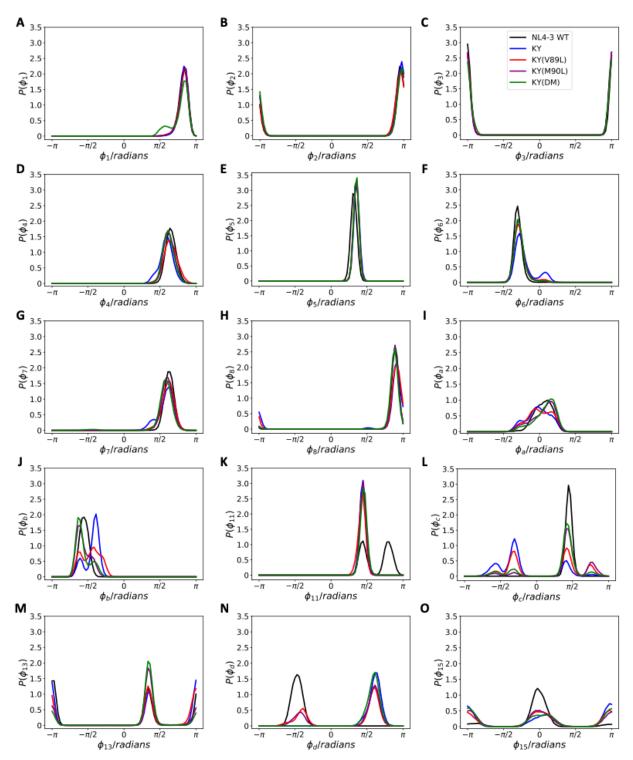
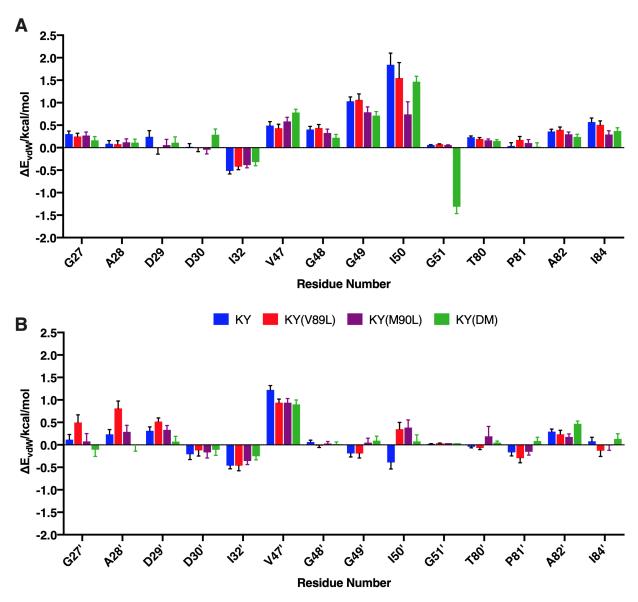
**Figure S11.** Average cross-correlation between fluctuations of  $C_{\alpha}$  atoms and all DRV heavy atoms during the MD simulations. (A) NL4-3, (B) NL4-3(L89V), (C) NL4-3(L90M), and (D) KY(DM).  $C_{\alpha}$  atoms with a Pearson correlation coefficient between -0.2 and 0.2 are colored white.

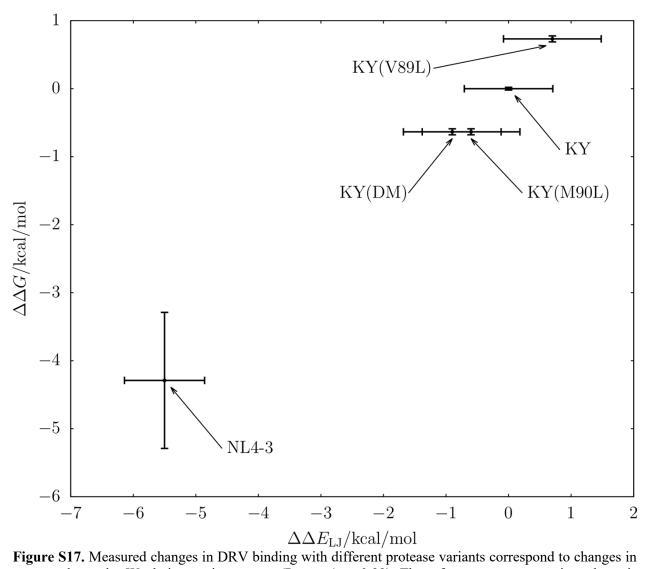


**Figure S12.** Differences in mean intra-protease  $C_{\alpha}$ - $C_{\alpha}$  distance comparing (A) KY minus KY(V89L), (B) KY minus KY(M90L), and (C) KY minus KY(DM). Positive differences indicate that the  $C_{\alpha}$ - $C_{\alpha}$  distance is greater in KY, while negative differences indicate the opposite. In KY(V89L) and KY(DM), bearing the larger leucine side chain, the B chain 70's  $\beta$ -sheet is displaced compared to KY. Unique to the KY(V89L) variant, the B chain flap elbow, 40's loop, is displaced away from the core of the protease and into the solvent.

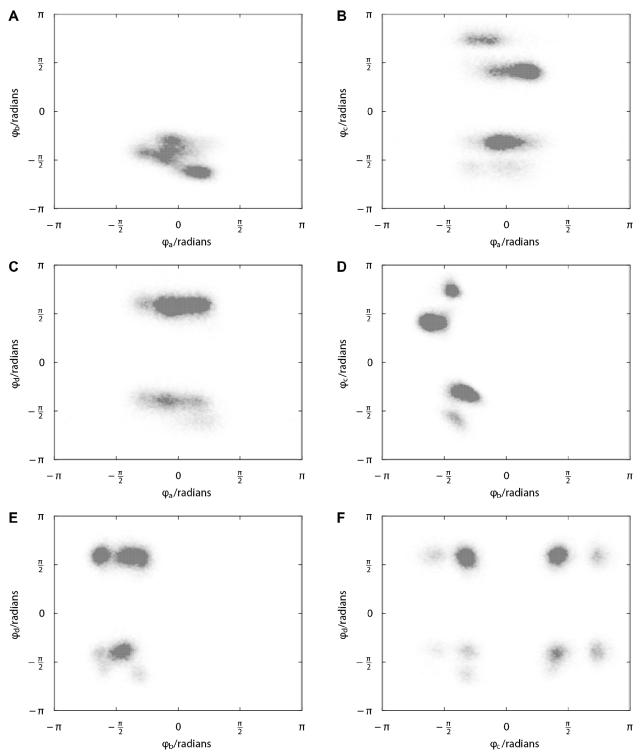


**Figure S13.** Scatter plot showing Jensen-Shannon divergence for each dihedral angle, i, in the HIV-1 homodimer as a function of approximate distance from the site of mutation (at residues 89, 90 or both). Distances are computed between  $C_{\alpha}$  atoms. The colors of the points correspond to the comparisons: KY versus KY(V89L) (black), KY versus KY(M90L) (red) and KY versus KY(DM) (green). Points along the abscissa are dihedral angles where the Jensen-Shannon divergence signal was not distinguishable from noise. Highlighted resides 40'-42' are in the chain B flap elbow and are different in the KY(V89L) variant compared with the other KY variants.

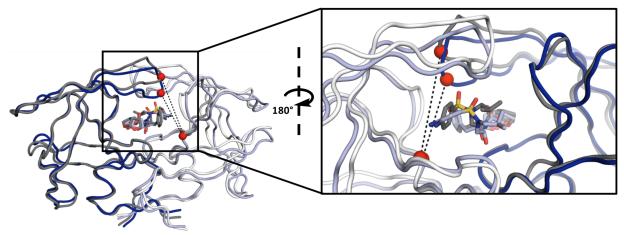






Figure S14. 2D structure of DRV with rotatable bonds labeled.




**Figure S15.** Probability distributions collected from molecular dynamics simulations of the 15 DRV rotatable bonds (see **Figure S14** for a definition of dihedral angles).




**Figure S16.** Change in darunavir per-residue van der Waals energy ( $\Delta E_{vdW}$ ) relative to NL4-3. (A) Changes in chain A. (B) Changes in chain B. Positive values indicate loss of favorable interactions relative to NL4-3. (A) Changes 3.



**Figure S17.** Measured changes in DRV binding with different protease variants correspond to changes in computed van der Waals interaction energy (Pearson's r=0.99). The reference protease variant above is taken to be KY: for a protease variant k,  $\Delta\Delta E_{LJ} = \Delta E_{LJ}^{(k)} - \Delta E_{LJ}^{(KY)}$ .



**Figure S18.** In general, sampling among different DRV dihedral angles is coupled. As an example of coupling between the  $\phi_a$ -  $\phi_d$  dihedral angles, joint probability distributions  $P(\phi_i, \phi_j)$  are plotted for the DRV-bound KY(V89L) protease variant. The joint probability distributions plotted are (A)  $P(\phi_a, \phi_b)$ , (B)  $P(\phi_a, \phi_c)$ , (C)  $P(\phi_a, \phi_d)$ , (D)  $P(\phi_b, \phi_c)$ , (E)  $P(\phi_b, \phi_d)$ , (F)  $P(\phi_c, \phi_d)$ .



**Figure S19.** The  $\phi_b$  dihedral of DRV is associated with widening of the active site in KYV89L. Two frames from the MD simulations showing the  $\phi_b$  distribution associated with a closer  $C_a^{150} - C_a^{184'}$  distance (shaded blue - chain A is dark blue and chain B is light blue) and the  $\phi_b$  distribution associated with a more open  $C_a^{150} - C_a^{184'}$  distance (shaded gray - chain A is dark gray and chain B is white). The  $C_a$  atoms of 150 and 184' are shown as red spheres. DRV associated with a closer  $C_a^{150} - C_a^{184'}$  distance is shown in light blue while DRV associated with a more open  $C_a^{150} - C_a^{184'}$  distance is shown in gray (B) Opening of chain A flap is associated with DRV sampling a difference conformation compared to a closed state.

| 1. A-ray crystanography statistics |                    |             |             |           |  |  |  |  |  |
|------------------------------------|--------------------|-------------|-------------|-----------|--|--|--|--|--|
| PDB ID                             | 6DGX               | 600U        | 600S        | 600T      |  |  |  |  |  |
| Protein                            | NL4-3              | NL4-3(V89L) | NL4-3(L90M) | NL4-3(DM) |  |  |  |  |  |
| Inhibitor                          | DRV                | DRV         | DRV         | DRV       |  |  |  |  |  |
| Resolution (A)                     | 2.00               | 2.13        | 1.90        | 1.82      |  |  |  |  |  |
| Space Group                        | $P2_{1}2_{1}2_{1}$ | P212121     | P21         | P61       |  |  |  |  |  |
| a (A)                              | 51.0               | 51.3        | 51.0        | 62.2      |  |  |  |  |  |
| b (A)                              | 58.3               | 58.3        | 58.0        | 62.2      |  |  |  |  |  |
| c (A)                              | 61.9               | 62.4        | 62.4        | 82.9      |  |  |  |  |  |
| Completeness                       | 98.1               | 95.5        | 95.6        | 97.4      |  |  |  |  |  |
| Tot.<br>Reflections                | 84332              | 29727       | 104194      | 257556    |  |  |  |  |  |
| Uniq. Reflect.                     | 12758              | 10309       | 27535       | 15901     |  |  |  |  |  |
| Avg I/Sig                          | 31.1               | 13.4        | 26.1        | 33.6      |  |  |  |  |  |
| Redundancy                         | 6.6                | 2.9         | 3.8         | 16.2      |  |  |  |  |  |
| R-Merge (%)                        | 5.7                | 6.9         | 5.1         | 10.0      |  |  |  |  |  |
| RMSD Bonds*                        | 0.003              | 0.005       | 0.005       | 0.002     |  |  |  |  |  |
| RMSD<br>Angles*                    | 0.590              | 0.649       | 0.836       | 0.603     |  |  |  |  |  |
| R-Free*                            | 22.8               | 25.5        | 19.8        | 23.5      |  |  |  |  |  |
| R-Work*                            | 19.2               | 20.4        | 16.4        | 19.2      |  |  |  |  |  |

Table S1. X-Ray Crystallography Statistics

\*Based on Phenix Program

**Table S2.** Kinetics and binding measurements for the NL4-3 wild-type and variants with the introduction of the following mutations: L89V, L90M, and the L89V, L90M double mutation.  $K_M$  and the turnover number,  $k_{cat}$ , were measured using a natural substrate sequence. The enzyme catalytic efficiency is  $k_{cat}/K_M$ . Mean protease-DRV van der Waals energy,  $\Delta E_{vdW}$ , is reported.

|                                     | NL4-3           | NL4-3(L89V)   | NL4-3(L90M)                      | NL4-3(DM)      |
|-------------------------------------|-----------------|---------------|----------------------------------|----------------|
| <b>Κ</b> <sub>M</sub> (μ <b>M</b> ) | $71.4 \pm 6.8$  | $46.9\pm4.2$  | $139.2 \pm 18.9$                 | $180.3\pm56.2$ |
| k <sub>cat</sub> (s <sup>-1</sup> ) | $1282.7\pm0.06$ | $13.3\pm0.6$  | $5.9 \pm 1.1$                    | $108.6\pm0.03$ |
| $k_{cat} / K_M (\mu M^{-1} s^{-1})$ | $17.1 \pm 0.1$  | $0.3 \pm 0.1$ | $\textbf{0.04} \pm \textbf{0.2}$ | $0.6 \pm 0.3$  |
| K <sub>i</sub> (nM)                 | < 0.005         | < 0.005       | < 0.005                          | < 0.005        |
| ∆E <sub>vdW</sub><br>(kcal/mol)     | $-58.5 \pm 0.4$ | -58.1 ± 0.6   | $-57.5 \pm 0.5$                  | $-55.8\pm0.6$  |

**Table S3.** Configurational entropy,  $S_j = -k_B \sum_i P_i(\phi_j) \ln P_i(\phi_j)$ , for each of the selected DRV dihedral angles  $1 \le j \le 4$ .  $\phi_a$ ,  $\phi_c$ , and  $\phi_d$  entropy are moderately correlated with DRV binding (Pearson's r=0.70, 0.60, 0.64, respectively).  $\phi_b$  entropy is strongly correlated with DRV binding (Pearson's r=0.87).

|   |                 |          |     |          | 8        |        |
|---|-----------------|----------|-----|----------|----------|--------|
|   |                 | NL4-3 WT | KY  | KY(V89L) | KY(M90L) | KY(DM) |
| _ | $S_a/k_B$       | 3.8      | 4.2 | 4.3      | 4.1      | 4.0    |
|   | $S_b/k_B$       | 2.7      | 3.2 | 3.8      | 3.3      | 3.3    |
|   | $S_c/k_B$       | 2.2      | 4.4 | 4.6      | 4.1      | 4.0    |
|   | $S_d/k_{\rm B}$ | 3.1      | 3.2 | 4.2      | 4.0      | 3.2    |

## References

1. Rhee, S.-Y.; Taylor, J.; Fessel, W. J.; Kaufman, D.; Towner, W.; Troia, P.; Ruane, P.; Hellinger, J.; Shirvani, V.; Zolopa, A.; Shafer, R. W., HIV-1 protease mutations and protease inhibitor cross-resistance. *Antimicrob Agents Chemother* **2010**, *54* (10), 4253-4261.

2. Efron, B.; Hastie, T.; Johnstone, I.; Tibshirani, R., Least angle regression. *Ann. Statist.* **2004**, *32* (2), 407-499.

3. Zou, H.; Hastie, T., Regularization and Variable Selection via the Elastic Net. *Journal of the Royal Statistical Society. Series B (Statistical Methodology)* **2005**, 67 (2), 301-320.

4. Pettit, S. C.; Henderson, G. J.; Schiffer, C. A.; Swanstrom, R., Replacement of the P1 Amino Acid of Human Immunodeficiency Virus Type 1 Gag Processing Sites Can Inhibit or Enhance the Rate of Cleavage by the Viral Protease. *Journal of Virology* **2002**, *76* (20), 10226-10233.