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Materials and Methods 32 
 33 
Literature synthesis.  34 
 35 
We conducted a literature search on the 15th of September 2018 in Web of KnowledgeTM with the following 36 
search string: (warming OR temperature OR precipitation OR drought OR water* OR CO2 OR “carbon dioxide” 37 
OR O3 OR ozone OR N OR nitrogen OR sal* OR “global change” OR “climate change” OR “land use chang*” 38 
OR (plant NEAR/3 invas*) OR ((invas* OR alien) AND species) OR fungicid* OR bacteriocid* OR herbicid* 39 
OR pesticide* OR habitat loss* OR agricult*expans* OR “land use chang*” OR “land convers*” OR phosphor* 40 
OR P OR fertiliz* OR N OR excess nitrogen* OR excess phosph* OR nutrient pollution OR nitr* pollut* OR 41 
phosph* pollut*) AND (soil). Our search was restricted to articles written in English language and published 42 
between 1945 and 2017. We included no citation indices and focused only on the Web of Science category 43 
“Ecology”. We retrieved 4,202 hits.  44 
  45 
In order to be included in our data set, articles had to present data on soil systems derived from experimental 46 
studies (no observations or simulations were allowed); thus, factors had to be applied by experimenters. If 47 
samples from field experiments were used in an additional laboratory assay and both field and lab data were 48 
presented in the same study, we focused on the field experiment only. 49 
 50 
Following the search string, studies had to present data on at least one of the following nine global change 51 
drivers as treatment factors: temperature (ambient and increase/decrease), water (drought or 52 
irrigation/precipitation manipulation), CO2 (ambient and elevated), O3 (ambient and elevated), fertilization 53 
(including inorganic and organic forms of N and P fertilizer), land use change (i.e. conversion from natural to 54 
cultivated land; reforestation/renaturation of cultivated land), species invasion (plant, animal or microbes), 55 
agrochemicals (including pesticides, soil conditioners and surfactants), salt  (ambient and elevated).  56 
Furthermore, in rare cases, we were not able to gain access to articles. This was the case for articles published 57 
before 1990 (concerning <10 articles) and those published in the Journal of Soil and Water Conservation; hence, 58 
these were not considered in our screening. 59 
 60 
A total of 1228 articles matched our criteria and were incorporated in our data synthesis. For this, we collected 61 
data on publication year, publication name, experimental context (agricultural or natural system), setting (lab or 62 
field), response variable focus (community or process measure or both) and tested factors of global change (Data 63 
S1). For data visualization, we used the R package “ggplot2” and its extensions “ggpubr” and “geomnet” in R 64 
v.3.4.3 (18, 19); the latter package was used for generating the network graph. 65 
 66 
We collected data on how many articles were published in the Web of Science database in the category 67 
“Ecology” for each year for which we found articles matching our inclusion criteria (1968-2017). These data 68 
were incorporated to account for the overall increase in publications over the examined time span. 69 
 70 
We additionally investigated all studies reporting effects for three and four global change drivers, asking in how 71 
many such studies and response variables higher order interactions were found. To do this, we screened model 72 
summary tables and counted for how many tested response variables per study a significant (p<0.05) three- or 73 
four-way interaction term was reported. 74 
 75 
Microcosms and experimental design.  76 
 77 
We used 50 mL conical tubes (Corning propylene centrifuge tubes) with screw-top caps as experimental units. 78 
Caps contained a septum through which a temperature sensor was inserted (or a temperature sensor dummy 79 
made from the same material). The lid of each tube was modified to contain a septum that allowed sampling of 80 
CO2 (see below). Tubes were placed in beakers filled with sand to provide insulation from neighboring units and 81 
placed in a fully randomized fashion inside a controlled environment chamber (incubated in the dark, 60% 82 
relative humidity, ambient temperature 16°C). Tubes were filled with 25.0 g of freshly collected soil (sieved to 2 83 
mm, with all coarse organic material removed, ground to a powder and added back to soil per experimental unit) 84 
from a local grassland (52° 33’ 09.53’’N, 12° 40’ 07.86’’ E). Soil properties (LUFA, Rostock) were: 86.6% 85 
sand, 10.8% silt, 2.6% clay; pH (CaCl2) 4.1; 2.8 mg 100 g-1 P; 2.0 mg 100 g-1 K. To this, 5.0 g of previously 86 
sterilized (autoclaving, 121°C, 1h) ‘loading’ soil was mixed that contained the appropriate dose of the chemical 87 
treatments, so that all tubes contained 30.0 g of soil in the end. We used this ‘loading’ soil to achieve more 88 
effective mixing of chemical agents into soil; it was sterilized to avoid any exaggerated effects on the soil 89 
community. 90 
The treatments represented 10 factors of global change, all applied individually to each experimental unit, and 91 
representing abiotic factors, resource availability, chemical toxicants and compounds (inorganic and synthetic 92 
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organic), and physically-acting agents (microplastic). The factors were: temperature (+ 5°C increase), nitrogen 93 
enrichment (NH4NO3 added to the equivalent of 100 kg N ha-1 yr-1), drought (30% of water holding capacity 94 
compared to 60%), salinity (4.0 dS m-1 with NaCl), microplastic (1.0 g polyester microplastic fibers kg-1 soil), 95 
insecticide (50 ng g-1 imidacloprid), herbicide (50 mg kg-1 glyphosate formulated as ‘Roundup’®), antibiotic 96 
(3.05 mg kg-1 oxytetracycline), antifungal agent (6.0 mg kg-1 carbendazim), and heavy metal (100 mg Cu kg-1 as 97 
CuSO4). For full details and justifications for these factors please see below. Since some compounds 98 
(imidacloprid, oxytetracycline) were dissolved in DMSO, we insured the same amount of DMSO and water was 99 
added to all experimental units. We carried out a test where we added DMSO at the target concentration to soil 100 
under control conditions (n=10 each for DMSO addition and no-addition); there were no effects of DMSO on the 101 
key variable of soil aggregation (Fig. S6). All experimental units also received the exact same amount of 102 
handling and mixing time. 103 
We had the following levels of replication: control (n=20), individual factors (n=8 each), and factor richness 104 
levels (n=10 each), for a total of 140 experimental units. We used random sampling from the pool of 10 factors 105 
for the factor richness levels to create replicates. We did this because our objective is to determine how an 106 
increasing number (not factor identity or particular factor combinations) of global change factors influence soil 107 
ecosystem processes. This means that our resolution does not allow statements on specific, individual factor 108 
interactions. Addressing such interactions would result in an experimental design encompassing all factor 109 
combinations with 1,024 unique treatments, which, applying our level of replication, would mean 10,230 110 
experimental units.  111 
The temperature treatment was applied using a heating cable wrapped around the individual tubes (PT2011, Exo 112 
Terra, Germany) with a separate controller per experimental unit (ETC-902, VOLTCRAFT, Germany).  113 
At the start of the experiment, we added 4.20 mL of water (equivalent to 60% water holding capacity) to each 114 
experimental unit (except for drought, which received half this amount). The experiment ran for six weeks, with 115 
soil respiration measured after 3 weeks, and was then harvested. 116 
 117 
Experimental treatments.  118 
 119 
We here present the rationale for the 10 tested factors of global change. 120 
1) Warming. We used an increment of 5.0°C over an ambient temperature of 16.0°C to simulate warmer spring 121 
temperatures. Temperatures were recorded (tempmate B2 data logger, imec Messtechnik GmbH, Heilbronn, 122 
Germany) in soils in a set of experimental units (n = 3 each, for warming and control) to verify treatment 123 
application. A level of +5.0°C is frequently used in studies of warming effects on soil systems, and this level 124 
corresponds to climate scenarios predicted for the next 100 years (20). 125 
2) Nitrogen enrichment. Nitrogen enrichment as a consequence of human activity has long been recognized as a 126 
factor of global change (21). We added ammonium nitrate (>-98%, p.A., ACS. Roth GmbH, Karlsruhe, D. article 127 
K299.1) to the experimental units in dissolved form. We used a one-time addition to reflect annual accumulation 128 
rates on a ha-1 yr-1 basis as is common in the literature (22), and we assumed 10 cm soil depth for conversion to 129 
addition rates in the experiment. We added the equivalent of 100 kg N ha-1 yr-1 to reflect a high N enrichment 130 
rate. 131 
3) Drought. Increased occurrence of drought is a well-established aspect of climate change (23) also with direct 132 
relevance to Europe (e.g. (24)) and the Brandenburg region in Germany, near Berlin, from which the soils were 133 
taken. We represented drought by adding half of the amount of water at the beginning of the experiment, 134 
compared to control water levels that were at 60% of water holding capacity. This level of drought is often 135 
employed in experimental studies (e.g. (25)). Our experiment thus simulated a drought episode; however, 136 
without the transition from sufficient water availability to the drought situation. 137 
4) Heavy metal. Heavy metal contamination represents pollution with persistent (i.e. non-degradable) inorganic 138 
compounds. We chose copper, which is of high relevance, because of mining, atmospheric deposition, and also 139 
use in organic agriculture; copper is an important soil pollutant in Europe (26). We added copper (ii)-sulphate - 140 
pentahydrate (BioChemica. AppliChem GmbH, Darmstadt, Germany) to the soil in dissolved form to a final 141 
concentration of 100 mg Cu kg-1 to simulate a hotspot of copper contamination (Cu concentrations in German 142 
soils range typically from 2 to 50 mg kg-1). Such concentrations can occur in Cu polluted sites (e.g. mining, 143 
agriculture). 144 
5) Microplastic. Microplastics have been found in many ecosystem compartments, including many soils 145 
worldwide, and can be regarded as a factor of global change (27, 28). Microplastic comes in many forms, and we 146 
previously showed that microplastic fibers exert effects of primarily physical nature; we thus used polyester 147 
fibers (Glorex Inspirations, ‘Bastelwatte’, 100% polyester, item number: 6252105; cut by hand) at a 148 
concentration of 0.1% (w/w) of soil, similar to levels used previously (29). Procedures were as described before, 149 
e.g. the cutting and mixing, and we microwaved the fibers for 3 min to reduce the risk of introducing microbes 150 
with the fibers. 151 
6) Salinity. The Millenium Ecosystem Assessment (30) recognizes soil salinization as a major human-induced 152 
driver; salinization also has a strong European relevance (31). Soils with an electrical conductivity between 4.0 153 
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and 8.0 dS m-1 are regarded as moderately saline. We chose the lower end of this spectrum here, that is 4.0 dS m-154 
1, which we achieved by adding NaCl to the soil (that is, our treatment also reflects sodicity).  155 
Synthetic organic chemicals have recently been argued to be regarded as factors of global change (32). We used 156 
several substances of different chemical classes, target organisms, and also representing different uses as 157 
separate factors in our experiment: an herbicide, an antibiotic, an insecticide and an antifungal agent. 158 
7) Herbicide. Glyphosate is one of the most commonly used herbicides worldwide. We used the commercial 159 
product Roundup® PowerFlex (Monsanto Agrar Deutschland, Düsseldorf), which contains 480 g L-1 glyphosate 160 
as active ingredient (a.i.), but also other additives, such as surfactants. We chose to use the commercial product 161 
together with its formulation rather than just the active ingredient, since the surfactant may contribute to effects. 162 
This followed the protocol of Ratcliff et al. (33) who used an application rate of 50 mg kg-1 a.i. to simulate the 163 
approximate soil glyphosate concentration following a single application at the recommended field rate of 5 kg 164 
a.i. ha-1.  165 
8) Antibiotics. There has been growing concern about antibiotics in the environment due to the spread of 166 
antibiotic resistance worldwide (34). There are many different classes of antibiotics, including tetracyclines; 167 
these are used on humans and in a veterinary context and residues have been documented in soils (35). 168 
Oxytetracycline has been found at soil concentrations of 305.000 ng kg-1, and it has been shown to persist and 169 
accumulate in the soil environment (35). We used the equivalent of ten times this amount (added as 170 
oxytetracycline-dihydrate; Sigma-Aldrich, MO, USA, catalog #PHR1537) to simulate a temporary hotspot, 171 
resulting for example from a fresh deposition of manure on an agricultural field. 172 
9) Insecticide. Neonicotinoid pesticides are now the most widely used class of insecticides in the world (36), and 173 
are discussed in terms of posing risks to non-target organisms. We here used imidacloprid, which is one of the 174 
three most widely used agricultural neonicotinoids (along with clothianidin and thiamethoxam). Observed values 175 
of imidacloprid in German and UK agricultural soils ranged from 1.6 up to 50 ng g-1 (36); we thus used 50 ng g-1 176 
imidacloprid (PESTANAL ® analytical standard, Sigma-Aldrich, MO, USA, catalog #37894) in our experiment.  177 
10) Antifungal agent. Azoles are the most commonly used class of fungicides (37), and are being used on 178 
animals (including humans) and on plants in agricultural fields. Carbendazim, a benzimidazole, has been used 179 
previously in soil research, using a recommended field application rate of approx. 6.0 mg kg-1 and 20 and 40-fold 180 
this concentration (38), other studies have used 1 mg kg-1 to 100 mg kg-1 of carbendazim (39); we here used 6.0 181 
mg kg-1 (PESTANAL ® analytical standard, Sigma-Aldrich, MO, USA, catalog #45368). 182 
 183 
Response variables.  184 
 185 
Here we describe the response variables investigated in our test systems. These variables are chosen to represent 186 
important biological processes (soil respiration, decomposition), physical properties (water-stable soil 187 
aggregates, water repellency), and fungal biodiversity (community composition, dispersion, nestedness). Soil 188 
fungi are known to play an important role in mediating these processes and the physical properties examined.  189 
1) Soil respiration. We measured soil respiration as CO2 concentration (ppm) after three weeks of the 190 
experiment. We sampled 3 ml of air from the headspace of each tube and injected this sample into an infrared 191 
gas analyzer (LiCOR 6400xt) following Bradford et al. (40). At the beginning of the experiment, we flushed 192 
each of the tubes with CO2-free air for five minutes to standardize among experimental units.  193 
2) Decomposition. As an indicator of decomposition, we inserted a pre-weighed cellulose filter paper square 194 
(approx. 30 mg; Testo AG, Germany; item #0554.0308) into the soil, which was retrieved at the end of the 195 
experiment. The corrected weight of this filter paper was used as an indication of decomposition (percent 196 
decomposition). 197 
3) Water-stable soil aggregates. We followed a modified protocol by Kemper and Rosenau (41). Briefly, the 198 
percentage of water stable aggregates was determined by placing samples (4.0 g) on small sieves with a mesh 199 
size of 0.25 mm. We used capillary re-wetting with deionized water and inserted samples into a sieving machine 200 
(Agrisearch Equipment, Eijkelkamp, Giesbeek, Netherlands). Calculations of the percentage of water-stable 201 
aggregates (%WSA) per sample were according to: %WSA = (water stable fraction-coarse matter)/(4.0 g-coarse 202 
matter). 203 
4) Soil water repellency. We measured soil water repellency with the water drop penetration time (wdpt (42)) 204 
method, where a droplet (8 µl) of deionized water is placed onto the soil surface, and the time in seconds is 205 
counted until the droplet soaks in (carried out in triplicate per sample). 206 
5) Soil fungal community analysis. We used amplicon sequence variant (ASV) richness. DNA was extracted 207 
from 0.25 g soil using the PowerSoil DNA isolation kit (MoBio Laboratories Inc., Carlsbad, CA, USA), 208 
following the manufacturer’s instructions. The fungal ITS2 genomic region was amplified by PCR using the 209 
fITS7 (5′‐ GTGARTCATCGAATCTTTG‐ 3′) and the ITS4 primers 210 
(5′‐ TCCTCCGCTTATTGATATGC‐ 3′) (43), respectively extended in 5′ with the p5 and p7 Illumina 211 
sequencing adaptors. The amplicon library was sequenced on an Illumina MiSeq 2000 platform (Illumina Inc., 212 
San Diego, CA, USA) at the Berlin Center for Genomics in Biodiversity Research (BeGenDiv, Berlin, Germany) 213 
using 2x300‐bp paired‐ end sequencing. W e used DADA2 (44) to obtain denoised, chimera-free, non-singleton 214 
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fungal ASVs. For full detail of soil fungal molecular analyses, bioinformatics and statistics see section “Analysis 215 
of soil fungal diversity and description of fungal sequence dataset” below. All statistical analyses for fungal data 216 
processing were conducted in R v.3.4.3 (18) using “vegan” (45) and base packages. 217 
6) Soil fungal community composition. Community compositional shifts were assessed using Bray-Curtis 218 
dissimilarity. Unconstrained multivariate ordination (NMDS) of the Bray-Curtis sample pairwise dissimilarities 219 
indicated that community compositions were mainly differentiated along the first axis. Therefore, we use the first 220 
axis as a relative measure of community compositional shifts. The second axis mainly represents community 221 
dispersion (as explained in the following paragraph).  222 
7) Soil fungal community dispersion. To represent the within-treatment variability in community composition 223 
among replicates (i.e. community dispersion), we calculated the mean distance to the group centroid of all 224 
replicates on the NMDS ordination space for each treatment. The longer the mean distance, the more dispersed 225 
the community.  226 
8) Soil fungal community nestedness. To test whether ASV-poor communities were a subset of the ASV-rich 227 
communities (i.e. nestedness), the temperature metric of the presence/absence community matrix was calculated 228 
(46). Non-randomness of nestedness was assessed using 999 null matrices (row and column permutation) and 229 
statistical robustness was assessed using a two-sided test.  230 
 231 
Statistical analyses of treatment effects. 232 
 233 
To test if the effects in multi-factor experiments are predictable from the effects measured in single treatments, 234 
we quantified the effect size of each treatment in single factor experiments, combined them, and compared them 235 
to the observations in multi-factor experiments. We considered the recent argument on null hypothesis 236 
significance testing and the scientific meaningfulness of effect sizes (e.g. (47-50)). Following them, we neither 237 
use the term “statistically significant” nor evaluate results dichotomously by setting a significance level (e.g. α = 238 
0.05); and, we basically assess effect size by comparing the means and 95% confidence intervals (CIs).      239 
An effect size and CIs of each single factor was estimated using a non-parametric bootstrap (51), because of 240 
unknown probability distributions and high flexibility (Fig. S5). We define effect size as the raw difference in 241 
mean between control and treatment (i.e., non-standardized absolute effect size). We are aware of other 242 
approaches to estimate or adjust CIs (e.g. BCa (52)), but they differ little in practice (53). The algorithm 243 
conducts sub-sampling with replacement (10,000 iterations).  244 
Then, we used plausible null assumptions for combining effect size of single factors following Schäfer and 245 
Piggott (54), namely additive, dominative, and multiplicative assumptions. Under the additive assumption, each 246 
factor has a unique effect; in the dominative case, the strongest factor dominates (overrides) the others (in case of 247 
positive and negative effects, this means picking the strongest absolute value); for the multiplicative case, 248 
proportional effect changes are considered and mathematically combined as if effects acted consecutively. 249 
Importantly, none of the assumptions can take factor interactions such as synergism and antagonism into 250 
account. Our intention to apply these three assumptions was not to figure out the most preferable one. Rather, we 251 
test if none of these assumptions were met (i.e. the joint effect sizes predicted in these assumptions do not 252 
include the actual joint effect size), so that we can regard the joint effects of multiple factors as fully 253 
unpredictable due to synergistic higher-order interactions. Although all assumptions are not necessarily 254 
reasonable for all response variables, having multiple (null) expectations is a recommended practice in the recent 255 
statistics literature (50, 55, 56), and we avoided subjectively removing some assumptions depending on response 256 
variable attributes.  257 
For the additive assumption, in each level of factor richness, the effect sizes of the corresponding single factors 258 
are simply summed up. For each replicate m (= 1, 2, …, 10),  259 

�𝐸𝐸𝐸𝐸𝑖𝑖
𝑖𝑖∈𝐾𝐾𝑚𝑚

 261 

 260 
was calculated, where ESi is effect size of a single factor i , Km is the unique subset of factors randomly chosen 262 
from the 10 factors for the replicate m: e.g. K1 = [Temperature, Copper], K2 = [Glyphosate, Copper], …, K10 = 263 
[Microplastic, Salinity] at the number of factors level of 2. Since each set of Km has 8 replicates for each single 264 
factor (e.g. K1 has 8 replicates for temperature and 8 replicates for copper), we applied a bootstrap procedure 265 
(1,000 iterations; see Fig. S5). Using this, each Km has 1,000 iterated effect size predictions, and therefore 266 
10,000 effect size predictions were made when all replicates were considered. Finally, the mean value and 267 
95%CI were calculated from the distribution.  268 
The same bootstrap procedures were used in multiplicative and dominative assumptions. In the multiplicative 269 
assumption, ESi was divided by the mean of the control and then multiplied as follows (modified from 270 
Thompson et al. (57)):  271 

𝐶𝐶𝐶𝐶 � (1 +
𝐸𝐸𝐸𝐸𝑖𝑖
𝐶𝐶𝐶𝐶

𝑖𝑖∈𝐾𝐾𝑚𝑚

) − 𝐶𝐶𝐶𝐶 272 
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The formula can consider both positive and negative effect size. However, note that the multiplicative 273 
assumption becomes unstable when the control value is very close to zero and relative change values are 274 
extremely high. Under the dominative assumption, the ESi having the highest absolute size within Km was 275 
selected. Therefore, it assumes that only the maximum effect size of single factor determines the joint effect size, 276 
regardless of other weaker factors.  277 
 278 
Furthermore, we investigated if the responses have a consistent directional change along the number of factors, 279 
how much the number of factors alone explains variability in the responses, and how much knowing factor 280 
identity and effect size information increases predictability. To represent possible nonlinear changes and factor 281 
interactions, we applied a random forest machine learning algorithm (58). To test if the change is directional 282 
along the number of factors, each response variable was modeled using the number of factors. Then, factor 283 
identity (i.e. whether a factor was present or not; binary coding for each factor) was added to the model as 284 
explanatory variables. Moreover, instead of adding factor identity, the effect sizes estimated based on the three 285 
assumptions described above (additive, multiplicative, and dominative) were added to the model as explanatory 286 
variables (i.e. an expected effect size value for each assumption). After constructing these three models (i.e. 287 
number, identity, and including effect size information), we evaluated how well each model explains the 288 
variability (R2, %). The algorithm hyperparameters were set as follows, after confirming the performance 289 
stability: the number of trees = 1000 and the random feature selection = 4. Bootstrap resampling was applied to 290 
estimate the 95%CIs of R2 and fitted curve (10,000 iterations).  291 
 292 
For the entire processes we created an R script, available at github (“https://github.com/masahiroryo/joint-ES-293 
estimate”). For the visualization, we used R v. 3.4.3 and its packages “ggplot2” (19), “ggridges” (59), “ggepi” 294 
(https://github.com/lwjohnst86/ggepi; v0.0.1.9000), and “patchwork” 295 
(https://github.com/thomasp85/patchwork). For the random forest analysis, we used the packages “party” (60) 296 
and “caret” (61). 297 
 298 
 299 
Analysis of soil fungal diversity  300 
 301 
DNA extraction, ITS2 PCR amplification and Illumina sequencing preparation. Soil DNA was extracted from 302 
0.25 g using the PowerSoil DNA isolation kit (MoBio Laboratories Inc., Carlsbad, CA, USA), following the 303 
manufacturer’s instructions. The fungal ITS2 genomic region was amplified by PCR using the fITS7 (5′‐304 
GTGARTCATCGAATCTTTG‐3′) and the ITS4 primers (5′‐ TCCTCCGCTTA TTGATATGC‐3′) (43), 305 
respectively extended in 5′ with the p5 and p7 Illumina sequencing adaptors.  306 
The PCR cycles were as follows: a denaturation step for 3 min at 98°C, 30 cycles of denaturation for 20 s at 307 
98°C, annealing for 20 s at 50°C, and elongation for 30 s at 72°C, and a final elongation step of 5 min at 72°C. 308 
PCRs were performed in a 25 μl volume containing 0.5 U of KAPA HiFi polymerase (Kapa Biosystems, 309 
Woburn, MA, USA), 1x KAPA HiFi buffer, 0.2 mM of each dNTP, 0.3 μM of each primer, and 2 μl of DNA 310 
template. PCR amplification was performed in duplicate and duplicate PCR products of each sample were 311 
subsequently pooled. The PCR products were purified using magnetic beads in a 0.8:1 v:v (GC Biotech, Alphen 312 
aan den Rijn, The Netherlands). The purified products were used in a second PCR step reduced to 10 cycles with 313 
similar cycle set up, with primers containing the sequencing adaptors and a 8 nt long index sequence for 314 
multiplex sequencing using 4 μl of DNA. PCR products were again purified with magnetic beads in a 0.8:1 v:v 315 
(GC Biotech, Alphen aan den Rijn, The Netherlands). DNA quantification was performed using PicoGreen 316 
technology (Invitrogen, Carlsbad, CA, USA) and the final PCR products were pooled on an equimolar basis. The 317 
amplicon library was sequenced on an Illumina MiSeq 2000 platform (Illumina Inc., San Diego, CA, USA) at 318 
the Berlin Center for Genomics in Biodiversity Research (BeGenDiv, Berlin, Germany) using 2x300‐bp 319 
paired‐end sequencing.  320 
 321 
Bioinformatics. Raw reads were demultiplexed allowing no error in the index sequence for sample assignment. 322 
We used DADA2 (44) to obtain denoised, chimera-free, non-singleton fungal amplicon sequence variants 323 
(ASVs). Raw reads containing any ambiguous bases were removed. Primers were removed using cutadapt 324 
including the reverse complement sequence of the reverse and forward primer sequence in the forward and 325 
reverse reads, respectively. Reads with more than 2 and 5 maximum expected number of errors for forward and 326 
reverse reads were excluded. Non-singleton ASVs were inferred on a sample basis. Chimera were identified de 327 
novo (sequences that corresponded to subsets of two more abundant sequences) and removed. Taxonomic 328 
annotation of ASVs was performed using the Naive Bayesian Classifier (62) against UNITE (63). ASVs were 329 
considered fungal if they were annotated at least at the phylum level at an 80% confidence threshold. We 330 
inferred a total 854 fungal ASVs in the 140 samples. After random read subsampling to a common sequencing 331 
depth (150 reads), 346 fungal ASVs in 139 samples were included in the analysis to test the effect of increasing 332 
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treatment levels on soil fungal community composition and diversity. A complete description of the dataset can 333 
be found below. 334 
  335 
Statistical analyses of soil fungal diversity. Community compositional change was measured using Bray-Curtis 336 
dissimilarity. The effect of factor richness and treatment identity was tested using a permutational multivariate 337 
analysis of variance on pairwise Bray-Curtis dissimilarities (64). The statistical robustness was assessed using 338 
999 Monte-Carlo permutations where sample assignment to treatments was randomized. The community 339 
variability within treatments (single and richness factor experiments) was calculated using multivariate 340 
homogeneity of group variance (65) and statistical robustness assessed using 999 Monte-Carlo permutations. A 341 
linear model was fitted to regress community variability with increasing factor richness. Pairwise Bray-Curtis 342 
dissimilarities were visualized using a non-metric multidimensional scaling (NMDS) ordination. 343 
 344 
Community taxa richness was measured as the number of ASVs in samples. A linear model was fitted to regress 345 
ASV richness with increasing factor richness. We tested whether ASV-poor communities were a subset of the 346 
ASV-rich communities, i.e. nestedness. Nestedness was measured using the temperature metric of the 347 
presence/absence community matrix, which calculates the number of “surprises” of the absence or presence of 348 
ASVs between the observed community matrix (arranged by decreasing sample richness and sample occurrence) 349 
and a perfectly nested matrix (46). To test the non-randomness of nestedness, we used a null model that pemutes 350 
the rows (samples) and columns (ASVs) of the matrix to generate null matrices while maintaining rows and 351 
columns totals. 999 null matrices were generated and statistical robustness was assessed using a two-sided test. 352 
Sample pairwise nestedness was further calculated and nestedness within and among treatment levels was tested 353 
using ANOVA. The difference in sample ranks of the different treatment levels in the lowest temperature matrix 354 
was also tested with a Kruskal-Wallis test, followed by a one-sided Wilcoxon test to test whether the rank of 355 
samples between two specific treatment levels differ.  356 
 357 
All statistical analyses were conducted in R (18) using “vegan” (45) and base packages. Data visualization was 358 
performed using the graphical R packages “gplots” (66) and “ggplot2” and its extensions “ggpubr” (19). 359 
 360 
 361 
Supplementary Text  362 
 363 
Description of the fungal sequence dataset 364 
 365 
From 2813975 raw reads, 854 denoised non-singleton non-chimeric fungal ASVs were inferred, totalling 366 
1546914 reads (55% of the reads retained; per sample: 57% ± 10% mean ± sd) for 140 samples. The major loss 367 
of reads happened at the quality filtering step (70% of the reads retained; per sample:  68% ± 8.5%, compared to 368 
>85% for any other steps including denoising, paired-end read merging, chimera and non-fungal ESV removal).  369 
 370 
Ten phyla were retrieved. ASVs were annotated to 33 classes, 60 orders, 113 families, 156 genera and 139 371 
species, but the proportion of ASVs to be annotated at any level strongly decreased at lower levels. The most 372 
strongly represented phylum was Ascomycota (604 ASVs, 68% of the ASVs), then Basidiomycota (149, 17%), 373 
followed by Mortierellomycota (32, 3.6%), Glomeromycota (28, 3.2%), Rozellomycota (25, 2.8%), 374 
Mucoromycota (21, 2.3%), Chytridiomycota (12, 1.4%), Zoopagomycota (5, <1%) and Olpidiomycota (2, <1%) 375 
and Monoblepharomycota (2, <1%). The most abundant phylum is Ascomycota (47.5% of the reads), followed 376 
by Mucoromycota (31.6%), Basidiomycota (18.8%) and Mortierellomycota (1.7%). All other phyla were 377 
represented by less than 0.1% of the reads. ASV sequence length showed a unimodal distribution that peaks at ~ 378 
250 bp and ranging from 165 bp to 454 bp (265 bp ± 35 bp mean ± sd). Although taxonomy is correlated to 379 
sequence length, our coverage of sequence length suggests that there is no taxonomic bias in the dataset. 380 
 381 
Accumulation curve of ASVs with addition of samples revealed no saturation, indicating that unique ASVs were 382 
found in each sample. Those ASVs were neither the most numerous nor abundant, totalling 0.5% of the reads. 383 
Most ASVs were found in two samples, but again totalling 0.5% of the reads. In contrast, there were a few 384 
highly abundant ASVs, and they tended to occur in most samples. No ASV was found to occur in all samples but 385 
one was found in 139 samples (coded “esv1”, absent from sample 130). 386 
 387 
The final number of fungal reads per sample was 7649.39± 5201.451 (min:13 in sample 69, max:199530 in 388 
sample 72). Sequencing depth and richness were slightly correlated (Pearson’s R=0.51). The number of fungal 389 
ASVs per sample was 70.5 ± 38 (min: 2 in sample 69, max: 245 in sample 72).  390 
 391 
After removing sample 69 (failure to amplify), and randomly resampling to 150 reads per sample to account for 392 
sequencing depth, 346 ASVs belonging to 8 phyla (loss of Olpidiomycota and Monoblepharomycota) were 393 
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retained and the ASV richness was 29.4 ± 10.4 (min: 6 in sample 137, max: 51 in samples 113 and 52). ASV 394 
richness per sample before and after random resampling were well correlated (Pearson’s R=0.72). Similarly, 395 
Bray-Curtis dissimilarity between samples before and after random resampling were also well correlated (Mantel 396 
R=0.66). 397 
 398 
We inferred 346 fungal ASVs in 139 samples, after random read subsampling to a common sequencing depth, 399 
that we have included in the analysis to test the effect of increasing treatment levels on soil fungal community 400 
composition and diversity. Centroid location in a multivariate space clearly differed among treatment levels 401 
(PERMANOVA, df=1, F=20.2, R²=0.11, p-value=0.001) and additionally among treatments (PERMANOVA, 402 
df=13, F=3.5, R²=0.24, p-value=0.001). This indicates that community composition consistently differed with 403 
increasing treatment levels and therefore some degree of predictability. However, community composition 404 
variability increased with increasing treatment level (df=1, t=5.049, F=25.5, R²=0.15, p-value=1.39e-06). This 405 
indicates that even though increasing treatment levels select for particular phylotypes that differ from the lower 406 
treatment levels (notably the single treatments), the abundance and occurrence of those phylotypes tend to vary 407 
more when increasing treatment levels, indicating lower predictability and increasing dispersion. Moreover, 408 
community variability clearly differed between treatments (df=14, F=5.5, p-value=0.001) but this was less clear 409 
among treatments level (df=5, F=2.5, p-value=0.036,) likely because single treatment effect had opposing effect 410 
on community composition, at the ASV level and at the phylum level. These results suggest that the effect of 411 
multiple factors on soil fungal community composition will not be easily predicted from the effect of single 412 
treatment factors.  413 
 414 
We also observed that ASV richness strongly decreased with increasing treatment level (df=1, t=-7.311, F=53.4, 415 
R²=0.27, p=2.01e-11). The losses of ASVs were non-random, which is in agreement with the selection of 416 
specific phylotypes: notably, ASV-poor communities were constituted of a subset of the ASVs in ASV-rich 417 
communities (temperature=7.3, SES=-8.3, p=0.001). Specifically, Basidiomycota are lost with an increasing 418 
number of factors while Ascomycota are apparently more stress-tolerant generalists (Fig. S2 and S3). Additional 419 
sample pairwise comparisons revealed higher nestedness between samples of different treatment levels than of 420 
similar ones (ANOVA F=425.74, df=1, p-value < 2.2e-16), with higher level treatments being nested within 421 
lower treatment levels, especially single factor treatments.  422 
 423 
Tests on sample ranks of the matrix with the lowest temperature further confirm that ranks of different treatment 424 
levels tend to differ (Kruskal-Wallis chi-squared = 11.477, df = 5, p-value = 0.0427) with treatment level 10 425 
being consistently at higher ranks (i.e. nested within other treatment levels) than lower treatment levels (Level 10 426 
versus all others level treatments: Wilcoxon W = 989, p-value = 0.002555). 427 
  428 
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 429 
Fig. S1.  430 
Observation vs. prediction. Predictions using a random forest machine learning algorithm based on three 431 
different models. Predictions based only on the number of factors (blue) generally show a correlation with 432 
observations but the slopes are shallower than predictions with more information (yellow and green). This 433 
indicates that general trends can be predicted solely by the number of factors, but additional information (i.e. 434 
factor identity or effect size information) is needed for better predicting the severity of the changes. 435 
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 437 
Fig. S2.  438 
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Effects of different global change factors applied singly and applied in different multiples (2, 5, 8, 10 interacting 439 
factors) on the soil fungal community. Relative abundance of fungal taxa at the phylum level. See the caption of 440 
Fig. 3 and 4 for explanation of symbols. 441 
  442 
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 443 

 444 
Fig. S3.  445 
Characteristics of the soil fungal community in response to multiple drivers of global change. A. Arranged 446 
presence/absence matrix of ASVs in samples; rows from top to bottom are samples arranged by decreasing ASV 447 
richness; columns from left to right are ASVs arranged by increasing sample occurrence. B. Relative abundance 448 
of fungal taxa (at phylum level) across the single factor treatments and factor richness experiment.C. Non-metric 449 
multidimensional scaling (NMDS) of Bray-Curtis sample pairwise dissimilarities. Color represents the treatment 450 
applied to samples. Samples are connected to their group centroid by lines. In the main analysis, community 451 
composition and dispersion were represented by the scores on the 1st axis of the NMDS plot and the mean value 452 
of Euclidean distances from all replicates to the group median on the NMDS plot, respectively. D. Heatmap of 453 
nestedness between samples. The samples in the square matrix are ordered by increasing ASV richness. The 454 
colors in rows and columns represent number of factors applied to samples. The colors within the heatmap 455 
represent nestedness from low (orange) to high (blue).   456 
 457 
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 458 
Fig. S4.  459 
Bimodal-like distributions of the standardized measured response variables. These might indicate regime shifts 460 
caused by the interaction of multiple factors: the distribution for each variable (and all level data are combined) 461 
in the left panel, and the distribution for each level (and all variables are combined) in the right panel. Observing 462 
a bimodality together with shift in an internal system state (e.g. community composition and dispersion; Fig. 4) 463 
is often thought to be a reasonable indication of regime shifts. Yet, we did not directly demonstrate such a 464 
regime shift, as our experiment was not designed for this (e.g. hysteresis and positive feedback are considered 465 
direct support for the existence of a bistability state). 466 
 467 
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 468 
Fig. S5.  469 
Bootstrap resampling scheme for estimating the joint effect size at each level of factor number. For brevity, as an 470 
example, only factors A and B are shown to represent a replicate in level 2, without losing generality. In Step 1, 471 
for each of control, treatments A, B, and J (J: actual joint effect of A and B), it performs sub-sampling with 472 
replacement to generate Ci, TAi, TBi, and TJi, respectively, where i represents i-th iteration (i = 1, 2, …, K). In 473 
Step 2, for each, it calculates the mean (ci, tai, tbi, and tji). In Step 3, it calculates the effect size of each treatment 474 
(zai, zbi, zji) as an absolute difference from the mean of the control. In Step 4, the effect sizes of single factors are 475 
combined to generate a predicted effect size zi: how to combine them depends on assumption type (additive, 476 
multiplicative, or dominative). In Step 5, the difference between the predicted effect size zi and the actual joint 477 
effect size zji is calculated as Δz i. Steps 1–5 are repeated K times to draw the bootstrap distributions of the actual 478 
joint effect size, the predicted joint effect size, and the difference. Finally, the mean and 95% confidence 479 
intervals (CIs) were taken from these distributions, and a p-value was calculated from the difference distribution 480 
Δz, estimating the probability that the difference between the actual joint effect size and the predicted joint effect 481 
size crosses over zero by chance. 482 
 483 
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 484 
Fig. S6.  485 
Results of separate experiment to test for effects of DMSO on soil aggregation (water stable soil aggregates). 486 
Shown are bootstrapped difference in mean and 95% confidence interval. Raw data (n = 10) are in the right 487 
panel: there was no difference between control and DMSO treatment. DMSO is used as a solvent and was added 488 
to all experimental units at the same rate. 489 
 490 
  491 
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Table S1.  492 
The effect size estimates and their predictability tests along factor richness. For each response variable in each 493 
level of factor richness, a p-value was estimated under each assumption, quantifying the probability that the 494 
mean of the actual effect size differs from the assumption by chance. 495 
 496 

 497 
 498 
  499 
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Table S2.  500 
The way forward. We here outline some key next steps for future experiments building on the approach used 501 
here, providing an explanation for why these steps are important, and we explain how our study specifically set 502 
the stage and could be built upon. 503 
 504 
Next steps  Explanation How our study set the stage 

Higher degree of 
realism and 
system 
complexity 

Carry out field experiments 
(potentially in various ecosystem 
types) that also include other 
organism groups, such as plants 
and larger soil fauna (e.g. 
earthworms) 

We show here that patterns and trajectories emerge 
quite clearly with a relatively low number of 
replicates (140 total); this is a clear advantage, 
since field studies are in principle logistically 
feasible with this level of replication (compared to 
many hundred plots) 

Increased 
mechanistic 
resolution 

Our study design was not 
optimized for detecting specific 
factor interactions (which is what 
factorial designs are for) 

The design used here could be combined with a 
factorial design. The factorial design would include 
a few factors (perhaps only) of special interest. This 
factorial design could then be repeated on the 
background of all remaining factors either being 
toggled on or off. An equivalent idea could be use 
also for fractional factorial designs 

Dealing with 
multiple levels of 
one factor 

We here used one level for each 
factor (e.g. 50% of water for 
drought), informed by literature 
values or scenarios, as is typical 
of much global change biology 
research.  

The design we used could be combined with a 
design that tests multiple levels of a factor, for one 
or a few selected factors. For example, other factors 
that are not in the focus of such tests could be 
collectively toggled on or off.  

Detecting 
important 
interactions  

Using machine learning, we could 
not specify which combinations 
of factors are important. 

Advanced machine learning methods might be able 
to identify important higher order interactions in 
studies such as ours, once they have been tested on 
small datasets (67, 68)  

 505 

  506 
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Data S1 (separate file) 507 
Data for literature synthesis presented in Fig. 1 (panel A - C is covered by the dataset "multifactorialty" and 508 
panel D by "network analysis") 509 
 510 
 511 
 512 
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