Supplementary Information for

Interfacial Fe₅C₂-Cu catalysts toward Low-Pressure Syngas Conversion to Long-Chain Alcohols

Li et al.

Supplementary Figures and Tables

Supplementary Figure 1. Morphology of $Cu_xFe_yMg_4$ -LDH. SEM images of (a) $Cu_1Fe_1Mg_4$ -LDH, (b) $Cu_2Fe_1Mg_4$ -LDH, (c) $Cu_4Fe_1Mg_4$ -LDH and (d) $Cu_6Fe_1Mg_4$ -LDH.

Supplementary Figure 2. Morphology of Cu_xFe_yMg₄-MMO. SEM images of Calcined sample: (a) Cu₁Fe₁Mg₄-MMO, (b) Cu₂Fe₁Mg₄-MMO, (c) Cu₄Fe₁Mg₄-MMO and (d) Cu₆Fe₁Mg₄-MMO.

Supplementary Figure 3. Morphology of $Cu_xFe_yMg_4$ -MMO. TEM images of Calcined sample: (a1–a3) $Cu_1Fe_1Mg_4$ -MMO, $Cu_2Fe_1Mg_4$ -MMO and $Cu_4Fe_1Mg_4$ -MMO. (b1–b3) HRTEM images selected from (a1–a3) and their Fourier transform patterns of the selected region (inset), respectively. (c1–c3) and (d1–d3) EDS mapping of elemental distribution for Cu and Fe.

Supplement	ary rubic 1.1	nysicoenen	mear properti		culurysts	
Sample	$\begin{array}{c} \text{BET} \\ \text{surface area} \\ (\text{m}^2 \text{ g}^{-1}) \end{array}$	Surface C content (%)	Cu/Fe ratio ^{<i>a</i>}	Cu/Fe ratio ^b	Cu Crystallite size ^c (nm)	Mean Cu particle size ^d (nm)
Cu_1Fe_1	32.49	33.53	0.63	0.99	15.7	13.4
Cu_2Fe_1	22.07	36.39	1.24	1.96	18.4	17.9
Cu ₄ Fe ₁	15.96	35.43	2.37	3.84	21.7	21.0
Cu ₆ Fe ₁	10.38	29.99	4.47	5.67	25.1	-

Supplementary Table 1. Physicochemical properties of various catalysts

^a Cu/Fe ratio was determined by XPS.

^b Cu/Fe ratio was determined by inductively coupled plasma-atomic emission spectroscopy (ICP-AES).

^c Crystallite size was determined by XRD with the Scherrer equation.

^d Mean Cu particle size was determined by TEM images.

Catalysts ^{<i>a,b,c</i>}	Conv.		Selectivi	ty[mol%]		Alcohols distribution[%] ^d						
Catalysis	[%]	CH_4	$C_{2+}H$	ROH	CO_2	MeOH	EtOH	PrOH	BuOH	C ₅₊ OH		
Cu ₄ Fe ₁ Mg ₄ -MMO(800)	17.3	11.3	44.7	5.2	38.8	21.3(1.1)	59.2(3.1)	12.0(0.6)	5.7(0.3)	1.8(0.1)		
$Cu_4Fe_1Mg_4$ -MMO(500)	48.7	2.8	48.0	15.6	33.6	6.0(0.9)	31.7(4.9)	5.8(0.9)	2.5(0.4)	54.0(8.5)		
$Cu_4Fe_1Mg_4$ -MMO(400)	43.2	4.3	47.8	19.0	28.9	10.9(2.1)	43.5(8.3)	10.6(2.0)	5.2(1.0)	30.8(5.6)		
$Cu_4Fe_1Mg_4$ -MMO(350)	44.9	3.1	43.4	18.8	34.7	5.9(1.0)	49.8(9.3)	9.2(1.7)	4.3(0.8)	31.8(6.0)		
Cu ₄ Fe ₁ Mg ₄ -LDH	42.1	9.8	50.3	18.7	21.2	26.6(4.9)	45.3(8.4)	14.1(2.6)	6.2(1.2)	7.8(1.6)		

Supplementary Table 2. Catalytic performances of samples with various calcination temperatures

^{*a*} Activation conditions: 1 g precursor, H₂: CO: CO₂=1: 1: 2 (40 mL min⁻¹), 2 °C min⁻¹, 300 °C 2 h + 350 °C 1 h. ^{*b*} Reaction conditions: 3 MPa, 260 °C, H₂/CO=2, 2400 mL g_{cat}⁻¹ h⁻¹. ^{*c*} Various calcination temperatures of Cu₄Fe₁Mg₄-LDH in brackets.

^d Normalized data to S_{ROH}, mol% in brackets.

$\operatorname{Entry}^{a,b}$	Conv.		Selectivi	ty[mol%]			Alco	hols distribut	ion[%] ^c	
Linuy	[%]	CH ₄	$C_{2+}H$	ROH	CO_2	MeOH	EtOH	PrOH	BuOH	$C_{5+}OH$
500°C 20h	4.8	5.6	41.8	45.2	7.4	85.4(38.6)	1.9(0.8)	1.5(0.7)	0.8(0.4)	10.4(4.7)
350°C 2h	33.1	1.7	64.2	7.2	26.9	8.4(0.6)	18.4(1.3)	7.2(0.5)	1.3(0.1)	64.7(4.7)
350°C 10h (H ₂ :CO:CO ₂ :N ₂ =1:1:2:8, 100 ml min ⁻¹)	12.8	2.3	63.9	13.2	20.6	20.8(2.7)	25.3(3.3)	5.4(0.7)	1.2(0.2)	47.3(6.3)
300°C 2h + 350°C 1h	48.7	2.8	48.0	15.6	33.6	6.0(0.9)	31.7(4.9)	5.8(0.9)	2.5(0.4)	54.0(8.5)

Supplementary Table 3. Catalytic performances of samples with various activation steps

^{*a*} Activation conditions : Cu₄Fe₁Mg₄-MMO, 1 g precursor, H₂:CO:CO₂=1:1:2 (40 ml min⁻¹), 2 °C min⁻¹.

^{*b*} Reaction conditions: 3 MPa, 260 °C, H₂/CO=2, 2400 mL g_{cat}^{-1} h⁻¹.

^c Normalized data to S_{ROH}, mol% in brackets.

Supplementary Figure 4. XRD patterns of the reduced and passivated samples in syngas or syngas containing CO₂ of Cu₄Fe₁Mg₄-MMO.

ActivationPressure $atmosphere^{a,b}$ [MPa]		Conv.	Selectivity[mol%]				Alcohols distribution[%] ^c					
atmosphere ^{<i>a,b</i>}	[MPa]	[%]	CH ₄	$C_{2+}H$	ROH	CO ₂	MeOH	EtOH	PrOH	BuOH	C ₅₊ OH	
	1	53.2	3.7	36.5	29.8	30.0	8.7(2.6)	28.8(8.5)	8.2(2.4)	5.2(1.5)	49.1(14.8)	
50.0% CO ₂	2	39.9	2.8	60.3	17.9	19.4	10.4(1.8)	41.7(7.4)	9.9(1.7)	9.1(1.6)	28.9(5.4)	
	3	48.7	2.8	48.0	15.6	33.6	6.0(0.9)	31.7(4.9)	5.8(0.9)	2.5(0.4)	54.0(8.5)	
	1	39.3	7.6	46.6	20.7	25.1	21.6(4.4)	45.1(9.3)	14.2(2.9)	7.3(1.5)	11.8(2.6)	
Pure syngas	2	39.7	7.8	44.8	23.0	24.4	19.2(4.4)	43.1(9.9)	13.4(3.1)	10.2(2.3)	14.1(3.3)	
	3	48.9	7.8	48.7	19.2	24.3	15.0(2.9)	36.5(7.0)	10.0(1.9)	5.2(1.0)	33.3(6.4)	

Supplementary Table 4. Catalytic performances of samples with various activation atmosphere

^{*a*} Activation conditions: Cu₄Fe₁Mg₄-MMO, 1 g precursor, 40 mL min⁻¹, 2 °C min⁻¹, 300 °C 2 h + 350 °C 1 h. ^{*b*} Reaction conditions: 260 °C, H₂/CO=2, 2400 mL g_{cat}^{-1} h⁻¹. ^{*c*} Normalized data to S_{ROH}, mol% in brackets.

Sup	plementary	y Table 5	. Catal	vtic	performances	of	samples	with	various	H_2	/CO	ratios	in re	eaction	gas
-----	------------	-----------	---------	------	--------------	----	---------	------	---------	-------	-----	--------	-------	---------	-----

H ₂ /CO ratio ^{<i>a,b</i>}	Conv.		Selectivi	ty[mol%]			Alco	ohols distributi	on[%] ^c	
	[%]	CH_4	$C_{2+}H$	ROH	CO_2	MeOH	EtOH	PrOH	BuOH	C ₅₊ OH
1/1	26.5	4.8	34.8	12.6	47.8	12.4(1.6)	38.3(4.8)	11.2(1.4)	11.4(1.4)	26.7(3.4)
2/1	48.7	2.8	48.0	15.6	33.6	6.0(0.9)	31.7(4.9)	5.8(0.9)	2.5(0.4)	54.0(8.5)

^a Activation conditions: Cu₄Fe₁Mg₄-MMO, 1 g precursor, H₂: CO: CO₂=1: 1: 2 (40 mL min⁻¹), 2 °C min⁻¹, 300 °C 2 h + 350 °C 1 h.

^b Reaction conditions: 3 MPa, 260 °C, 2400 mL g_{cat}⁻¹ h⁻¹. ^c Normalized data to S_{ROH}, mol% in brackets.

Supplementary Table 6. Catalytic performances of samples with various reaction temperatures

Reaction temperature ^{<i>a,b</i>}	Conv.		Selectivi	ty[mol%]			Alco	hols distributi	on[%] ^c	
	[%]	CH_4	$C_{2+}H$	ROH	CO_2	MeOH	EtOH	PrOH	BuOH	C ₅₊ OH
220	4.6	4.7	39.9	53.8	1.6	12.2(6.6)	16.1(8.7)	10.7(5.7)	5.4(2.9)	55.6(29.9)
260	48.7	2.8	48.0	15.6	33.6	6.0(0.9)	31.7(4.9)	5.8(0.9)	2.5(0.4)	54.0(8.5)
300	55.4	7.4	57.3	13.7	21.6	80.3(11.0)	5.0(0.7)	3.6(0.5)	1.7(0.2)	9.4(1.3)

^{*a*} Activation conditions: Cu₄Fe₁Mg₄-MMO, 1 g precursor, H₂: CO: CO₂=1: 1: 2 (40 mL min⁻¹), 2 °C min⁻¹, 300 °C 2 h + 350 °C 1 h.

^b Reaction conditions: 3 MPa, H₂/CO=2, 2400 mL g_{cat}^{-1} h⁻¹.

^c Normalized data to S_{ROH}, mol% in brackets.

Catalysts ^{<i>a,b</i>} Pressure [MPa]	Pressure	Conv.		Selectiv	vity[mol%]			Alcoh	ols distributi	on [%] ^d	
Catalysts ^{a,b}	[MPa]	[%]	CH ₄	$C_{2+}H$	ROH^{c}	CO ₂	MeOH	EtOH	PrOH	BuOH	C ₅₊ OH
	1	28.1	6.7	50.8	25.4 (30.6)	17.1	19.0 (4.8)	38.5 (9.8)	15.1 (3.8)	7.3 (1.8)	20.1 (5.2)
Cu ₁ Fe ₁	2	33.5	3.8	59.1	21.8 (25.7)	15.3	12.8 (2.8)	44.1 (9.6)	14.2 (3.1)	7.5 (1.6)	21.4 (4.7)
	3	58.2	3.3	52.3	12.9 (18.8)	31.5	6.8 (0.9)	47.6 (6.1)	10.1 (1.3)	4.6 (0.6)	30.9 (4.0)
	1	28.8	2.1	44.8	23.6 (33.5)	29.5	10.9 (2.6)	31.0 (7.3)	13.4 (3.2)	8.8 (2.1)	35.9 (8.4)
Cu ₂ Fe ₁	2	32.1	5.8	48.4	23.0 (29.7)	22.7	20.6 (4.7)	20.8 (4.8)	12.4 (2.8)	7.5 (1.7)	38.7 (9.0)
	3	38.4	2.4	60.9	16.8 (21.0)	19.9	21.4 (3.6)	21.6 (3.6)	9.3 (0.9)	5.3 (0.4)	43.4 (7.3)
	1	53.2	3.7	36.5	29.8 (42.6)	30.0	8.7 (2.6)	28.8 (8.5)	8.2 (2.4)	5.2 (1.5)	49.1 (14.8)
Cu Ec	1 ^e	31.6	8.4	47.3	20.2 (26.6)	24.1	15.1 (3.1)	22.5 (4.5)	13.2 (2.6)	10.6 (2.1)	38.6 (7.9)
Cu4Fe1	2	39.9	2.8	60.3	17.9 (22.2)	19.4	10.4 (1.8)	41.7 (7.4)	9.9 (1.7)	9.1 (1.6)	28.9 (5.4)
	3	48.7	2.8	48.0	15.6 (23.5)	33.6	6.0 (0.9)	31.7 (4.9)	5.8 (0.9)	2.5 (0.4)	54.0 (8.5)
	1	17.2	5.7	43.6	7.1 (12.6)	43.6	4.1(0.3)	14.7(1.0)	3.9(0.3)	2.1(0.1)	75.2(5.4)
Cu Ea	1^f	30.5	6.4	46.3	3.2 (5.7)	44.1	10.1 (0.3)	15.5 (0.5)	9.2 (0.3)	5.6 (0.2)	59.6 (1.9)
Cu ₆ re ₁	2	27.5	3.1	45.2	9.8 (16.8)	41.9	9.1(0.9)	19.8(1.9)	6.8(0.6)	3.5(0.3)	60.8(6.1)
	3	61.5	10.7	38.0	8.9 (15.4)	42.4	9.7(0.9)	29.6(2.6)	8.2(0.7)	4.2(0.3)	48.3(4.4)

Supplementary Table 7. Catalytic performances of samples with various reaction pressure

^{*a*} Activation conditions: 1 g precursor, H₂: CO: CO₂=1: 1: 2 (40 mL min⁻¹), 2 °C min⁻¹, 300 °C 2 h + 350 °C 1 h. ^{*b*} Reaction conditions : 260 °C, H₂/CO=2, 2400 mL g_{cat}⁻¹ h⁻¹.

^c S_{ROH} excluding CO₂ in brackets. ^d Normalized data to S_{ROH}, mol% in brackets. ^e WHSV = 4800 mL $g_{cat}^{-1} h^{-1}$ ^f WHSV = 1200 mL $g_{cat}^{-1} h^{-1}$

Catalysts	Pressure	Space time yield [g $g_{cat}^{-1} h^{-1}$]										
Catalysts	[MPa]	CH_4	$C_{2+}H$	CO_2	ROH	MeOH	C ₅₊ OH					
	1	0.017	0.116	0.122	0.130	0.025	0.026					
Cu_1Fe_1	2	0.012	0.166	0.135	0.141	0.018	0.030					
	3	0.018	0.254	0.481	0.141	0.010	0.040					
	1	0.006	0.106	0.218	0.111	0.014	0.042					
Cu_2Fe_1	2	0.014	0.109	0.159	0.122	0.024	0.045					
	3	0.009	0.200	0.205	0.131	0.027	0.053					
	1	0.012	0.111	0.285	0.201	0.018	0.101					
Cu_4Fe_1	2	0.010	0.205	0.207	0.140	0.014	0.040					
	3	0.014	0.210	0.462	0.141	0.009	0.076					

Supplementary Table 8. Space time yield of various products calculated from Table S7

Supplementary Figure 5. Anderson-Schulz-Flory (A-S-F) plots for the distribution of alcohols and hydrocarbons. (a) Cu_1Fe_1 , (b) Cu_2Fe_1 and (c) Cu_4Fe_1 . (a1–c1) at 1 MPa, (a2–c2) at 2 MPa, (a3–c3) at 3 MPa.

Catalyst	H2/CO ratio	Temperature /°C	Pressure /MPa	GHSV	CO conversion/%	Total alcohol Selectivity/%	Long-chain alcohol selectivity/%	Total alcohols STY ^a	Long-chain alcohols STY ^a	reference
Cu4Fe1	2	260	1	$2400 \text{ mL } \text{g}_{\text{cat}}^{-1} \\ \text{h}^{-1}$	53.2	29.8	49.1	0.201	0.101	This work
CuZnFeMn	2	260	4	$6000 \ h^{-1}$	52.62	31.04	3.65	0.24	0.016	Catal. Commun. 2008 , 9, 1869- 1873
3DOM Cu ₂ Fe ₁	1	260	4.8	$2000 \ h^{-1}$	57.5	33.6	52.4	0.20	0.100	<i>ChemCatChem</i> 2014 , 6, 473- 478
CF0.5	2	260	4	$5000 \ h^{-1}$	17.99	20.77	2.5	0.05	0.001	J. Colloid Interface Sci. 2016 , 470, 162-171
CNF-2-0.005	1.5	240	5	$\frac{32000\ mL}{h^{-1}}\ g_{cat}{}^{-1}$	11	39		0.53		ACS Catal. 2018, 8, 9604- 9618
CuFe NPs	2	220	6	$6000 \ h^{-1}$	17.1	21.9	64	0.14	0.085	J. Mol. Catal. A: Chem. 2013 , 378, 319-325
0.5%K-FeCuMnZnO	2	260	4	$6000 \ h^{-1}$	27.3	49.3	3	0.29		Appl. Energy 2015 , 138, 584-589
CoGa-ZnAl-LDO/Al ₂ O ₃	2	260	3	$2000 \ h^{-1}$	43.5	59	37.7	0.24	0.091	J. Catal. 2016 , 340, 236-247
CoMn CuZnAlZr	2	230	6	$2000 \ mL \ g_{cat}{}^{-1} \\ h^{-1}$	17.8	46.1	57.1	0.04	0.023	Angew. Chem., Int. Ed. 2019 , 58, 4627-4631
CoCu/MoO _x	1	270	4	$\frac{120000}{h^{-1}} mL \ g_{cat}{}^{-1}$	<2	46		0.03		Angew. Chem., Int. Ed. 2014 , 53, 6397-6401
(Cu ₁ Co ₂) ₂ Al/CNT	2	230	3	$\begin{array}{c} 3900 \ mL \ g_{cat}{}^{-1} \\ h^{-1} \end{array}$	45	62	13.8	0.34	0.05	J. Mater. Sci. 2016 , 51, 5216-5231
CuFeCo	2	350	5.5	$6000 \ h^{-1}$	72	12.5	6	0.25	0.015	Appl. Catal. A 2015, 503, 51- 61

Supplementary Table 9. Catalytic performance data for a variety of modified F–T catalysts used in LAS

Fe/K/ Mo ₂ C(Fe/Mo= 1/14)	2	320	7	$4000 \ h^{-1}$	50.25	22.69	0.62	0.14	0.001	Catal. Lett. 2010, 136, 9- 13
S2-CuFeMg-Cat	2	300	4	$2000 \ h^{-1}$	56.89	49.07	11.25	0.28	0.032	Catal. Sci. Technol. 2013 , 3, 1324-1332
CuFeK0.5M	2	320	5	$6000 \ h^{-1}$	53	61		0.32		Fuel Process. Technol. 2017 , 159, 436-441
Fe-CuMnZrO ₂ (I)	2	310	8	$8000 \ h^{-1}$	45.5	26.2	3	0.45	0.014	J. Mol. Catal. A: Chem. 2004, 221, 51- 58
Fe-Cu/Al2O3 (Al2O3 loading: 89.3%)	2.68	380	4	$10000 \ h^{-1}$		62.3		0.044		J. Nat. Gas Chem. 2008 , 17, 327-331
Cu-Fe-K-M ₈₀	2	320	5	$6000 \ h^{-1}$	56	63		0.35		Energy Procedia 2015 , 75, 767- 772
Cu ₂₀ Fe ₃₀ K ₁ M	2	320	5	$6000 \ h^{-1}$	46	53		0.35		Catal. Today 2014 , 234, 278-284
K-CoMoS2/Al2O3	2	300	5	$5000 \ h^{-1}$	9	47	47	0.30	0.141	Energy Fuels 2013, 277, 3769-3777
Co4Mn1K0.1	5	220	4	$3600 \ h^{-1}$	34	44	22	0.20	0.044	<i>Nat Commun.</i> 2016 , 7, 13058-13064
CoCuMn	2	200	6	$3600 \ h^{-1}$	3	52	65	0.12	0.078	J. Am. Chem. Soc. 2013 , 135, 7114- 7117
Co1M01K0.05-12% (4.2% Co/MWCNT)	2	290	5	$\begin{array}{c} 8000 \ mL \ g_{cat}{}^{-1} \\ h^{-1} \end{array}$	21.1	85		0.33		Appl. Catal. A 2008, 340, 87- 97

 $a \mathbf{g} \mathbf{g}_{cat}^{-1} \mathbf{h}^{-1}$

$Entry^{a,b}$	Conv.		Selectivi	ty[mol%]			Alco	ohols distribut	ion[%] ^c	
Lifti y	[%]	CH_4	$C_{2+}H$	ROH	CO_2	MeOH	EtOH	PrOH	BuOH	C ₅₊ OH
1	53.2	3.7	36.5	29.8	30.0	8.7(2.6)	28.8(8.5)	8.2(2.4)	5.2(1.5)	49.1(14.8)
2	50.1	3.4	34.3	31.2	30.1	9.6(3.0)	29.6(9.2)	8.7(2.7)	6.4(1.9)	45.7(14.4)
3	51.2	2.3	38.6	28.0	31.1	7.5(2.1)	28.0(7.8)	8.1(2.3)	6.0(1.7)	50.4(14.1)

Supplementary Table 10. Catalytic performances of Cu₄Fe₁ with three runs

^{*a*} Activation conditions: 1 g precursor, H₂: CO: CO₂=1: 1: 2 (40 mL min⁻¹), 2 °C min⁻¹, 300 °C 2 h + 350 °C 1 h. ^{*b*} Reaction conditions: 1 MPa, 260 °C, H₂/CO=2, 2400 mL g_{cat}⁻¹ h⁻¹. ^{*c*} Normalized data to S_{ROH}, mol% in brackets.

Catalysts ^{<i>a,b</i>} Conv.		Selectivity[mol%]				Alcohols distribution[%] ^c				
[%]	[%]	CH_4	$C_{2+}H$	ROH	CO_2	MeOH	EtOH	PrOH	BuOH	C ₅₊ OH
Cu ₄ Fe ₁	53.2	3.7	36.5	29.8	30.0	8.7(2.6)	28.8(8.5)	8.2(2.4)	5.2(1.5)	49.1(14.8)
Cu ₄ Fe ₁ -co	37.1	13.4	31.3	35.2	20.1	9.6(3.4)	79.6(28.0)	6.7(2.3)	2.4(0.8)	1.7(0.7)
Cu ₄ Fe ₁ -im	9.7	19.9	52.0	10.5	17.6	81.2(8.5)	9.6(1.0)	5.3(0.6)	3.9(0.4)	_
Cu_4	5.9	23.1	2.1	70.5	4.3	92.0(64.8)	3.9(2.7)	2.7(1.9)	1.4(1.1)	_
Fe ₁	19.2	21.3	38.6	_	40.1	_	_	_	_	_
Cu_4/Fe_1^d	7.8	25.5	21.7	27.6	25.2	85.6(23.6)	8.8(2.4)	5.6(1.6)	_	_
Cu ₄ +Fe ₁ ^e	6.2	21.7	47.8	15.0	15.5	89.1(13.3)	7.3(1.1)	3.6(0.6)		
Fe ₁ +Cu ₄ ^f	6.5	27.3	34.3	19.6	18.8	90.6(17.7)	7.6(1.5)	1.8(0.4)		

Supplementary Table 11. Catalytic performances of samples with different preparation methods and composition

^a Activation conditions: 1 g precursor, H₂: CO: CO₂=1: 1: 2 (40 mL min⁻¹), 2 °C min⁻¹, 300 °C 2 h + 350 °C 1 h.
^b Reaction conditions: 1 MPa, 260 °C, H₂/CO=2, 2400 mL g_{cat⁻¹} h⁻¹.
^c Normalized data to S_{ROH}, mol% in brackets.
^d Physical mixture of Cu₄ and Fe₁
^eFe₁ is located separately below Cu₄ by an inert layer of quartz wool.
^f Cu₄ is located separately below Fe₁ by an inert layer of quartz wool.

Supplementary Figure 6. Structure of control samples. XRD patterns of the calcined samples (a) Cu_4Fe_1 -im-MMO, Cu_4Fe_1 -co-MMO, $Cu_4Fe_1Mg_4$ -MMO and the reduced samples (b) Cu_4Fe_1 -im, Cu_4Fe_1 -co, Cu_4Fe_1 .

Supplementary Figure 7. Structure and morphology of Cu₁₀Fe₁Mg₄-LDH. XRD patterns of
(a) Cu₁₀Fe₁Mg₄-LDH precursors and calcined (c) Cu₁₀Fe₁Mg₄-MMO precursors. SEM images:
(b) Cu₁₀Fe₁Mg₄-LDH and (d) Cu₁₀Fe₁Mg₄-MMO.

Catalysts ^{a,b}	Pressure [MPa]	Conv. [%]		Selectivity[mol%]				Alcohols distribution[%] ^c				
Catalysts			CH_4	$C_{2+}H$	ROH	CO_2	MeOH	EtOH	PrOH	BuOH	C ₅₊ OH	
	1	17.4	9.7	41.1	5.4	43.8	11.1(0.6)	21.2(1.1)	6.3(0.3)	3.2(0.2)	58.2(3.2)	
$Cu_{10}Fe_1$	2	32.4	5.8	45.0	10.2	39.0	12.9(1.3)	25.5(2.6)	7.2(0.7)	3.6(0.4)	50.8(5.2)	
	3	61.2	15.2	26.9	10.1	47.8	11.1(1.1)	24.0(2.4)	7.4(0.7)	4.1(0.4)	53.4(5.5)	

Supplementary Table 12. Catalytic performances of samples with Cu/Fe ratio 10/1

^{*a*} Activation conditions: 1 g precursor, H₂: CO: CO₂=1: 1: 2 (40 mL min⁻¹), 2 °C min⁻¹, 300 °C 2 h + 350 °C 1 h. ^{*b*} Reaction conditions: 260 °C, H₂/CO=2, 2400 mL g_{cat}^{-1} h⁻¹. ^{*c*} Normalized data to S_{ROH}, mol% in brackets.

Supplementary Figure 8. Morphology of Cu_1Fe_1 catalyst. (a, e and f) TEM images of Cu_1Fe_1 catalyst (reduced and passivated). (b, c, d, g, h and i) EDS mapping of elemental distribution for Cu, Fe and C, respectively.

Supplementary Figure 9. Morphology of Cu_2Fe_1 catalyst. (a, e) TEM images of Cu_2Fe_1 catalyst (reduced and passivated). (b, c, d, f, g, h and i) EDS mapping of elemental distribution for Cu, Fe and C, respectively.

Supplementary Figure 10. Morphology of Cu₄Fe₁ catalyst. (a) HAADF-STEM image and (b, c) corresponding EELS mapping of Cu (red), Fe (green) and C (yellow).

Supplementary Figure 11. Mössbauer spectrum of Cu₄Fe₁ sample (reduced and passivated) (Exp.: experimental data; Fit: fitting data).

a	Cu	foil	b	Cu	C	с	Cu	14Fe1
36 36 32 22 22 4 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5		(A,1)	Tr-modulus S			3.5 3.5 3.5 3.5 4.2 4.1 5.2 6.1 7.1 6.1 7.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9	· · · · · · · · · · · · · · · · · · ·	$\int_{0}^{1} \int_{0}^{1} \int_{0$
					Cu-O			
Sampla		Cu-	·Cu			Cu	-0	
Sample	C.N.	Cu- σ²/*10 ⁻³ (Ų)	Cu E ₀ /eV	R/Å	C.N.	Cu σ²/*10 ⁻³ (Ų)	-O E ₀ /eV	R/Å
Sample Cu foil	C.N. 12.0	Cu- σ ² /*10 ⁻³ (Å ²) 8.5	•Cu E ₀ /eV 4.38	R/Å 2.544±0.002	C.N.	Cu σ²/*10 ⁻³ (Ų) -	-O E ₀ /eV	R/Å
Sample Cu foil CuO	C.N. 12.0	Cu- σ ² /*10 ⁻³ (Å ²) 8.5 -	-Cu E ₀ /eV 4.38 -	R/Å 2.544±0.002 -	C.N. - 4.0	Cu σ ² /*10 ⁻³ (Å ²) - 3.4	-O E ₀ /eV - -0.68	R/Å - 1.950±0.004

Supplementary Figure 12. Structure of Cu₁Fe₁ catalyst. Wavelet transformation of (a) Cu foil,(b) CuO and (c) Cu₄Fe₁. The fitting results are listed in the table.

Supplementary Figure 13. H_2 activation of Fe₁, Cu₄ and Cu_xFe_y samples. (a) H_2 -TPD profiles of Fe₁, Cu₄ and Cu_xFe_y samples. (b) Kinetic orders of H_2 and the corresponding chain-growth probability at various H_2 partial pressures over Cu₄Fe₁.