
Reviewers' comments: 

 

Reviewer #1 (Remarks to the Author): 

 

This is a very interesting and well written paper. It deals with detecting chaotic dynamics from data, in 

particular with the aim of being able to confirm if a series of experimental measurements show chaos 

or not. The paper presents a kind of toolbox for this task. And very nicely the toolbox if freely 

available online. 

 

I have some comments I should like the authors to consider. 

 

1. The authors state that their method can distinguish stochastic, periodic and chaotic signals. But 

there are also quasiperiodic and period doubled signals. Can the method detect those also ? 

 

2. The procedure as a whole is explained in the quite nice Fig. 1. Nevertheless, I would say it appears 

a little too much as a 'black box' (maybe even somewhat 'magic'). Some of the included methods I 

should really like to be explained more. See next point. 

 

3. There is a quite large box explaining various important concepts. This is surely fine. However, there 

are some almost trivial concepts like linear and non-linear. Then I miss both Dicky-Fuller test and 

Schreiber algorithm in this box. Now that Kolmogorov-Sinai is so well explained in the box, I am really 

missing the other two concepts. 

 

4. Two dimensional dynamical systems are discussed quite a lot. However, I am missing a more 

general discussion about dimensions. Experimental signals are most often one-dimensional but can 

also be of higher dimensions. Does the algorithm work for all dimensions. And in this connection: 

people often uses time delays in data analysis. Is such a technique useful or nor useful here ? 

 

Altogether this paper adds an interesting contribution to the 

extremely important question of how to distinguish between 

chaotic and stochastic signals. And in particular for experimental data. I am not sure this paper 

'completely' solves this fundamental issues but it is a nice addition to the discussions. 

 

In my opinion the paper can be published in Communications Biology after modifications. 

 

 

 

Reviewer #2 (Remarks to the Author): 

 

This article proposes a test for deterministic chaos in theoretical models and in experimental data. The 

authors developed an "automated processing pipeline" that they say is available online. I have not 

attempted to access (I am not sure where it is) the processing tools. The authors claim a very high 

level of accuracy on a number of different data sets in the presence of noise. They note some 

problems but do not analyze why the algorithms might break down in particular cases. 

 

I read this article from the perspective of the long history of algorithms being proposed to detect 

chaos, strong claims that various naturally occuring data sets are chaotic, and eventual recognition of 

faults of the techniqes being assessed, e.g. see Theiler J, Rapp PE. Re-examination of the evidence for 

low-dimensional, nonlinear structure in the human electroencephalogram. Electroencephalography and 

clinical Neurophysiology. 1996 Mar 1;98(3):213-22 or Kanters JK, HOLSTEIN‐RATHLOU NH, Agner E. 

Lack of evidence for low‐dimensional chaos in heart rate variability. Journal of cardiovascular 



electrophysiology. 1994 Jul;5(7):591-601. 

 

In biology, there are also experimental examples that I find convincing in which chaos has been 

demonstrated. The examples I am most familiar with involve periodic stimulation of biological 

oscillators for systems in which good models exists, and dynamics can be compared over a range of 

parameters, e.g. Guevara MR, Glass L, Shrier A. Phase locking, period-doubling bifurcations, and 

irregular dynamics in periodically stimulated cardiac cells. Science. 1981 Dec 18;214(4527):1350-3; 

Hayashi H, Nakao M, Hirakawa K. Chaos in the self-sustained oscillation of an excitable biological 

membrane under sinusoidal stimulation. Physics Letters A. 1982 Mar 15;88(5):265-6; Kaplan DT, Clay 

JR, Manning T, Glass L, Guevara MR, Shrier A. Subthreshold dynamics in periodically stimulated squid 

giant axons. Physical Review Letters. 1996 May 20;76(21):4074. 

 

The above paragraph has a caveat though. In any real system there is necessarily noise (e.g. due to 

random channel opening and closing). When I say that there is chaos, I mean that the deterministic 

chaotic aspect of the dynamics is still clear despite the noise, and the dynamics are similar to what is 

found in noiseless models. 

 

Along with attempts to identify chaos in naturally occurring data, there have been a variety of claims 

for the utility of chaos in various physiological processes. In the words of R. Pool in the 1989 article: Is 

it healthy to be chaotic?. Science. 1989 Feb 3;243(4891):604-7, "Chaos may provide a healthy 

flexibility for the heart, brain, and other parts of the body." An early discussion of possible neural 

systems that might display chaos was Guevara MR, Glass L, Mackey MC, Shrier A. Chaos in 

neurobiology. IEEE Transactions on Systems, Man, and Cybernetics. 1983 Sep(5):790-8. An early 

proponent of the importance of chaos in neurophysiology was the late W. J. Freeman. The authors 

mention several other new hypothetical ways in which chaos may be useful for biological function. 

Despite claims for the role of chaos in biological systems, to the best of my knowledge, there are not 

clear examples showing the role of chaos in normal functioning. There is a pretty big literature 

discussing these matters. 

 

Now 20-30 years after the papers mentioned above were published, there is perhaps a resurgence of 

interest in chaos. It is possible that the current generation will be able to go much more deeply than 

was possible before. However, I think that the current paper should do a better job of indicating that 

the basic premise of the current work is not new, and give enough reference to the literature that an 

interested reader would be able to find out easily what was done before and be forewarned about 

possible problems. Many of the mathematical aspects of the test are reviewed in “The 0-1 Test for 

Chaos: A Review”, by Georg A. Gottwald and Ian Melbourne,in Ch. Skokos et al. (eds.), Chaos 

Detection and Predictability, Chaos detection and predictability, pages 221-247 (2016). 

 

The current paper should have some conceptual explanation of what the various steps are in the 

decision tree. I understand that many of the steps may be very technical, but some more explanation 

of why they may work is needed. I would have liked to see time traces going from original data and 

showing each step: denoising, downsampling, etc. 

 

The current paper carries out analyses of a large number of models and data sets, and in this way 

claims the general utility of the method. But the discussion of each case is superficial. 

 

Here is an issue arising from one example cited above (Guevara et al., 1981). Take data in which a 

cardiac oscillator is periodically stimulated. For some frequencies and amplitudes of stimulation there 

appears to be chaos. The collected data can consist of membrane voltage showing action potentials 

with the superimposed stimulus artifact, or just the phases in the cardiac cycle of the stimulus artifact. 

To apply the 0-1 test could one use either the phases or the membrane voltage? Would one need the 



same length of data for the both cases, and how much data would that be. Would 10-20 stimuli be 

enough? How frequently do I need to sample the data? (the upstroke of the action potential is fast, as 

is the stimulus artifact.) Maybe there is some insight into this in the article, but if so, I missed it. 

 

Here are some technical aspects that could be better explained. 

 

1. When noise is added, it could be (i) added to the dynamical equations or (ii) added after the 

dynamics computed without noise. Case (i) would be important for real systems. I think this was only 

looked at for a couple of examples (#10 and #16). Could this be made clearer? 

 

2. What is the definition of stationarity? Are data sets that show 1/f noise like heart rate variability 

stationary? 

 

3. All equations need to be checked. Differential equations (like the Rossler equation, Lorenz equation, 

Mackey-Glass equation) need to be represented as differential equations, not as difference equations. 

Fix the formula for the Freitas map. 

 

4. You give the integration step for the Rossler and Lorenz equations, but not the Mackey-Glass 

equation. 

 

5. For the Rossler equation you took a linear combination of x and y. Does the method work if you 

only use x, y, or z? Do you need the same amounts of data for each case? Letellier has pointed out 

that some variables have richer dynamics than others in these equations, Letellier C, Aguirre LA. 

Investigating nonlinear dynamics from time series: The influence of symmetries and the choice of 

observables. Chaos: An Interdisciplinary Journal of Nonlinear Science. 2002 Sep 20;12(3):549-58. 

 

6. There needs to be some description of what skills and knowledge, if any, would be needed to run 

and appropriately assess the data. I would have thought that this would be stated clearly in the 

article, and perhaps it was, but if so, I missed it. 

 

7. The limits of the current tests are not stated explicitly. 

 

8. How does the algorithm work on very high dimensional attractors in deterministic systems with 

aperiodic chaotic dynamics? 

 

9. The definition of chaos, must also state that the dynamics are bounded. Exponential growth would 

be chaotic under the definition given here. 

 

In the past, there have been huge disagreements about whether some data sets, such as normal 

heart rate variability, are chaotic (for example, see L. Glass. Introduction to controversial topics in 

nonlinear science: Is the normal heart rate chaotic? Chaos {\bf 19}, 028501 (2009) and several other 

articles in the September 2009 issue of Chaos). It would have been useful if the authors had 

examined some data sets of this sort to see how their algorithm would deal with such data. In 

general, many biological systems contain elements of high dimensional dynamical systems (lots of 

variables and time delays), fluctuating environments and intrinsic noise in the elements of the system. 

Although it would have been possible and also fascinating if such data had shown the presence of a 

low dimensional chaotic dynamics, claims of low dimensional chaos have often been based on 

inappropriate application of subtle algorithms. 

 

To date, investigating the question of whether such data sets are chaotic or not has not been very 

fruitful. Of course, this would change if someone could give a clear demonstration, backed by data and 



theory, of a low dimensional chaotic system that was important for some critical biological process or 

indicative of pathology. 

 

Leon Glass 

 



Reviewers' comments:

Reviewer #1 (Remarks to the Author):

This is a very interesting and well written paper. It deals with detecting chaotic dynamics 
from data, in particular with the aim of being able to confirm if a series of experimental 
measurements show chaos or not. The paper presents a kind of toolbox for this task. 
And very nicely the toolbox if freely available online.

I have some comments I should like the authors to consider.

1. The authors state that their method can distinguish stochastic, periodic and chaotic 
signals. But there are also quasiperiodic and period doubled signals. Can the method 
detect those also ?

We thank Reviewer #1 for pointing out our omission of these two dynamical states. We applied 
our algorithm to both the quasi-periodic Poincaré oscillator and the period-doubled cubic map, 
and found that it performed with perfect accuracy for both systems, which we have now included 
in our revised paper (Table 3).

2. The procedure as a whole is explained in the quite nice Fig. 1. Nevertheless, I would 
say it appears a little too much as a 'black box' (maybe even somewhat 'magic'). Some of 
the included methods I should really like to be explained more. See next point.

3. There is a quite large box explaining various important concepts. This is surely fine. 
However, there are some almost trivial concepts like linear and non-linear. Then I miss 
both Dicky-Fuller test and Schreiber algorithm in this box. Now that Kolmogorov-Sinai is 
so well explained in the box, I am really missing the other two concepts.

In light of this comment, we have added a more formal mathematical description of the 0-1 test 
to the Online Methods, and also substantially increased the number of concepts explained in 
Box 1. These include: measurement noise, dynamic noise, quasiperiodicity, period-doubling, the 
Augmented Dicky-Fuller Test, Schreiber de-noising, and surrogate testing.

4. Two dimensional dynamical systems are discussed quite a lot. However, I am missing 
a more general discussion about dimensions. Experimental signals are most often one-
dimensional but can also be of higher dimensions. Does the algorithm work for all 
dimensions. And in this connection: people often uses time delays in data analysis. Is 
such a technique useful or nor useful here ?

In the revised manuscript, we clarified the dimensionality of the various systems analyzed in this 
paper. These include one-dimensional maps (the logistic map and the generalized Henon map), 
the one-dimensional Mackey-Glass time delay differential equation, a number of two-
dimensional systems, a five-dimensional model of NF-kB transcription, and a model of cortical 
dynamics consisting of 120 interacting fourteen-dimensional systems. We did not observe any 
changes in accuracy as a function of system dimensionality. 

Regarding the reviewer’s second point, there is no direct use for time delays for the chaos-
detection portion of the algorithm, as the 0-1 test for chaos does not involve any time delays. 



But, time delays do come into play for both the calculation of permutation entropy and for the 
Schreiber de-noising algorithm. However, for the sake of simplicity, we used a time delay of 1 for 
both cases. 

Altogether this paper adds an interesting contribution to the extremely important 
question of how to distinguish between chaotic and stochastic signals. And in particular 
for experimental data. I am not sure this paper 'completely' solves this fundamental 
issues but it is a nice addition to the discussions.

In my opinion the paper can be published in Communications Biology after 
modifications.

We thank Reviewer #1 for their helpful and encouraging comments, and hope that we have 
satisfactorily addressed their concerns.

Reviewer #2 (Remarks to the Author):

This article proposes a test for deterministic chaos in theoretical models and in 
experimental data. The authors developed an "automated processing pipeline" that they 
say is available online. I have not attempted to access (I am not sure where it is) the 
processing tools. The authors claim a very high level of accuracy on a number of 
different data sets in the presence of noise. They note some problems but do not analyze 
why the algorithms might break down in particular cases. 

I read this article from the perspective of the long history of algorithms being proposed 
to detect chaos, strong claims that various naturally occuring data sets are chaotic, and 
eventual recognition of faults of the techniqes being assessed, e.g. see Theiler J, Rapp 
PE. Re-examination of the evidence for low-dimensional, nonlinear structure in the 
human electroencephalogram. Electroencephalography and clinical Neurophysiology. 
1996 Mar 1;98(3):213-22 or Kanters JK, HOLSTEIN‐RATHLOU NH, Agner E. Lack of 
evidence for low‐dimensional chaos in heart rate variability. Journal of cardiovascular 
electrophysiology. 1994 Jul;5(7):591-601. 

In biology, there are also experimental examples that I find convincing in which chaos 
has been demonstrated. The examples I am most familiar with involve periodic 
stimulation of biological oscillators for systems in which good models exists, and 
dynamics can be compared over a range of parameters, e.g. Guevara MR, Glass L, Shrier 
A. Phase locking, period-doubling bifurcations, and irregular dynamics in periodically 
stimulated cardiac cells. Science. 1981 Dec 18;214(4527):1350-3; Hayashi H, Nakao M, 
Hirakawa K. Chaos in the self-sustained oscillation of an excitable biological membrane 
under sinusoidal stimulation. Physics Letters A. 1982 Mar 15;88(5):265-6; Kaplan DT, Clay 
JR, Manning T, Glass L, Guevara MR, Shrier A. Subthreshold dynamics in periodically 
stimulated squid giant axons. Physical Review Letters. 1996 May 20;76(21):4074.

The above paragraph has a caveat though. In any real system there is necessarily noise 
(e.g. due to random channel opening and closing). When I say that there is chaos, I mean 
that the deterministic chaotic aspect of the dynamics is still clear despite the noise, and 
the dynamics are similar to what is found in noiseless models.



Along with attempts to identify chaos in naturally occurring data, there have been a 
variety of claims for the utility of chaos in various physiological processes. In the words 
of R. Pool in the 1989 article: Is it healthy to be chaotic?. Science. 1989 Feb 3;243(4891):
604-7, "Chaos may provide a healthy flexibility for the heart, brain, and other parts of the 
body." An early discussion of possible neural systems that might display chaos was 
Guevara MR, Glass L, Mackey MC, Shrier A. Chaos in neurobiology. IEEE Transactions on 
Systems, Man, and Cybernetics. 1983 Sep(5):790-8. An early proponent of the importance 
of chaos in neurophysiology was the late W. J. Freeman. The authors mention several 
other new hypothetical ways in which chaos may be useful for biological function. 
Despite claims for the role of chaos in biological systems, to the best of my knowledge, 
there are not clear examples showing the role of chaos in normal functioning. There is a 
pretty big literature discussing these matters. 

Now 20-30 years after the papers mentioned above were published, there is perhaps a 
resurgence of interest in chaos. It is possible that the current generation will be able to 
go much more deeply than was possible before. However, I think that the current paper 
should do a better job of indicating that the basic premise of the current work is not new, 
and give enough reference to the literature that an interested reader would be able to find 
out easily what was done before and be forewarned about possible problems. Many of 
the mathematical aspects of the test are reviewed in “The 0-1 Test for Chaos: A Review”, 
by Georg A. Gottwald and Ian Melbourne,in Ch. Skokos et al. (eds.), Chaos Detection and 
Predictability, Chaos detection and predictability, pages 221-247 (2016). 

The current paper should have some conceptual explanation of what the various steps 
are in the decision tree. I understand that many of the steps may be very technical, but 
some more explanation of why they may work is needed. I would have liked to see time 
traces going from original data and showing each step: denoising, downsampling, etc. 

We thank Reviewer #2 for their insightful feedback, and for pointing us to important papers in 
the history of the study of chaos in biological systems. In light of these comments, we have 
incorporated these citations into our revised paper to more adequately situate our work within its 
historical context. We have also clarified the differences between measurement vs. intrinsic 
noise at several points in the paper. Finally, to further clarify each step of the algorithm, we have 
added additional technical explanations to both the Online Methods and Box 1, and included 
sample time traces illustrating each step of the algorithm (Supplementary Figure 3).

The current paper carries out analyses of a large number of models and data sets, and in 
this way claims the general utility of the method. But the discussion of each case is 
superficial. 

In our revised paper, we have now incorporated additional details into the descriptions of most  
of the test systems described in our Online Methods.

Here is an issue arising from one example cited above (Guevara et al., 1981). Take data in 
which a cardiac oscillator is periodically stimulated. For some frequencies and 
amplitudes of stimulation there appears to be chaos. The collected data can consist of 
membrane voltage showing action potentials with the superimposed stimulus artifact, or 
just the phases in the cardiac cycle of the stimulus artifact. To apply the 0-1 test could 
one use either the phases or the membrane voltage? Would one need the same length of 



data for the both cases, and how much data would that be. Would 10-20 stimuli be 
enough? How frequently do I need to sample the data? (the upstroke of the action 
potential is fast, as is the stimulus artifact.) Maybe there is some insight into this in the 
article, but if so, I missed it. 

It is difficult to answer this question directly without the empirical data in question, though we 
thank both the editor and Reviewer #2 for their efforts to find these data for us. Instead, we 
followed Reviewer #2’s subsequent recommendation (made to the editor via email) that we 
could apply our algorithm to the periodically stimulated Poincaré phase oscillator instead. We 
applied the algorithm to a time-series of successive phases of the oscillator in chaotic, periodic, 
and quasi-periodic states (as assessed by Guevara and Glass, 1982). As with other simulations 
in our paper, we generated 10,000 time-points for each of these states, for which our algorithm 
performed perfectly. These new results are now presented in our revised paper.

The reviewer’s second comment, regarding the length of data needed for accurate results, was 
very helpful, and led to a number of new analyses in our paper. First, we realized that the 
optimal cutoff for classifying a system as periodic or chaotic is a function of time-series length: 
the longer the time-series, the higher the optimal cutoff (Supplementary Figure 5). In light of this 
new finding, we modified our algorithm to pick an optimal cutoff based on the length of the 
inputted time-series. To asses how this affects the algorithm’s performance for short time-series, 
we re-ran our analyses on sub-samples of the datasets in Tables 1-3. We found that the 
algorithm still performed at very high accuracy for signals with just 1,000 time-points and 5,000 
time-points, though performance for some systems (notably periodic NF-kB transcription and 
the quasi-periodic Poincaré oscillator) did decrease with less data. We thus re-emphasize in the 
discussion that, as a rule of thumb, the longer the inputted time-series, the more accurate the 
algorithm will be.

Finally, in light of the comment made here about different system observables, as well as the 
related comment below about different observables of the Rössler system, we re-applied our 
algorithm to individual variables of all multi-dimensional systems analyzed in this paper 
(Supplementary Table 15), with the exception of the cortical model and NF-kB transcription, for 
which the observables of interest are biologically well-defined. We found that the choice of 
observables did not significantly affect the performance of the algorithm.

Here are some technical aspects that could be better explained. 

1. When noise is added, it could be (i) added to the dynamical equations or (ii) added 
after the dynamics computed without noise. Case (i) would be important for real systems. 
I think this was only looked at for a couple of examples (#10 and #16). Could this be 
made clearer? 

This is a very important point, which we now explore in more detail in our revised paper. First, 
we more clearly define measurement noise (i.e. noise that is added after the dynamics have 
been simulated) vs. dynamic/intrinsic noise (i.e. noise added to a system’s dynamical 
equations). These definitions are in Box 1. We also now demonstrate (Supplementary Table 16) 
that higher levels of intrinsic noise are more likely to lead to classification of a system as 
stochastic, which is to be expected. 



2. What is the definition of stationarity? Are data sets that show 1/f noise like heart rate 
variability stationary? 

In Box 1, we define a stationary process as one whose joint probability distribution is time-
invariant. In other words, for a stationary process, statistical properties like mean and variance 
do not fluctuate over time. The power spectrum of a signal does not necessarily reflect its 
stationarity or lack thereof. For example, a random walk is nonstationary while red noise is 
stationary, though both have roughly the same power spectrum. The Dickey-Fuller stationarity 
test used by our algorithm can distinguish these two cases (Table 2, Supplementary Figure 4).

3. All equations need to be checked. Differential equations (like the Rossler equation, 
Lorenz equation, Mackey-Glass equation) need to be represented as differential 
equations, not as difference equations. Fix the formula for the Freitas map. 

All equations and their corresponding code were checked thoroughly, and updated. While doing 
so, we caught two other mistakes in our previous submission: the parameters used for the 
stochastic Lorenz system were incorrect, and the time-series for the GOPY model used only the 
theta variable, as opposed to a linear combination of the two variables (as we had written in the 
Online Methods). These have been corrected in the revised paper, and we re-ran all analyses 
involving these two systems.  

4. You give the integration step for the Rossler and Lorenz equations, but not the 
Mackey-Glass equation. 

We now clarify that the Mackey-Glass equation was integrated with a first-order Euler method 
with an integration step of 1.

5. For the Rossler equation you took a linear combination of x and y. Does the method 
work if you only use x, y, or z? Do you need the same amounts of data for each case? 
Letellier has pointed out that some variables have richer dynamics than others in these 
equations, Letellier C, Aguirre LA. Investigating nonlinear dynamics from time series: 
The influence of symmetries and the choice of observables. Chaos: An Interdisciplinary 
Journal of Nonlinear Science. 2002 Sep 20;12(3):549-58. 

This was a very important point, and we thank the reviewer for bringing this to our attention. We 
had previously examined linear combinations of variables of our multi-dimensional systems 
under the assumption that in real-life situations, recorded data will usually contain features of 
several system variables (as you point out above with respect to the periodically stimulated 
cardiac oscillators). That said, we re-ran our analyses on individual variables (Supplementary 
Table 15), and found that classification accuracy was not markedly reduced for individual 
variables. That said, we now point to Letellier’s paper in the revised Discussion.

6. There needs to be some description of what skills and knowledge, if any, would be 
needed to run and appropriately assess the data. I would have thought that this would be 
stated clearly in the article, and perhaps it was, but if so, I missed it. 

We now clarify that to use our method, a researcher only needs to provide a time-series 
recording. In other words, the method does not require extensive knowledge of nonlinear time-



series analysis. That said, it helps to understand what the algorithm is doing; we hope that the 
new details that have been added to the Online Methods and Box 1 will help in that regard.

7. The limits of the current tests are not stated explicitly. 

We now devote a paragraph in the revised Discussion section to the limitations/shortcomings of 
the tests presented in this paper.

8. How does the algorithm work on very high dimensional attractors in deterministic 
systems with aperiodic chaotic dynamics? 

We applied our algorithm to one high dimensional system, which is the mean-field cortical 
model of Steyn-Ross et al. The model consists of 120 connected 14-dimensional oscillators. 
Our algorithm was applied to just one variable from one oscillator; that variable was the mean 
firing rate of one of 120 populations of excitatory neurons in the model (which corresponds to 
the real-life EEG, MEG, or ECoG signals that neuroscientists would analyze). We now explicitly 
describe the dimensionality of this system, as well as other systems, in our Online Methods.

9. The definition of chaos, must also state that the dynamics are bounded. Exponential 
growth would be chaotic under the definition given here. 

Thank you for pointing out this omission. We have amended our definition of chaos in both the 
introduction and Box 1 to clarify that chaotic systems are bounded.

In the past, there have been huge disagreements about whether some data sets, such as 
normal heart rate variability, are chaotic (for example, see L. Glass. Introduction to 
controversial topics in nonlinear science: Is the normal heart rate chaotic? Chaos {\bf 
19}, 028501 (2009) and several other articles in the September 2009 issue of Chaos). It 
would have been useful if the authors had examined some data sets of this sort to see 
how their algorithm would deal with such data. In general, many biological systems 
contain elements of high dimensional dynamical systems (lots of variables and time 
delays), fluctuating environments and intrinsic noise in the elements of the system. 
Although it would have been possible and also fascinating if such data had shown the 
presence of a low dimensional chaotic dynamics, claims of low dimensional chaos have 
often been based on inappropriate application of subtle algorithms. 

Although we had initially envisioned this paper as a methodological proof of concept (with plans 
to apply our algorithm to more empirical data, in particular to neural recordings, in future 
papers), we agree that it would be interesting to do a first-pass at an empirical application and 
examine heart rate signals. Thus, we downloaded the 15 outlier-filtered heart rate recordings 
from Physionet’s “Is the Normal Heart Rate Chaotic?” challenge. In agreement with simulation-
based arguments that these signals reflect a nonlinear stochastic process, and that past 
classifications of chaos in these data are erroneous, our method consistently classified these 
signals as stochastic (Table 7). We have now presented these new results in our revised paper.

To date, investigating the question of whether such data sets are chaotic or not has not 
been very fruitful. Of course, this would change if someone could give a clear 
demonstration, backed by data and theory, of a low dimensional chaotic system that was 
important for some critical biological process or indicative of pathology. 



We agree that simply asking whether or not a given biological process is chaotic is not as 
important as demonstrating that chaos is functionally relevant to some biological processes. We 
have tried to emphasize this important point more clearly in our revised paper, and hope that our 
method will motivate other researchers, who might not have considered this question in the 
biological system they are studying, to elucidate the role of chaos in both biological function and 
dysfunction. 



Reviewers' comments: 

 

Reviewer #1 (Remarks to the Author): 

 

The paper has been sufficiently well revised to warrant publication. 

 

 

Reviewer #3 (Remarks to the Author): 

 

The authors assemble several existing tools for classifying an input time series into whether it is 

nonstationary or stationary, and in the latter case, whether it is stochastic or deterministic and further 

classify a found deterministic series into chaos or regular. They have made specific choices of tools for 

each classification step. The classification accuracy of their proposed entire procedure must then be 

tied to the appropriateness and the power of the tools chosen by them. 

 

For instance, they propose to use the augmented Dickey Fuller (ADF) test for deciding whether a time 

series is stationary. It is, however, well known that the ADF test may fail in many cases, especially 

when the underlying process has a moving-average component; see Chapters 6 and 9 of Patterson, K. 

(2011), Unit Root Tests in Time Series, Vol. I. Moreover, the ADF test is also known to have problems 

in discerning nonlinear stationary processes with local unit roots, from nonstationary processes; see 

vol. 2 of Patterson's book. 

 

In the authors' approach for discerning deterministic processes from stationary, stochastic processes, 

they make use of the surrogate method. Section 4.4 in the book entitled "Chaos: A Statistical 

Perspective" by Chan and Tong (2011) discusses certain conditions for the validity of the surrogate 

method, and emphasizes the importance to transform the data to normality before applying the 

surrogate method. The paper under review contains no discussion regarding the need for normality 

transformation. 

 

Chan and Tong (2011) provides a comprehensive exposition of the then state of art research on 

studying the sensitivity to initial values for chaotic system with dynamic noise. It seems that the 

authors' method will likely classify such systems to be stationary stochastic processes, in the case of 

non-negligible dynamic noise. None of the simulations in the paper include such models; it may be 

interesting to check whether the proposed method breaks down with increasing dynamic noise. If, 

indeed, the proposed method tends to classify such systems to be stochastic and non-chaotic, such a 

classification will be misleading. 

 

My main problem with the paper is that through limited simulation and real data analysis, they put 

forward their assemblage classifier as a universal classifier for general use, especially for biological 

science. The specific choices of tools in the proposed method have its own limitations of applicability 

which are swept under the carpet, by making it a one size fit all, universally applicable method. It will 

be more useful if the assemblage allows various options in each of its sub-classification steps, so a 

user can make appropriate choices for analyzing his/her data. 

 

Some technical comments: 

In Table 2: The classification results are sometime unstable. For instance, the Lorenz system was 

correctly classified for noise levels 0%, 10%, 20% and 40%, but the classification accuracy is 27/100 

for noise level 30%. Why? Are the random number seed the same for each noise level? If not, it will 

introduce another source of variation due to using different seeds. Even so, it is hard to understand 

the big discrepancy. Also, for the colored noises, there are no results for noise level higher than 0%. 

Why? 



 

There are several typos in Box 1. Please check. 



The authors assemble several existing tools for classifying an input time series into 
whether it is nonstationary or stationary, and in the latter case, whether it is stochastic or 
deterministic and further classify a found deterministic series into chaos or regular. They 
have made specific choices of tools for each classification step. The classification 
accuracy of their proposed entire procedure must then be tied to the appropriateness 
and the power of the tools chosen by them.

For instance, they propose to use the augmented Dickey Fuller (ADF) test for deciding 
whether a time series is stationary. It is, however, well known that the ADF test may fail in 
many cases, especially when the underlying process has a moving-average component; 
see Chapters 6 and 9 of Patterson, K. (2011), Unit Root Tests in Time Series, Vol. I. 
Moreover, the ADF test is also known to have problems in discerning nonlinear 
stationary processes with local unit roots, from nonstationary processes; see vol. 2 of 
Patterson's book.

We thank the reviewer for pointing out this shortcoming of the ADF test, and for drawing our 
attention to Patterson’s books. His books helped us considerably in this revision. In light of 
these comments, as well as the analyses reported in Patteron’s books, we added a number of 
test systems to our paper: bounded random walks (which are globally stationary and locally 
non-stationary), a cyclostationary autoregressive process, an autoregressive process with a 
moving average component, random walks, and random walks with linear trends. Based on 
Patterson’s analyses, we also included two additional non-parametric unit root tests: Lo and 
MacKinlay’s variance ratio test and Breitung’s variance ratio test. In agreement with Patterson, 
we found that Breitung’s variance ratio test was more robust to these new edge cases.

In the authors' approach for discerning deterministic processes from stationary, 
stochastic processes, they make use of the surrogate method. Section 4.4 in the book 
entitled "Chaos: A Statistical Perspective" by Chan and Tong (2011) discusses certain 
conditions for the validity of the surrogate method, and emphasizes the importance to 
transform the data to normality before applying the surrogate method. The paper under 
review contains no discussion regarding the need for normality transformation.

While we have not seen normality transformations mentioned in more recent reviews of 
surrogate testing (e.g. Lancaster et al, 2018), we followed up on this comment by systematically 
testing whether a normality transformation using the Box-Cox method, as recommended by 
Chan and Tong (2011), improved the performance of surrogate-based stochasticity tests. We did 
not find any improvement following normality transformations (Supplementary Table 2). 

As mentioned in the cover letter, we also did not find any improvement following the exclusion of 
signals classified as non-stationary by Breitung’s variance ratio test. In fact, we found that our 
stochasticity test performed well for all non-stationary signals tested, as well as for signals with 
local unit roots and moving average components (Supplementary Table 4). As such, we have 
now taken out the stationarity test component of our pipeline. That said, we have modified our 
code such that a user can decide to include any of the stationarity tests we analyzed, as well as 
to normality-transform their data before generating surrogate signals, using any of the surrogate 
algorithms tested.

Chan and Tong (2011) provides a comprehensive exposition of the then state of art 
research on studying the sensitivity to initial values for chaotic system with dynamic 



noise. It seems that the authors' method will likely classify such systems to be stationary 
stochastic processes, in the case of non-negligible dynamic noise. None of the 
simulations in the paper include such models; it may be interesting to check whether the 
proposed method breaks down with increasing dynamic noise. If, indeed, the proposed 
method tends to classify such systems to be stochastic and non-chaotic, such a 
classification will be misleading.

We note that our previous submission did include this analysis, per the request of Reviewer #2. 
That analysis is in Supplementary Table 18. We did find that, as expected, classifications of 
stochasticity for both the stochastic Lorenz and stochastic Rössler systems became more 
frequent as levels of dynamic noise were increased. However, we do not think that this 
classification is misleading, as these systems might reasonably be considered as nonlinear and 
stochastic rather than chaotic, in the case of non-negligible dynamic noise. That said, we agree 
with the argument in Chan and Tong (2011) that there is no mathematically rigorous dividing line 
between “operationally” stochastic and “operationally” deterministic systems as a function of 
dynamic noise level, i.e., that it is unclear how small a level of dynamic noise is “small enough.” 
We also note that the test of “operational” determinism described in Chan and Tong is 
somewhat subjective, as it entails deciding whether the bandwidth h of a local linear regression 
is sufficiently close to zero (leaving open the “practical issue of deciding ‘how small is small’”). 
Chan and Tong address this issue of subjectivity using a bootstrap method, but that bootstrap 
method is itself not a proper statistical test. Surrogate-based tests, on the other hand, are 
statistically well-defined. As such, our surrogate-based approach may be seen as an alternative 
test of operational determinism. Moreover, the classification of stochasticity in the stochastic 
Lorenz and Rössler systems for high levels of dynamic noise may be seen as evidence that 
these systems are, as we think is intuitively true, operationally stochastic.

My main problem with the paper is that through limited simulation and real data analysis, 
they put forward their assemblage classifier as a universal classifier for general use, 
especially for biological science. The specific choices of tools in the proposed method 
have its own limitations of applicability which are swept under the carpet, by making it a 
one size fit all, universally applicable method. It will be more useful if the assemblage 
allows various options in each of its sub-classification steps, so a user can make 
appropriate choices for analyzing his/her data.

We have modified our code such that users can select among any of the alternative subroutines 
tested in our paper, and we emphasize this point throughout our manuscript. We also now 
include additional emphasis in our paper that our method is not guaranteed to yield accurate 
results, and that it should be used in conjunction with accurate computer/mathematical models 
of the system at hand, when possible. 

Some technical comments:
In Table 2: The classification results are sometime unstable. For instance, the Lorenz 
system was correctly classified for noise levels 0%, 10%, 20% and 40%, but the 
classification accuracy is 27/100 for noise level 30%. Why? Are the random number seed 
the same for each noise level? If not, it will introduce another source of variation due to 
using different seeds. Even so, it is hard to understand the big discrepancy. Also, for the 
colored noises, there are no results for noise level higher than 0%. Why?



We caught a bug in the Runge-Kutta algorithm that was used to integrate the Lorenz and 
Rössler equations, and so we re-ran all analyses in the paper involving either of these two 
systems. This discrepancy for 30% noise has now disappeared, and otherwise our results or 
conclusions have not changed in any meaningful way. That said, we note that there was a 
similar, though less dramatic discrepancy for the bounded random walk in Table 2 (which was 
classified as stochastic with near-perfect accuracy for all noise levels except 20%, for which 
only 59/100 cases were classified as stochastic). Because this discrepancy is not systematic, it 
is unclear why it should appear for just this one system (although we note that a majority of 
simulations of the bounded random walk with 20% noise were still correctly classified as 
stochastic). Random number seeds and initial values were different for every simulation in this 
paper, regardless of noise level.

For the colored noise, we did not add additional white noise on top of the noise signals, as doing 
so would flatten or “whiten” their power spectra. We now clarify this point in the paper.

There are several typos in Box 1. Please check.

We hope that we have caught and corrected all typos.



Reviewers' comments: 

 

Reviewer #3 (Remarks to the Author): 

 

The revision is a significant improvement, and I appreciate the authors to enhance their algorithm to 

allow more user inputs on the make-up of the algorithm. 

 

Two comments: 

 

(i) The authors misunderstands the ARMA model which is incorrectly specified. The current noise term 

is not included on the RHS of (18); the correct formulation should have that term included. For 

instance, the ARMA(1,1) model should be (in latex notation) 

X_t=c+\phi X_{t-1}+\epsilon_t +\theta \epsilon_{t-1} 

However, in the revision, this model is written as 

X_t=c+\phi X_{t-1}+\theta \epsilon_{t-1} 

which is essentially an AR(1) model. 

Thus, the authors simulated data from AR(1) not ARMA(1,1) model! 

Moreover, the MA coefficient \theta should be set to some fixed values, for instance -0.5, 0, 0.5, 0.9, 

and not randomly drawn from some normal distribution, so it can shed light on the effects of the 

strength of the MA component on the proposed test. In particular, the authors may need to re-do this 

part of the analysis. 

 

(ii) I am not convinced that simulation results reported support the authors' claim that normality 

transformation is inconsequential. A stronger stress test is needed. For instance, take an exponential 

transformation on the data and re-sun the experiments to compare the various surrogate methods. 



The revision is a significant improvement, and I appreciate the authors to enhance their algorithm 
to allow more user inputs on the make-up of the algorithm. 

We thank the reviewer for this encouraging comment, and for their prior feedback.  

Two comments: 

(i) The authors misunderstands the ARMA model which is incorrectly specified. The current noise 
term is not included on the RHS of (18); the correct formulation should have that term included. 
For instance, the ARMA(1,1) model should be (in latex notation) 
X_t=c+\phi X_{t-1}+\epsilon_t +\theta \epsilon_{t-1} 
However, in the revision, this model is written as 
X_t=c+\phi X_{t-1}+\theta \epsilon_{t-1} 
which is essentially an AR(1) model. 
Thus, the authors simulated data from AR(1) not ARMA(1,1) model! 

This was actually a typo in our Online Methods. The Matlab code that we used to simulate the ARMA(1,1) 
model was correct - i.e., it included the error term that was accidentally omitted from the equation in the 
Methods section. 

Moreover, the MA coefficient \theta should be set to some fixed values, for instance -0.5, 0, 0.5, 
0.9, and not randomly drawn from some normal distribution, so it can shed light on the effects of 
the strength of the MA component on the proposed test. In particular, the authors may need to re-
do this part of the analysis. 

In light of this comment, we further analyzed the performance of our algorithm for the MA coefficients -0.5, 
0, 0.5, and 0.9, while keeping \phi=0.99. We found that the algorithm performed well for all MA coefficient 
values (Supplementary Table 19). 

(ii) I am not convinced that simulation results reported support the authors' claim that normality 
transformation is inconsequential. A stronger stress test is needed. For instance, take an 
exponential transformation on the data and re-sun the experiments to compare the various 
surrogate methods. 

To address this, we re-ran all analyses in Supplementary Table 2 using a rank-based inverse normal 
transformation, which yields an exactly Gaussian distribution. Performance using this robust normality 
transformation was similar to performance after the Box-Cox transformation, and was worse than 
performance with no normality transformation (Supplementary Table 2). We therefore maintain no 
transformation as the default setting of our algorithm, though we have modified our code such that users 
can choose to transform their signal with either the Box-Cox method or the rank-based inverse normal 
transformation method. 
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