Supplementary Information

A deep-learning technique for phase identification in multiphase inorganic compounds using synthetic XRD powder patterns

Lee et al.

Lattice parameters and the agreement factors obtained after the Two-Phase-Rietveld refinement for $SrAl_2O_4$ and $Sr_4Al_{14}O_{25}$.

SrAl ₂ O ₄ Phase:
Space group: P2 ₁
Number of formula per unit cell (Z): 2
Lattice parameters: a = 8.4439 (3), b = 8.8208(3), c = 5.1591(2) Å, $\alpha = \gamma = 90^{\circ}$, $\beta = 93.409(2)^{\circ}$
Phase fraction: 85%
Sr ₄ Al ₁₄ O ₂₅ Phase:
Space group: Pmma
Number of formula per unit cell (Z): 2
Lattice parameters: a = 24.784(2), b = 8.4808(8), c = 4.862(6) Å, $\alpha = \beta = \gamma = 90^{\circ}$
Phase fraction:15%
Agreement factors: $R_p = 14.0$, $R_{wp} = 14.8$, $R_{exp} = 11.17$, $\chi^2 = 1.76$

Supplementary Figure 1 A full pattern fit obtained after using two phase Rietveld refinement on powder x-ray diffraction data in the 2θ range $10-100^{\circ}$ with monoclinic structure in the P2₁ space group for SrAl₂O₄ phase and orthorhombic structure in the Pmma space group for Sr₄Al₁₄O₂₅ phase. Black dots, red line and blue line represents the experimental, calculated and difference profiles, respectively. The vertical tick marks above the difference profile in first and second row from top denotes the position of Bragg reflections for SrAl₂O₄ and Sr₄Al₁₄O₂₅ phases, respectively.

Supplementary Figure 2 The training loss/accuracy and the validation loss/accuracy for the fourand five-level-phase-fraction predictions plotted as a function of the iteration number up to the 10th epoch. The four-level-phase-fraction predictions are plotted only for CNN_2F (**a** and **b**) and CNN_3F (**c** and **d**) architectures. Additional five-level-phase-fraction predictions based on CNN_2F (**e** and **f**) and CNN_3F (**g** and **h**) CNN_6F (**i** and **j**), CNN_3I (**k** and **l**) and CNN_6I (**m** and **n**) are also given.

Supplementary Figure 3 The inception net used for the five-level-phase-fraction prediction (CNN_3I, and CNN_6I). Typical 1D convolutional layers adopted CNN_3 and 3F (top row), the inception module along with the number of kernels listed in the table on the right side (middle row,) and the typical fully connected layers (bottom row). Three or six inception modules that are actually attached in sequence in the middle row were omitted but can be simply represented as 'x 3' or 'x 6'.

Supplementary Figure 4 The minimum cost (loss) function values for two test datasets (BaO-SrO-Al₂O₃ and BaO-CaO-Al₂O₃) wherein the two outsiders were included in the mixture in comparison with the correctly matched dataset (Li₂O-SrO-Al₂O₃). The square dots and whiskers indicate the mean and standard deviation.

Supplementary Figure 5 Two synthetic patterns, both of which represent Li₂O-SrO-Al₂O₃ with a fraction of 0.38-0.24-0.38, and thereby our CNN model correctly identified these two patterns as a Li₂O-SrO-Al₂O₃ mixture. Both the sample shared exactly the same constituent and the same fraction. However, they look completely different. It is clearly observed that almost every peak position was conspicuously shifted due to the choice of different variants, and the peak profile for all peaks are also different due to the random choice of u, v, w, x, and η values. The conspicuous difference is marked by dashed lines and arrows.

Height and weight fraction (%) of Li₂O, SrO and Al₂O₃ in three different samples

Sample No.	Li ₂ O		SrO		Al ₂ O ₃	AI_2O_3		
	Height fraction	Wt. fraction	Height fraction	Wt. fraction	Height fraction	Wt. fraction		
Sample-1	38%	9.42%	52%	67.46%	10%	23.11 %		
Sample-2	52%	20.27%	38%	58.50%	10%	21.23 %		
Sample-3	66%	33.79%	24%	40.05%	10%	26.16 %		

Supplementary Figure 6 Rietveld refinement fit for three different samples containing a mixture of SrO ($Fm\overline{3}m$), Li₂O ($Fm\overline{3}m$) and Al₂O₃ ($R\overline{3}c$) in different proportions. Black dots, red line, blue line in the figure represents the simulated, calculated and difference profiles, respectively. The vertical tick marks above the difference profile in the first, second and third lines from the top represents the Bragg's position for SrO, Li₂O and Al₂O₃, respectively.

Supplementary Figure 7 The training loss/accuracy and the validation loss/accuracy at the early stage of training for the conventional and unconventional pooling strategies in the phase identification based on CNN_2 (**a**, **b**, **c**, and **d**) and CNN_3 (**e**, **f**, **g**, and **h**), and the three-level-phase-fraction prediction based on CNN_6F (**i**, **j**, **k**, and **l**). The intersect on the vertical dashed line clearly indicates the faster training for the unconventional pooling strategy. The conventional pooling (& stride) strategy stands for a stride that is greater than the pooling size and the unconventional strategy for the stride is equal to the pooling size.

Supplementary Figure 8 The schematic representation for CNN_4F, 5F, and 6F architectures.

		CNN_2F	CNN_3F	CNN_6F	CNN_3I	CNN_6I
4_level_fraction_	Simulated XRD test					
prediction	dataset					
(10 Epochs)	100,000 patterns	87.29%	91.43%	-	-	_
5_level_fraction_	Simulated XRD test					
prediction	dataset	77650/	02 / /0/	04760/	01 200/	05 00%
(10 Epochs)	100,000 patterns	11.05%	92.44%	94.70%	94.20%	95.90%

Four- and Five-Step-Phase-Fraction Prediction Test Result

Supplementary Table 1 The test results from the four- and five-level-phase-fraction predictions for the simulated test datasets.

Baseline Method Result

KNN Test Accuracy: (Dataset_180k_rand)

35.72% (k=3, Euclidean), 32.39% (k=5, Euclidean), 29.84% (k=13, Euclidean), 25.57% (k=51, Euclidean)

SVM Test Accuracy: (Dataset_180k_rand)

45.76% (radial basis function kernel)

RF Test Accuracy: (Dataset_180k_rand)

69.37% (# of trees=5), 78.47% (# of trees=10), 81.48% (# of trees=15), 86.34% (# of trees=50), 87.63% (# of trees=100)

RF Real Data Test Accuracy: (The real test dataset for Li₂O-SrO-Al₂O₃ ternary mixtures)

20% (# of trees=5), 28% (# of trees=10), 34% (# of trees=15), 42% (# of trees=50), 58% (# of trees=100)

KNN Test Accuracy: (MNIST dataset)

97.05% (k=3, Euclidean), 96.88% (k=5, Euclidean), 96.53% (k=13, Euclidean), 95.33% (k=51, Euclidean)

Supplementary Table 2 The KNN, SVM and RF test results from the phase identification. Some important hyper-parameters are presented in the parenthesis along with the test accuracy. The real data test accuracies for RF are only presented but those for the others are omitted since they are too low. The KNN results for the MNIST data classification are presented on the bottom. The hyper-parameters used for the Dataset_180k_rand are identical to those for the MNIST data.

38 Classes	ICSD_N Compound		Space	Lattice Parameter							
38 Classes	um	Compound	Group	а	b	С	α	β	γ		
	10425	Al ₂ O ₃	R-3cH (167)	4.754(1)	4.754(1)	12.99(2)	90	90	120		
	10426	Al ₂ O ₃	R-3cH (167)	4.844(2)	4.844(2)	13.27(2)	90	90	120		
	160604	AI_2O_3	R-3cH (167)	4.7617(1)	4.7617(1)	12.9990(2)	90	90	120		
	160605	Al ₂ O ₃	R-3cH (167)	4.7698(1)	4.7698(1)	13.0243(4)	90	90	120		
	160606	Al ₂ O ₃	R-3cH (167)	4.7805(1)	4.7805(1)	13.0561(3)	90	90	120		
	160607	Al ₂ O ₃	R-3cH (167)	4.7936(1)	4.7936(1)	13.0955(3)	90	90	120		
	160901	Al ₂ O ₃	R-3cH (167)	4.7598(1)	4.7598(1)	12.9943(1)	90	90	120		
	160902	Al ₂ O ₃	R-3cH (167)	4.761(1)	4.761(1)	12.997(3)	90	90	120		
	160903	Al ₂ O ₃	R-3cH (167)	4.761(1)	4.761(1)	12.997(3)	90	90	120		
	160904	Al ₂ O ₃	R-3cH (167)	4.761(1)	4.761(1)	12.999(1)	90	90	120		
	164617	Al ₂ O ₃	R-3cH (167)	4.7600(1)	4.7600(1)	12.9943(3)	90	90	120		
	165594	Al ₂ O ₃	R-3cH (167)	4.759116 2(9)	4.759116 2(9)	12.9973116 0(12)	90	90	120		
Corundum-	197685	AI_2O_3	R-3cH (167)	4.758	4.758	12.991	90	90	120		
Al ₂ O ₃ (Al-O)	198101	Al ₂ O ₃	R-3cH (167)	4.7576	4.7576	12.9834	90	90	120		
Class_Num_0	24005	AI_2O_3	R-3cR (167)	5.12(1)	5.12(1)	5.12(1)	55.28	55.28	55.28		
	24851	AI_2O_3	R-3cH (167)	4.763	4.763	13	90	90	120		
	25778	Al ₂ O ₃	R-3cH (167)	4.7589(10)	4.7589(10)	12.991(5)	90	90	120		
	26790	Al ₂ O ₃	R-3cR (167)	5.128	5.128	5.128	55.27	55.27	55.27		
	30024	AI_2O_3	R-3cH (167)	4.7657(9)	4.7657(9)	13.010(14)	90	90	120		
	30025	AI_2O_3	R-3cH (167)	4.7517(9)	4.7517(9)	12.965(17)	90	90	120		
	30026	Al ₂ O ₃	R-3cH (167)	4.7418(10)	4.7418(10)	12.921(20)	90	90	120		
	30027	AI_2O_3	R-3cH (167)	4.7351(9)	4.7351(9)	12.901(17)	90	90	120		
	30028	Al ₂ O ₃	R-3cH (167)	4.7242(10)	4.7242(10)	12.881(18)	90	90	120		
	30029	Al ₂ O ₃	R-3cH (167)	4.7212(7)	4.7212(7)	12.872(14)	90	90	120		
-	30030	Al ₂ O ₃	R-3cH (167)	4.7145(10)	4.7145(10)	12.851(22)	90	90	120		
	31545	Al ₂ O ₃	R-3cH (167)	4.7640(1)	4.7640(1)	13.0091(3)	90	90	120		

Supplementary Table 3 The list of 170 constituent compounds. The structure type and the number of duplicates for each of 38 classes are also given.

31546	Al ₂ O ₃	R-3cH (167)	4.75860(2)	4.75860(2)	12.9906(1)	90	90	120
31547	Al ₂ O ₃	R-3cH (167)	4.75860(2)	4.75860(2)	12.9906(1)	90	90	120
31548	Al ₂ O ₃	R-3cH (167)	4.7640(1)	4.7640(1)	13.0091(3)	90	90	120
33639	Al ₂ O ₃	R-3cR (167)	5.13(2)	5.13(2)	5.13(2)	55.27(8)	55.27(8)	55.27(8)
51687	Al ₂ O ₃	R-3cH (167)	4.7597(1)	4.7597(1)	12.9935(3)	90	90	120
52024	Al ₂ O ₃	R-3cH (167)	4.7570(6)	4.757	12.9877(35)	90	90	120
52044	Al ₂ O ₃	R-3cH (167)	4.7570(6)	4.757	12.9877(35)	90	90	120
52647	Al ₂ O ₃	R-3cH (167)	4.758	4.758	12.99	90	90	120
52648	Al ₂ O ₃	R-3cH (167)	4.7602(4)	4.7602	12.9933(17)	90	90	120
56085	Al ₂ O ₃	R-3cR (167)	5.12(1)	5.12(1)	5.12(1)	55.28	55.28	55.28
600672	Al ₂ O ₃	R-3cH (167)	4.7591(5)	4.7591(5)	12.9877(13)	90	90	120
60419	Al ₂ O ₃	R-3cH (167)	4.7606(5)	4.7606(5)	12.994(1)	90	90	120
608993	Al ₂ O ₃	R-3cH (167)	4.803	4.803	13.13	90	90	120
608994	Al ₂ O ₃	R-3cH (167)	4.813	4.813	13.15	90	90	120
608995	Al ₂ O ₃	R-3cH (167)	4.822	4.822	13.17	90	90	120
608996	Al ₂ O ₃	R-3cH (167)	4.832	4.832	13.18	90	90	120
608997	Al ₂ O ₃	R-3cH (167)	4.844	4.844	13.24	90	90	120
608998	Al ₂ O ₃	R-3cH (167)	4.847	4.847	13.25	90	90	120
609001	Al ₂ O ₃	R-3cH (167)	4.7582	4.7582	12.991	90	90	120
609004	Al ₂ O ₃	R-3cH (167)	4.758	4.758	12.991	90	90	120
63647	Al ₂ O ₃	R-3cH (167)	4.7586(1)	4.7586(1)	12.9897(1)	90	90	120
63648	Al ₂ O ₃	R-3cH (167)	4.7586(1)	4.7586(1)	12.9897(1)	90	90	120
64713	Al ₂ O ₃	R-3cH (167)	4.718(6)	4.718(6)	12.818(14)	90	90	120
68591	Al ₂ O ₃	R-3cH (167)	4.76050(5)	4.76050(5)	12.9956(2)	90	90	120
73076	AI_2O_3	R-3cH (167)	4.76	4.76	12.993	90	90	120
73724	Al ₂ O ₃	R-3cH (167)	4.7540(5)	4.7540(5)	12.9820(6)	90	90	120
73725	Al ₂ O ₃	R-3cH (167)	4.7540(5)	4.7540(5)	12.9820(6)	90	90	120
75479	Al ₂ O ₃	R-3cH (167)	4.7554(3)	4.7554(3)	12.9910(6)	90	90	120
75559	Al ₂ O ₃	R-3cH (167)	4.7589(4)	4.7589(4)	12.9919(3)	90	90	120
75560	Al ₂ O ₃	R-3cH (167)	4.7589(4)	4.7589(4)	12.9919(3)	90	90	120
77810	Al ₂ O ₃	R-3cH (167)	4.7598(1)	4.7598	12.9924(3)	90	90	120
85137	Al ₂ O ₃	R-3cH (167)	4.7607(7)	4.7607(7)	12.997(2)	90	90	120

	88027	Al ₂ O ₃	R-3cH (167)	4.7589(1)	4.7589(1)	12.991(1)	90	90	120
	88028	Al ₂ O ₃	R-3cH (167)	4.7585(2)	4.7585(2)	12.990(1)	90	90	120
	88029	Al ₂ O ₃	R-3cH (167)	4.7597(1)	4.7597(1)	12.993(1)	90	90	120
	89662	Al ₂ O ₃	R-3cH (167)	4.649(6)	4.649(6)	12.687(8)	90	90	120
	89663	Al ₂ O ₃	R-3cH (167)	4.641(7)	4.641(7)	12.666(8)	90	90	120
	89664	Al ₂ O ₃	R-3cH (167)	4.625(10)	4.625(10)	12.645(13)	90	90	120
	89665	Al ₂ O ₃	R-3cH (167)	4.62(3)	4.62(3)	12.57(5)	90	90	120
	92630	Al ₂ O ₃	R-3cH (167)	4.7602(4)	4.7602(4)	12.993(2)	90	90	120
	92631	Al ₂ O ₃	R-3cH (167)	4.7602(4)	4.7602(4)	12.993(2)	90	90	120
	93096	Al ₂ O ₃	R-3cH (167)	4.7599(5)	4.7599(5)	12.994(2)	90	90	120
	9770	Al ₂ O ₃	R-3cH (167)	4.7607(9)	4.7607(9)	12.9947(17)	90	90	120
	9771	Al ₂ O ₃	R-3cH (167)	4.7538(6)	4.7538(6)	12.9725(5)	90	90	120
	9772	Al ₂ O ₃	R-3cH (167)	4.7474(4)	4.7474(4)	12.9542(5)	90	90	120
	9773	Al ₂ O ₃	R-3cH (167)	4.7437(5)	4.7437(5)	12.9430(5)	90	90	120
	9774	AI_2O_3	R-3cH (167)	4.7406(5)	4.7406(5)	12.9326(16)	90	90	120
	9775	Al ₂ O ₃	R-3cH (167)	4.7352(7)	4.7352(7)	12.9176(11)	90	90	120
	249140	Al _{2.67} O ₄	Fd- 3mZ (227)	7.93820(1 0)	7.93820(1 0)	7.93820(10)	90	90	90
	28260	(Al ₂ O ₃) _{5.3333}	Fd- 3mS (227)	7.906	7.906	7.906	90	90	90
	39014	(Al ₂ O ₃) _{1.333}	Fd- 3mS (227)	7.906	7.906	7.906	90	90	90
Spinel-defect	39104	Al _{2.66} O ₄	Fd- 3mS (227)	7.906	7.906	7.906	90	90	90
(Al-O) Class Num 1	603780	Al _{2.67} O ₄	Fd- 3mZ (227)	7.947(10)	7.947(10)	7.947(10)	90	90	90
Class_Null_1	66558	Al _{2.144} O _{3.2}	Fd- 3mZ (227)	7.914(2)	7.914(2)	7.914(2)	90	90	90
	66559	Al _{2.144} O _{3.2}	Fd- 3mZ (227)	7.911(2)	7.911(2)	7.911(2)	90	90	90
	68770	Al _{21.333} O ₃₂	Fd- 3mS (227)	7.9056(4)	7.9056(4)	7.9056(4)	90	90	90
	69213	Al _{2.667} O ₄	Fd- 3mS (227)	7.948(2)	7.948(2)	7.948(2)	90	90	90
	247304	Al ₂ O ₃	Pna2 ₁ (33)	4.8437	8.33	8.9547	90	90	90
AlFeO ₃ (Al-O) Class_Num_2	84375	Al ₂ O ₃	Pna2 ₁ (33)	4.8437(2)	8.3300(3)	8.9547(4)	90	90	90
	94485	Al ₂ O ₃	Pna2 ₁ (33)	4.8340(1)	8.3096(2)	8.9353(2)	90	90	90
Ga ₂ O ₃ (Al-O)	66560	Al _{2.427} O _{3.64}	C12/m1 (12)	11.854(5)	2.904(1)	5.622(2)	90	103.83(7)	90
	82504	Al ₂ O ₃	C12/m1 (12)	11.795(5)	2.91(1)	5.621(7)	90	103.79	90
gamma (Al-O)	68771	AI _{10.666} O ₁₆	I4 ₁ /amdS (14 1)	5.600(2)	5.600(2)	7.854(6)	90	90	90
Class_Num_4	99836	(Al ₂ O ₃) _{1.333}	I4 ₁ /amdZ (14 1)	5.652(1)	5.652(1)	7.871(5)	90	90	90

AgSbO ₃ (Al-O) Class_Num_5	291495	Al ₂ O ₃	Fd- 3mZ (227)	7.94	7.94	7.94	90	90	90
Cr ₂ Mg ₄ O ₄ (Al- O) Class_Num_6	30267	(Al ₂ O ₃) _{1.333}	Fm-3m (225)	3.95	3.95	3.95	90	90	90
Fluorite-CaF ₂ (AI-O) Class_Num_7	28919	Al ₂ O	Fm-3m (225)	4.98	4.98	4.98	90	90	90
NaCl (Al-O) Class_Num_8	28920	AIO	Fm-3m (225)	5.67	5.67	5.67	90	90	90
Rh ₂ S ₃ (Al-O) Class_Num_9	151590	Al ₂ O ₃	Pbcn (60)	6.393(1)	4.362(1)	4.543(1)	90	90	90
No structure type (Al-O) Class_Num_10	23660	(Al ₂ O ₃)5.333	P63mc (186)	5.544(1)	5.544(1)	9.024(1)	90	90	120
No structure type (Al-O) Class_Num_11	40200	AI AI _{1.67} O4	P-4m2 (115)	5.599(10)	5.599(10)	23.657(50)	90	90	90
	173180	Li ₂ O	Fm-3m (225)	4.614(1)	4.614(1)	4.614(1)	90	90	90
	173193	Li ₂ O	Fm-3m (225)	4.6124(1)	4.6124(1)	4.6124(1)	90	90	90
	173206	Li ₂ O	Fm-3m (225)	4.6128(4)	4.6128(4)	4.6128(4)	90	90	90
	182024	Li ₂ O	Fm-3m (225)	4.728(5)	4.728(5)	4.728(5)	90	90	90
	182025	Li ₂ O	Fm-3m (225)	4.764(5)	4.764(5)	4.764(5)	90	90	90
	182026	Li ₂ O	Fm-3m (225)	4.782(5)	4.782(5)	4.782(5)	90	90	90
Fluorite-CaF ₂ ,	182027	Li ₂ O	Fm-3m (225)	4.807(5)	4.807(5)	4.807(5)	90	90	90
Li ₂ O (Li-O) Class Num 12	182028	Li ₂ O	Fm-3m (225)	4.837(5)	4.837(5)	4.837(5)	90	90	90
cluss_rum_rz	22402	Li ₂ O	Fm-3m (225)	4.61	4.61	4.61	90	90	90
	257372	Li ₂ O	Fm-3m (225)	4.61549(5)	4.61549(5)	4.61549(5)	90	90	90
	54368	Li ₂ O	Fm-3m (225)	4.610(5)	4.610(5)	4.610(5)	90	90	90
	57411	Li ₂ O	Fm-3m (225)	4.623	4.623	4.623	90	90	90
	60431	Li ₂ O	Fm-3m (225)	4.628	4.628	4.628	90	90	90
	642216	Li ₂ O	Fm-3m (225)	4.693(5)	4.693(5)	4.693(5)	90	90	90
Li ₂ O ₂ (Li-O) Class_Num_13	25530	Li ₂ O ₂	P6 ₃ /mmc (19 4)	3.142	3.142	7.65	90	90	120
No structure type (Li-O) Class_Num_14	24143	Li ₂ O ₂	P-6 (174)	6.305	6.305	7.71	90	90	120
No structure type (Li-O) Class_Num_15	108886	Li ₂ O	R-3mH (166)	3.624	3.624	7.97	90	90	120
	105548	SrO	Fm-3m (225)	5.160(2)	5.16	5.16	90	90	90

	109461	SrO	Fm-3m (225)	5.1615(3)	5.1615(3)	5.1615(3)	90	90	90
	163625	SrO	Fm-3m (225)	5.16132(1 3)	5.16132(1 3)	5.16132(13)	90	90	90
NaCl (Sr-O)	249178	SrO	Fm-3m (225)	5.1326	5.1326	5.1326	90	90	90
Class_Num_16	26960	SrO	Fm-3m (225)	5.124(10)	5.124	5.124	90	90	90
	28904	SrO	Fm-3m (225)	5.1396	5.1396	5.1396	90	90	90
	52276	SrO	Fm-3m (225)	5.154(2)	5.154	5.154	90	90	90
	24249	SrO ₂	l4/mmm (13 9)	3.55	3.55	6.55	90	90	90
	647474	SrO ₂	l4/mmm (13 9)	3.557	3.557	6.56	90	90	90
CaC ₂ (Sr-O)	74967	SrO _{1.95}	l4/mmm (13 9)	3.5626(3)	3.5626(3)	6.6159(6)	90	90	90
Class_Num_17	88749	SrO _{1.978}	l4/mmm (13 9)	3.5630(2)	3.5630(2)	6.616(1)	90	90	90
	88750	SrO _{1.962}	l4/mmm (13 9)	3.5619(3)	3.5619(3)	6.576(1)	90	90	90
	88751	SrO _{1.9}	l4/mmm (13 9)	3.5585(4)	3.5585(4)	6.563(1)	90	90	90
	23815	LiAIO ₂	P4 ₁ 2 ₁ 2 (92)	5.1687(5)	5.1687(5)	6.2679(6)	90	90	90
	30249	AILiO ₂	P41212 (92)	5.17	5.17	6.295	90	90	90
	430184	LiAIO ₂	P41212 (92)	5.1685(4)	5.1685(4)	6.2565(8)	90	90	90
LIAIO ₂ -gamma (Li-Al-O)	430185	LiAIO ₂	P4 ₁ 2 ₁ 2 (92)	5.250(10)	5.250(10)	6.340(10)	90	90	90
Class_Num_18	430357	LiAIO ₂	P41212 (92)	5.15885(1 7)	5.15885(1 7)	6.2700(3)	90	90	90
	430358	LiAIO ₂	P41212 (92)	5.1965(2)	5.1965(2)	6.3464(3)	90	90	90
	430359	LiAIO ₂	P4 ₁ 2 ₁ 2 (92)	5.2252(2)	5.2252(2)	6.4038(3)	90	90	90
Li ₅ AlO ₄ (Li-Al-	1037	Li ₅ AIO ₄	PmmnZ (59)	6.42	6.302	4.62	90	90	90
O) Class_Num_19	16229	Li ₅ AIO ₄	PmmnZ (59)	6.424(3)	6.305(3)	4.623(2)	90	90	90
spinel-LiFe₅O ₈	10480	LiAI5O8	P4332 (212)	7.908(2)	7.908(2)	7.908(2)	90	90	90
(Li-Al-O) Class_Num_20	83016	LiAI ₅ O ₈	P4332 (212)	7.903(5)	7.903(5)	7.903(5)	90	90	90
Spinel-defect (Li-Al-O) Class_Num_21	83017	(Li _{0.25} Al _{0.75})2(Li _{0.75} Al 1.25)2O7	Fd- 3mS (227)	7.910(5)	7.910(5)	7.910(5)	90	90	90
Delafossite- NaCrS ₂ (Li-Al- O) Class_Num_22	28288	LiAIO2	R-3mH (166)	2.8003(6)	2.8003(6)	14.216(3)	90	90	120
LiFeO2-alpha (Li-Al-O) Class_Num_23	99517	LiAIO ₂	l4₁/amdZ (14 1)	3.8866(8)	3.8866(8)	8.3001(13)	90	90	90
Li₅GaO₄-alpha (Li-Al-O) Class_Num_24	42697	Li ₅ AlO ₄	Pbca (61)	9.087(3)	8.947(3)	9.120(3)	90	90	90
SrAl ₂ O ₄ (Sr-Al-	160296	Sr(Al ₂ O ₄)	P12 ₁ 1 (4)	8.44365(9)	8.82245(8)	5.15964(6)	90	93.411(1)	90
Class_Num_25	160297	Sr(Al ₂ O ₄)	P12 ₁ 1 (4)	8.5066(5)	8.8898(5)	5.1732(3)	90	92.875(4)	90

	26466	SrAl ₂ O ₄	P12 ₁ 1 (4)	8.447	8.816	5.163	90	93.42	90
	291357	SrAl ₂ O ₄	P12 ₁ 1 (4)	8.43904(1)	8.81425(2)	5.156355(9)	90	93.4094 (1)	90
	291361	SrAl ₂ O ₄	P12 ₁ 1 (4)	8.41634(8)	8.78882(8)	5.1565(5)	90	93.5079 (9)	90
	184967	Sr(Al ₁₂ O ₁₉)	P6 ₃ /mmc (19 4)	5.564	5.564	22.002	90	90	120
M-type- ferrite#CaAl ₁₂	2006	SrO(Al ₂ O ₃) ₆	P6 ₃ /mmc (19 4)	5.562(2)	5.562(2)	21.9719(50)	90	90	120
O ₁₉ (Sr-Al-O)	239757	Al ₁₂ SrO ₁₉	P6 ₃ /mmc (19 4)	5.57661	5.57661	22.143(1)	90	90	120
Class_Num_26	69020	SrAl ₁₂ O ₁₉	P6 ₃ /mmc (19 4)	5.5666(2)	5.5666(2)	22.0018(8)	90	90	120
Sr ₄ Al ₁₄ O ₂₅ (Sr-	258392	Sr ₄ Al ₁₄ O ₂₅	Pmma (51)	24.7703(8 4)	8.4797(31)	4.8833(17)	90	90	90
Al-O)	27744	Sr ₄ Al ₄ O ₂ (Al ₁₀ O ₂₃)	Pmma (51)	24.785(1)	8.487(2)	4.886(1)	90	90	90
Class_Num_27	88527	(SrO)4(Al ₂ O ₃)7	Pmma (51)	24.74509(20)	8.4735(6)	4.8808(1)	90	90	90
PaMasio (Sr	153164	Sr(Al ₂ O ₄)	P6 ₃ (173)	8.9260(3)	8.9260(3)	8.4985(2)	90	90	120
Al-O)	160298	Sr(Al ₂ O ₄)	P6 ₃ (173)	8.9291(1)	8.9291(1)	8.4963(4)	90	90	120
Class_Num_28	160299	Sr(Al ₂ O ₄)	P6 ₃ (173)	8.9349(1)	8.9349(1)	8.5109(3)	90	90	120
BaAl ₂ O ₄ (Sr-	160300	Sr(Al ₂ O ₄)	P6 ₃ 22 (182)	5.1666(1)	5.1666(1)	8.5485(3)	90	90	120
Al-O) Class_Num_29	160301	Sr(Al ₂ O ₅)	P6 ₃ 22 (182)	5.1765(1)	5.1765(1)	8.5758(1)	90	90	120
Ca ₉ Al ₆ O ₁₈ (Sr-	66062	Sr ₉ (Al ₆ O ₁₈)	Pa-3 (205)	15.8476(2)	15.8476(2)	15.8476(2)	90	90	90
AI-O) Class_Num_30	71860	Sr ₃ Al ₂ O ₆	Pa-3 (205)	15.8556(4)	15.8556(4)	15.8556(4)	90	90	90
CaAl ₄ O ₇ (Sr-	16751	(SrO)(Al ₂ O ₃) ₂	C12/c1 (15)	13.04	9.01	5.55	90	106.502	90
Al-O) Class_Num_31	2817	SrAl ₄ O ₇	C12/c1 (15)	13.0389(9 0)	9.0113(45)	5.5358(27)	90	106.7	90
N	200671	Sr ₇ Al ₁₂ O ₂₅	P3 (143)	17.91	17.91	7.16	90	90	120
type (Sr-Al-O) Class_Num_32	57177	Sr7Al12O25	P-3 (147)	17.91	17.91	7.16	90	90	120
CaAlB ₃ O ₇ (Sr- Al-O) Class_Num_33	34803	Sr(Al ₄ O ₇)	Cmma (67)	8.085(5)	11.845(8)	4.407(3)	90	90	90
Sr _{0.5} Al ₁₁ O ₁₇ (Sr-Al-O) Class_Num_34	108851	Sr _{0.5} Al ₁₁ O ₁₇	R-3mH (166)	5.622	5.622	33.5	90	90	120
Sr ₁₀ Ga ₆ O ₁₉ (Sr- Al-O) Class_Num_35	95535	Sr10Al6O19	C12/c1 (15)	34.5823(2 1)	7.8460(6)	15.7485(9)	90	103.68(1)	90
No structure type (Sr-Al-O) Class_Num_36	97713	Sr ₂ (Al ₆ O ₁₁)	Pnnm (58)	21.9145(8)	4.8843(2)	8.4039(3)	90	90	90
No structure type (Sr-Li-Al- O) Class_Num_37	_	Sr ₂ LiAlO ₄	P12 ₁ /m1 (1 1)	5.81998	5.63362	6.65907	90	106.483	90

Compositional	Sample	We	eight fracti	ion	N	Aol. fractio	n	Height fraction		
space	No.	Li ₂ O	SrO	Al ₂ O ₃	Li ₂ O	SrO	Al ₂ O ₃	Li ₂ O	SrO	Al ₂ O ₃
	0	17.80%	12.30%	69.90%	42.55%	8.48%	48.97%	13.76%	27.72%	58.52%
	1	31.72%	23.98%	44.29%	61.46%	13.40%	25.15%	39.73%	44.01%	16.27%
	2	20.61%	38.55%	40.84%	47.17%	25.44%	27.39%	29.46%	59.49%	11.05%
	3	12.07%	13.32%	74.62%	31.95%	10.17%	57.88%	26.93%	30.42%	42.64%
	4	23.62%	31.10%	45.28%	51.51%	19.56%	28.94%	30.24%	54.52%	15.24%
	5	12.68%	30.44%	56.88%	33.26%	23.02%	43.72%	10.57%	63.47%	25.96%
	6	25.82%	29.23%	44.95%	54.45%	17.77%	27.78%	25.93%	56.73%	17.34%
	7	12.50%	17.47%	70.02%	32.85%	13.24%	53.92%	14.72%	46.77%	38.51%
	8	13.50%	8.17%	78.33%	34.78%	6.07%	59.15%	16.69%	31.71%	51.60%
	9	16.68%	9.06%	74.26%	40.63%	6.36%	53.01%	19.71%	31.34%	48.95%
	10	32.03%	5.33%	62.64%	61.69%	2.96%	35.35%	48.19%	16.85%	34.96%
	11	9.99%	8.91%	81.10%	27.50%	7.07%	65.43%	12.97%	29.43%	57.59%
	12	7.67%	20.02%	72.32%	22.14%	16.67%	61.19%	16.97%	49.05%	33.98%
	13	13.11%	21.87%	65.02%	34.08%	16.39%	49.53%	13.22%	52.65%	34.13%
	14	23.02%	25.16%	51.82%	50.64%	15.96%	33.40%	23.23%	53.23%	23.54%
Li_2O -SrO-Al $_2O_3$	15	21.80%	24.82%	53.38%	48.88%	16.05%	35.07%	24.80%	51.67%	23.53%
	16	15.44%	23.40%	61.17%	38.49%	16.82%	44.69%	11.94%	59.16%	28.89%
	17	22.22%	16.40%	61.39%	49.44%	10.52%	40.03%	9.69%	59.11%	31.20%
	18	14.53%	22.87%	62.60%	36.81%	16.71%	46.48%	22.40%	32.37%	45.23%
	19	15.87%	23.45%	60.68%	39.27%	16.73%	44.00%	22.13%	54.68%	23.19%
	20	21.98%	11.51%	66.50%	49.08%	7.41%	43.51%	16.21%	50.42%	33.38%
	21	22.64%	17.82%	59.54%	50.06%	11.36%	38.58%	24.20%	31.14%	44.66%
	22	25.45%	8.19%	66.35%	53.86%	5.00%	41.15%	17.15%	44.78%	38.07%
	23	39.25%	32.13%	28.63%	68.97%	16.28%	14.74%	21.07%	66.55%	12.38%
	24	13.74%	14.97%	71.29%	35.28%	11.08%	53.64%	14.95%	44.61%	40.44%
	25	29.67%	28.52%	41.82%	59.16%	16.40%	24.44%	25.36%	57.52%	17.11%
	26	19.02%	9.44%	71.54%	44.54%	6.37%	49.09%	29.83%	27.67%	42.50%
	27	37.53%	19.07%	43.40%	67.32%	9.86%	22.81%	38.11%	39.02%	22.87%
	28	9.91%	3.95%	86.14%	27.31%	3.14%	69.56%	29.86%	13.96%	56.18%
F	29	14.58%	5.46%	79.96%	36.83%	3.98%	59.19%	25.23%	16.98%	57.79%
	30	14.88%	2.90%	82.22%	37.38%	2.10%	60.52%	25.68%	12.69%	61.63%

Supplementary Table 4 A comparison between the height fraction and the weight fraction, which was correctly measured using real experimental XRD pattern data for $SrAl_2O_4$ -SrO- Al_2O_3 and Li_2O -SrO- Al_2O_3 mixture systems.

	31	9.07%	16.88%	74.04%	25.45%	13.66%	60.89%	9.92%	48.55%	41.53%
	32	19.15%	3.55%	77.30%	44.71%	2.39%	52.89%	21.58%	15.52%	62.89%
	33	28.14%	21.71%	50.15%	57.32%	12.75%	29.93%	39.69%	39.82%	20.49%
	34	17.02%	5.31%	77.67%	41.20%	3.71%	55.10%	27.60%	16.42%	55.98%
	35	14.79%	14.83%	70.39%	37.26%	10.77%	51.97%	15.57%	42.77%	41.66%
	36	16.94%	4.78%	78.28%	41.06%	3.34%	55.60%	29.32%	15.92%	54.76%
	37	32.69%	40.49%	26.82%	62.59%	22.36%	15.05%	29.90%	60.87%	9.24%
	38	22.18%	33.31%	44.51%	49.48%	21.43%	29.10%	15.34%	66.18%	18.48%
	39	34.99%	18.18%	46.83%	64.85%	9.72%	25.44%	30.50%	45.90%	23.60%
	40	13.35%	16.35%	70.29%	34.53%	12.19%	53.28%	10.70%	45.91%	43.39%
	41	28.36%	7.55%	64.09%	57.50%	4.41%	38.08%	45.15%	20.00%	34.85%
	42	18.84%	9.64%	71.52%	44.25%	6.53%	49.22%	23.30%	28.67%	48.03%
	43	13.74%	28.89%	57.38%	35.33%	21.42%	43.24%	9.05%	64.75%	26.20%
	44	15.27%	8.36%	76.37%	38.12%	6.02%	55.87%	18.22%	27.92%	53.86%
	45	15.81%	16.91%	67.28%	39.13%	12.07%	48.80%	31.32%	26.64%	42.04%
	46	14.45%	27.68%	57.87%	36.68%	20.26%	43.05%	18.22%	56.83%	24.95%
	47	18.47%	16.38%	65.16%	43.68%	11.17%	45.15%	21.44%	42.33%	36.23%
	48	34.11%	27.37%	38.53%	64.00%	14.81%	21.19%	31.19%	52.67%	16.15%
	49	6.32%	15.86%	77.83%	18.75%	13.57%	67.68%	8.77%	46.12%	45.11%
Compositional	49 Sample	6.32% We	15.86% ight fractio	77.83% on	18.75% M	13.57%	67.68% n	8.77% He	46.12% ight fractio	45.11% on
Compositional space	49 Sample No.	6.32% We SrAl ₂ O ₄	15.86% ight fraction SrO	77.83% on Al ₂ O ₃	18.75% M SrAl ₂ O ₄	13.57% ol. fraction SrO	67.68% n Al ₂ O ₃	8.77% He SrAl ₂ O ₄	46.12% ight fractio SrO	45.11% on Al ₂ O ₃
Compositional space	49 Sample No.	6.32% We SrAl ₂ O ₄ 62.02%	15.86% ight fractio SrO 6.09%	77.83% on Al ₂ O ₃ 31.88%	18.75% M SrAl ₂ O ₄ 44.82%	13.57% ol. fraction SrO 8.73%	67.68% n Al ₂ O ₃ 46.45%	8.77% He ⁻ SrAl ₂ O ₄ 32.04%	46.12% ight fraction SrO 28.17%	45.11% on Al ₂ O ₃ 39.79%
Compositional space	49 Sample No. 0 1	6.32% We SrAl ₂ O ₄ 62.02% 33.74%	15.86% ight fraction SrO 6.09% 6.76%	77.83% on Al ₂ O ₃ 31.88% 59.49%	18.75% M SrAl ₂ O ₄ 44.82% 20.19%	13.57% ol. fraction SrO 8.73% 8.03%	67.68%	8.77% He SrAl ₂ O ₄ 32.04% 22.60%	46.12% ight fraction SrO 28.17% 23.28%	45.11% on Al ₂ O ₃ 39.79% 54.11%
Compositional space	49 Sample No. 0 1 2	6.32% We SrAl ₂ O ₄ 62.02% 33.74% 61.79%	15.86% ight fraction SrO 6.09% 6.76% 10.88%	77.83% on Al ₂ O ₃ 31.88% 59.49% 27.33%	18.75% M SrAl ₂ O ₄ 44.82% 20.19% 44.62%	13.57% ol. fraction 8.73% 8.03% 15.59%	67.68% n Al ₂ O ₃ 46.45% 71.78% 39.79%	8.77% He SrAl ₂ O ₄ 32.04% 22.60% 26.74%	46.12% ight fraction 28.17% 23.28% 37.90%	45.11% on Al ₂ O ₃ 39.79% 54.11% 35.35%
Compositional space	49 Sample No. 0 1 2 3	6.32% We SrAl ₂ O ₄ 62.02% 33.74% 61.79% 61.18%	15.86% ight fraction 6.09% 6.76% 10.88% 11.52%	77.83% on Al ₂ O ₃ 31.88% 59.49% 27.33% 27.30%	18.75% M SrAl ₂ O ₄ 44.82% 20.19% 44.62% 43.99%	13.57% ol. fraction 8.73% 8.03% 15.59% 16.43%	67.68% n Al ₂ O ₃ 46.45% 71.78% 39.79% 39.58%	8.77% He SrAl ₂ O ₄ 32.04% 22.60% 26.74% 26.21%	46.12% ight fraction 28.17% 23.28% 37.90% 38.68%	45.11% on Al ₂ O ₃ 39.79% 54.11% 35.35% 35.11%
Compositional space	49 Sample No. 0 1 2 3 3 4	6.32% We SrAl ₂ O ₄ 62.02% 33.74% 61.79% 61.18% 73.45%	15.86% ight fraction 6.09% 6.76% 10.88% 11.52% 2.63%	77.83% on Al ₂ O ₃ 31.88% 59.49% 27.33% 27.30% 23.92%	18.75% M SrAl ₂ O ₄ 44.82% 20.19% 44.62% 43.99% 57.88%	13.57% ol. fraction 8.73% 8.03% 15.59% 16.43% 4.11%	67.68% Al ₂ O ₃ 46.45% 71.78% 39.79% 39.58% 38.01%	8.77% He SrAl ₂ O ₄ 32.04% 22.60% 26.74% 26.21% 20.96%	46.12% ight fraction 28.17% 23.28% 37.90% 38.68% 55.57%	45.11% Al ₂ O ₃ 39.79% 54.11% 35.35% 35.11% 23.46%
Compositional space	49 Sample No. 0 1 2 3 4 5	6.32% We SrAl ₂ O ₄ 62.02% 33.74% 61.79% 61.18% 73.45% 68.41%	15.86% ight fraction 6.09% 6.76% 10.88% 11.52% 2.63% 10.78%	77.83% on Al ₂ O ₃ 31.88% 59.49% 27.33% 27.30% 23.92% 20.82%	18.75% M SrAl ₂ O ₄ 44.82% 20.19% 44.62% 43.99% 57.88% 51.91%	13.57% ol. fraction 8.73% 8.03% 15.59% 16.43% 4.11% 16.23%	67.68% Al ₂ O ₃ 46.45% 71.78% 39.79% 39.58% 38.01% 31.86%	8.77% He SrAl ₂ O ₄ 32.04% 22.60% 26.74% 26.21% 20.96% 30.01%	46.12% ight fraction 28.17% 23.28% 37.90% 38.68% 55.57% 36.13%	45.11% Al ₂ O ₃ 39.79% 54.11% 35.35% 35.11% 23.46% 33.86%
Compositional space	49 Sample No. 0 1 1 2 3 3 4 5 5 6	6.32% We SrAl ₂ O ₄ 62.02% 33.74% 61.79% 61.18% 73.45% 68.41% 56.04%	15.86% ight fraction 6.09% 6.76% 10.88% 11.52% 2.63% 10.78% 16.67%	77.83% on Al ₂ O ₃ 31.88% 59.49% 27.33% 27.30% 23.92% 20.82% 20.82%	18.75% M SrAl ₂ O4 44.82% 20.19% 44.62% 43.99% 57.88% 51.91% 38.88%	13.57% ol. fraction 8.73% 8.03% 15.59% 16.43% 4.11% 16.23% 22.95%	67.68% Al ₂ O ₃ 46.45% 71.78% 39.79% 39.58% 38.01% 31.86% 38.17%	8.77% He SrAl ₂ O ₄ 32.04% 22.60% 26.74% 26.21% 20.96% 30.01% 23.92%	46.12% ight fraction 28.17% 23.28% 37.90% 38.68% 55.57% 36.13% 45.14%	45.11% Al ₂ O ₃ 39.79% 54.11% 35.35% 35.11% 23.46% 33.86% 30.94%
Compositional space SrAl ₂ O ₄ -SrO-	49 Sample No. 0 1 2 3 3 4 5 6 7	6.32% We SrAl ₂ O ₄ 62.02% 33.74% 61.79% 61.18% 73.45% 68.41% 56.04% 21.29%	15.86% ight fraction 6.09% 6.76% 10.88% 11.52% 2.63% 10.78% 16.67% 12.52%	77.83% on Al ₂ O ₃ 31.88% 59.49% 27.33% 27.30% 23.92% 20.82% 27.29% 66.19%	18.75% M SrAl ₂ O ₄ 44.82% 20.19% 44.62% 43.99% 57.88% 51.91% 38.88% 11.85%	13.57% ol. fraction 8.73% 8.03% 15.59% 16.43% 4.11% 16.23% 22.95% 13.83%	67.68% Al ₂ O ₃ 46.45% 71.78% 39.79% 39.58% 38.01% 31.86% 38.17% 74.31%	8.77% He SrAl ₂ O ₄ 32.04% 22.60% 26.74% 26.21% 20.96% 30.01% 23.92% 11.55%	46.12% ight fraction 28.17% 23.28% 37.90% 38.68% 55.57% 36.13% 45.14% 39.89%	45.11% Al ₂ O ₃ 39.79% 54.11% 35.35% 35.11% 23.46% 33.86% 30.94% 48.56%
Compositional space SrAl ₂ O ₄ -SrO- Al ₂ O ₃	49 Sample No. 0 1 2 3 4 5 6 7 7 8	6.32% We SrAl ₂ O ₄ 62.02% 33.74% 61.79% 61.18% 73.45% 68.41% 56.04% 21.29% 22.73%	15.86% ight fraction 6.09% 6.76% 10.88% 11.52% 2.63% 10.78% 16.67% 12.52% 12.79%	77.83% on Al ₂ O ₃ 31.88% 59.49% 27.33% 27.30% 23.92% 20.82% 20.82% 66.19% 66.19%	18.75% M SrAl ₂ O ₄ 44.82% 20.19% 44.62% 43.99% 57.88% 51.91% 38.88% 11.85% 12.76%	13.57% ol. fractio 8.73% 8.03% 15.59% 16.43% 4.11% 16.23% 22.95% 13.83% 14.25%	67.68% Al ₂ O ₃ 46.45% 71.78% 39.79% 39.58% 38.01% 31.86% 38.17% 74.31% 72.99%	8.77% He SrAl ₂ O ₄ 32.04% 22.60% 26.74% 26.21% 20.96% 30.01% 23.92% 11.55% 12.77%	46.12% ight fraction 28.17% 23.28% 37.90% 38.68% 55.57% 36.13% 45.14% 39.89% 37.93%	45.11% Al ₂ O ₃ 39.79% 54.11% 35.35% 35.11% 23.46% 33.86% 30.94% 48.56% 49.30%
Compositional space SrAl ₂ O ₄ -SrO- Al ₂ O ₃	49 Sample No. 0 1 1 2 3 3 4 5 5 6 7 7 8 8 9	6.32% We SrAl ₂ O ₄ 62.02% 33.74% 61.79% 61.18% 73.45% 68.41% 56.04% 21.29% 22.73% 57.98%	15.86% ight fraction 6.09% 6.76% 10.88% 11.52% 2.63% 10.78% 16.67% 12.52% 12.79% 7.89%	77.83% on Al ₂ O ₃ 31.88% 59.49% 27.33% 27.30% 23.92% 20.82% 27.29% 66.19% 64.48% 34.13%	18.75% M SrAl ₂ O ₄ 44.82% 20.19% 44.62% 43.99% 57.88% 51.91% 38.88% 11.85% 12.76% 40.70%	13.57% ol. fraction 8.73% 8.03% 15.59% 16.43% 4.11% 16.23% 22.95% 13.83% 14.25% 10.99%	67.68% Al ₂ O ₃ 46.45% 71.78% 39.79% 39.58% 38.01% 31.86% 38.17% 74.31% 72.99% 48.31%	8.77% He SrAl ₂ O ₄ 32.04% 22.60% 26.74% 26.21% 20.96% 30.01% 23.92% 11.55% 12.77% 31.21%	46.12% ight fraction 28.17% 23.28% 37.90% 38.68% 55.57% 36.13% 45.14% 39.89% 37.93% 28.20%	45.11% Al ₂ O ₃ 39.79% 54.11% 35.35% 35.11% 23.46% 33.86% 30.94% 48.56% 49.30%
Compositional space SrAl ₂ O ₄ -SrO- Al ₂ O ₃	49 Sample No. 0 1 2 3 3 4 5 6 7 7 8 9 9	6.32% We SrAl ₂ O ₄ 62.02% 33.74% 61.79% 61.18% 73.45% 68.41% 56.04% 21.29% 22.73% 57.98% 85.77%	15.86% ight fraction 6.09% 6.76% 10.88% 11.52% 2.63% 10.78% 10.78% 12.52% 12.79% 7.89% 3.93%	77.83% Al ₂ O ₃ 31.88% 59.49% 27.33% 27.30% 23.92% 20.82% 20.82% 66.19% 66.19% 64.48% 34.13%	18.75% M SrAl ₂ O ₄ 44.82% 20.19% 44.62% 43.99% 57.88% 57.88% 51.91% 38.88% 11.85% 12.76% 40.70% 75.02%	13.57% ol. fraction 8.73% 8.03% 15.59% 16.43% 4.11% 16.23% 22.95% 13.83% 14.25% 10.99% 6.82%	67.68% Al ₂ O ₃ 46.45% 71.78% 39.79% 39.58% 38.01% 31.86% 38.17% 74.31% 72.99% 48.31% 18.16%	8.77% He SrAl ₂ O ₄ 32.04% 22.60% 26.74% 26.21% 20.96% 30.01% 23.92% 11.55% 12.77% 31.21%	46.12% ight fraction 28.17% 23.28% 37.90% 38.68% 55.57% 36.13% 45.14% 39.89% 37.93% 28.20% 23.54%	45.11% Al ₂ O ₃ 39.79% 54.11% 35.35% 35.11% 23.46% 33.86% 33.86% 48.56% 49.30% 40.59% 35.94%
Compositional space SrAl ₂ O ₄ -SrO- Al ₂ O ₃	49 Sample No. 0 1 2 3 4 5 6 7 7 8 9 9 10 11	6.32% We SrAl ₂ O ₄ 62.02% 33.74% 61.79% 61.18% 73.45% 68.41% 56.04% 21.29% 22.73% 57.98% 85.77% 31.92%	15.86% ight fraction 6.09% 6.76% 10.88% 11.52% 2.63% 10.78% 16.67% 12.52% 12.79% 7.89% 3.93% 6.78%	77.83% on Al ₂ O ₃ 31.88% 59.49% 27.33% 27.30% 23.92% 20.82% 20.82% 27.29% 66.19% 64.48% 34.13% 10.30% 61.29%	18.75% M SrAl ₂ O ₄ 44.82% 20.19% 44.62% 43.99% 57.88% 51.91% 38.88% 11.85% 12.76% 40.70% 75.02% 18.89%	13.57% ol. fraction 8.73% 8.73% 15.59% 16.43% 4.11% 16.23% 22.95% 13.83% 14.25% 10.99% 6.82% 7.96%	67.68% Al ₂ O ₃ 46.45% 71.78% 39.79% 39.58% 38.01% 31.86% 38.17% 74.31% 74.31% 72.99% 48.31% 18.16% 73.14%	8.77% He SrAl ₂ O ₄ 32.04% 22.60% 26.74% 26.21% 20.96% 30.01% 23.92% 11.55% 12.77% 31.21% 40.51% 19.98%	46.12% ight fraction 28.17% 23.28% 37.90% 38.68% 55.57% 36.13% 45.14% 39.89% 37.93% 28.20% 23.54% 24.44%	45.11% Al ₂ O ₃ 39.79% 54.11% 35.35% 35.11% 23.46% 33.86% 30.94% 48.56% 49.30% 40.59% 35.94%
Compositional space SrAl ₂ O ₄ -SrO- Al ₂ O ₃	49 Sample No. 0 1 1 2 3 3 4 5 5 6 7 7 8 9 9 10 11 11	6.32% We SrAl ₂ O ₄ 62.02% 33.74% 61.79% 61.18% 73.45% 68.41% 56.04% 21.29% 22.73% 57.98% 85.77% 31.92% 56.51%	15.86% ight fraction 6.09% 6.76% 10.88% 11.52% 2.63% 10.78% 16.67% 12.52% 12.79% 3.93% 6.78% 12.44%	77.83% on Al ₂ O ₃ 31.88% 59.49% 27.33% 27.30% 23.92% 20.82% 27.29% 66.19% 64.48% 34.13% 10.30% 61.29% 31.05%	18.75% M SrAl ₂ O ₄ 44.82% 20.19% 44.62% 43.99% 57.88% 51.91% 38.88% 11.85% 12.76% 40.70% 75.02% 18.89% 39.30%	13.57% ol. fraction 8.73% 8.03% 15.59% 16.43% 4.11% 16.23% 22.95% 13.83% 14.25% 10.99% 6.82% 7.96% 17.16%	67.68% Al ₂ O ₃ 46.45% 71.78% 39.79% 39.58% 38.01% 31.86% 38.17% 74.31% 74.31% 74.31% 74.31% 18.16% 73.14% 43.54%	8.77% He SrAl ₂ O ₄ 32.04% 22.60% 26.74% 26.21% 20.96% 30.01% 23.92% 11.55% 12.77% 31.21% 40.51% 19.98% 27.54%	46.12% ight fraction 28.17% 23.28% 37.90% 38.68% 55.57% 36.13% 45.14% 39.89% 37.93% 28.20% 23.54% 24.44% 38.40%	45.11% Al ₂ O ₃ 39.79% 54.11% 35.35% 35.11% 23.46% 33.86% 30.94% 48.56% 49.30% 40.59% 35.94% 55.59% 34.06%
Compositional space SrAl ₂ O ₄ -SrO- Al ₂ O ₃	49 Sample No. 0 1 2 3 4 4 5 6 7 7 8 9 9 10 10 11 12 13	6.32% We SrAl ₂ O ₄ 62.02% 33.74% 61.79% 61.18% 73.45% 68.41% 56.04% 21.29% 22.73% 57.98% 85.77% 31.92% 56.51% 58.33%	15.86% ight fraction 6.09% 6.76% 10.88% 11.52% 2.63% 10.78% 10.78% 12.52% 12.79% 7.89% 3.93% 6.78% 12.44% 13.17%	77.83% Al ₂ O ₃ 31.88% 59.49% 27.33% 27.30% 23.92% 20.82% 27.29% 66.19% 66.19% 64.48% 34.13% 10.30% 61.29% 31.05% 28.50%	18.75% M SrAl ₂ O4 44.82% 20.19% 44.62% 43.99% 57.88% 57.88% 51.91% 38.88% 11.85% 12.76% 40.70% 75.02% 18.89% 39.30% 41.10%	13.57% ol. fraction 8.73% 8.03% 15.59% 16.43% 4.11% 16.23% 22.95% 13.83% 14.25% 10.99% 6.82% 7.96% 17.16% 18.41%	67.68% Al ₂ O ₃ 46.45% 71.78% 39.79% 39.58% 38.01% 31.86% 38.17% 74.31% 74.31% 72.99% 48.31% 18.16% 73.14% 43.54% 40.49%	8.77% He SrAl ₂ O ₄ 32.04% 22.60% 26.74% 26.21% 20.96% 30.01% 23.92% 11.55% 12.77% 31.21% 40.51% 19.98% 27.54% 24.61%	46.12% ight fraction 28.17% 23.28% 37.90% 38.68% 55.57% 36.13% 45.14% 39.89% 37.93% 28.20% 23.54% 24.44% 38.40% 41.12%	45.11% Al ₂ O ₃ 39.79% 54.11% 35.35% 35.11% 23.46% 33.86% 33.86% 33.86% 48.56% 49.30% 48.56% 35.94% 35.94% 55.59% 34.06%

15	82.84%	5.52%	11.64%	70.65%	9.34%	20.01%	37.98%	26.38%	35.64%
16	68.13%	8.52%	23.35%	51.57%	12.79%	35.64%	28.50%	38.56%	32.94%
17	55.45%	9.48%	35.07%	38.25%	12.97%	48.78%	27.87%	32.77%	39.37%
18	39.18%	14.78%	46.04%	24.29%	18.18%	57.54%	18.04%	45.23%	36.73%
19	22.47%	18.96%	58.57%	12.61%	21.11%	66.28%	10.45%	48.01%	41.54%
20	38.35%	14.62%	47.03%	23.65%	17.88%	58.47%	18.19%	42.14%	39.68%
21	39.08%	40.70%	20.22%	24.33%	50.28%	25.39%	12.20%	71.71%	16.08%
22	58.08%	1.95%	39.96%	40.75%	2.71%	56.53%	31.21%	20.66%	48.12%
23	71.86%	12.02%	16.12%	56.05%	18.60%	25.35%	29.86%	38.48%	31.67%
24	59.91%	5.00%	35.08%	42.62%	7.06%	50.32%	29.27%	28.67%	42.06%
25	79.23%	8.91%	11.86%	65.58%	14.63%	19.79%	34.90%	33.58%	31.51%
26	47.90%	14.82%	37.27%	31.42%	19.29%	49.29%	22.74%	40.81%	36.45%
27	61.07%	9.28%	29.64%	43.86%	13.22%	42.92%	30.61%	32.75%	36.64%
28	63.14%	3.06%	33.80%	45.97%	4.42%	49.61%	31.83%	23.64%	44.54%
29	62.37%	16.42%	21.20%	45.30%	23.66%	31.04%	24.31%	48.27%	27.41%
30	48.76%	13.78%	37.46%	32.16%	18.03%	49.81%	20.87%	43.42%	35.71%
31	77.46%	2.86%	19.68%	63.07%	4.62%	32.31%	41.68%	20.15%	38.18%
32	43.59%	23.29%	33.12%	27.84%	29.51%	42.65%	17.97%	52.90%	29.13%
33	65.46%	10.00%	24.53%	48.58%	14.72%	36.70%	28.04%	39.84%	32.12%
34	51.83%	30.87%	17.29%	35.04%	41.40%	23.57%	15.03%	65.60%	19.37%
35	39.85%	8.41%	51.74%	24.77%	10.37%	64.85%	21.11%	31.90%	46.99%
36	54.55%	12.30%	33.15%	37.42%	16.74%	45.85%	26.75%	36.81%	36.44%
37	36.16%	43.58%	20.26%	22.12%	52.89%	24.99%	9.94%	75.68%	14.38%
38	69.54%	4.60%	25.86%	53.16%	6.98%	39.86%	35.70%	22.08%	42.22%
39	54.12%	14.49%	31.39%	37.03%	19.67%	43.30%	23.94%	44.02%	32.04%
40	45.94%	14.73%	39.34%	29.74%	18.92%	51.35%	20.20%	42.83%	36.97%
41	30.55%	16.30%	53.15%	17.96%	19.02%	63.02%	14.73%	47.40%	37.87%
42	64.78%	7.95%	27.27%	47.80%	11.64%	40.57%	30.48%	32.09%	37.43%
43	67.49%	8.79%	23.72%	50.84%	13.14%	36.03%	31.43%	31.54%	37.03%
44	70.57%	5.65%	23.77%	54.41%	8.64%	36.95%	34.56%	26.79%	38.66%
45	55.34%	7.00%	37.66%	38.12%	9.57%	52.31%	28.37%	28.74%	42.89%
46	33.75%	18.17%	48.08%	20.24%	21.62%	58.14%	14.93%	49.13%	35.95%
47	84.15%	10.62%	5.23%	72.69%	18.20%	9.11%	36.91%	33.72%	29.37%
48	74.99%	12.62%	12.39%	59.99%	20.03%	19.98%	31.22%	39.25%	29.53%
49	57.08%	28.77%	14.15%	40.00%	40.00%	19.99%	30.81%	42.26%	26.92%