Supplementary data

Bioactivity-guided Isolation and Identification of New and Immunosuppressive

Monoterpenoid Indole Alkaloids from Rauvolfia yunnanensis Tsiang

Li-Mei Li^{1,2,*}, Shun-Dong Shi², Yang Liu², Qiang Zou²

¹ College of Pharmacy, Southwest University for Nationalities, Chengdu 610041, Sichuan, China

² Research Center, Chengdu Medical College, Chengdu 610500, Sichuan, China; <u>shisd@kelun.com</u> (S.-D. S.); scunn519@gmail.com (Y. L.); <u>qiangzou99@gmail.com</u> (Q. Z.)

* Correspondence: 21800008@swun.edu.cn (L.-M. L.).

Content

Figure S1. ¹H NMR spectrum of compound 1 (600 MHz, $C_5H_5N-d_5$). Figure S2. ¹³C NMR spectrum of compound 1 (150 MHz, $C_5H_5N-d_5$). Figure S3. HSQC spectrum of compound 1 (600 MHz, $C_5H_5N-d_5$). Figure S4. HMBC spectrum of compound 1 (600 MHz, $C_5H_5N-d_5$). Figure S5. NOESY spectrum of compound 1 (600 MHz, $C_5H_5N-d_5$). Figure S6. ¹H NMR spectrum of compound 2 (600 MHz, MeOH-*d*4). Figure S7. ¹³C NMR spectrum of compound 2 (150 MHz, MeOH-*d*4). Figure S8. HSQC spectrum of compound 2 (600 MHz, MeOH-*d*4). Figure S9. HMBC spectrum of compound 2 (600 MHz, MeOH-*d*4). Figure S10. NOESY spectrum of compound 2 (600 MHz, MeOH-*d*4). Figure S11. ¹H NMR spectrum of compound 3 (600 MHz, MeOH-*d*4). Figure S12. ¹³C NMR spectrum of compound 3 (150 MHz, MeOH-*d*4). Figure S13. HSQC spectrum of compound 3 (600 MHz, MeOH-*d*4). Figure S14. HMBC spectrum of compound 3 (600 MHz, MeOH-*d*4). Figure S15. NOESY spectrum of compound 3 (600 MHz, MeOH-*d*4).

Figure S1. ¹H NMR spectrum of compound 1 (600 MHz, C₅H₅N-d₅).

Figure S2. ¹³C NMR spectrum of compound 1 (150 MHz, C₅H₅N-*d*₅).

Figure S3. HSQC spectrum of compound 1 (600 MHz, C₅H₅N-d₅).

Figure S4. HMBC spectrum of compound 1 (600 MHz, C₅H₅N-d₅).

Figure S5. NOESY spectrum of compound 1 (600 MHz, C₅H₅N-*d*₅).

Figure S6. ¹H NMR spectrum of compound 2 (600 MHz, MeOH-*d*₄).

Figure S7. ¹³C NMR spectrum of compound 2 (150 MHz, MeOH- d_4).

Figure S8. HSQC spectrum of compound 2 (600 MHz, MeOH-*d*₄).

Figure S9. HMBC spectrum of compound 2 (600 MHz, MeOH-*d*₄).

Figure S10. NOESY spectrum of compound 2 (600 MHz, MeOH-*d*₄).

Figure S11. ¹H NMR spectrum of compound 3 (600 MHz, MeOH-*d*₄).

Figure S12. ¹³C NMR spectrum of compound 3 (150 MHz, MeOH-*d*₄).

Figure S13. HSQC spectrum of compound 3 (600 MHz, MeOH- d_4).

Figure S14. HMBC spectrum of compound 3 (600 MHz, MeOH-*d*₄).

Figure S15. NOESY spectrum of compound 3 (600 MHz, MeOH-*d*₄).