SUPPLEMENTARY FIGURES & TABLE

Supplementary Figure 1. DOP treatment inhibits S1P lyase activity. A, The S1P enzymatic pathway. B, Chemical structure of DOP. C, SPL activity in ileum of TNF Δ ARE mice administered DOP or vehicle in drinking water for 2 weeks. D, mRNA expression of SPL in ileum of TNF Δ ARE mice receiving DOP or vehicle for 2 weeks (Data are expressed as mean ± SEM; n=4 mice/group; **P*<0.05 by two-tailed *t*-test.)

Supplementary Figure 2. Pyridoxine (Vitamin-B6)-deficient diet did not induce peripheral lymphopenia nor affected the severity of ileitis. A, Gating strategy for live LP CD4+T, CD8+T and B cells. B, Percentage of indicated lymphocytes in peripheral blood of TNF Δ ARE mice treated with standard diet or pyridoxinedeficient diet for 2 weeks. C, Total inflammatory index of TNF Δ ARE ileum receiving standard or pyridoxinedeficient diet fed mice. (Data are expressed as mean ± SEM; *n*≥10 mice/group).

Supplementary Figure 3. DOP induced peripheral lymphopenia in mice with chronic ileitis and down regulated S1PR1 expression on circulating T and B cells. A, B, Percentage and absolute counts of CD4 and CD8+ (total and subsets) in peripheral blood of S1P-eGFP reporter TNF Δ ARE mice treated with DOP or vehicle for 2 weeks. C, D, S1PR1 expression (median fluorescent intensity, MFI) of CD4+, CD8+T cells, and B220+ B cells from blood of TNF Δ ARE mice treated with DOP or vehicle control. (Data are expressed as mean ± SEM; *n*≥7 mice/group; **P*<0.05, ***P*<0.01, ****P*<0.001 by two-tailed *t*-test).

Supplementary Figure 4. DOP treatment for 1 week induced lymphopenia but did not affect the severity of ileitis in TNF Δ ARE mice. A, Percentages and absolute counts of indicated lymphocyte subsets in peripheral blood of TNF Δ ARE mice treated with DOP or vehicle control. B, Inflammatory histopathological indices of ileitis severity of TNF Δ ARE of DOP- and vehicle-treated control mice. C, Representative micrographs. (Data are expressed as mean ± SEM; *n*=5 mice/group, ***P*<0.01 by two-tailed *t*-test).

Supplementary Figure 5. Mass cytometry analyses of the effects of SPL inhibition on leukocyte distribution within distinct immune compartments of mice with chronic ileitis. A-E, Blood, MLN and ileum LP were harvested from control or DOP treated TNFΔARE mice, with cells from each tissue stained with a panel of 34 metal-conjugated antibodies and acquired on a Helios mass cytometer. Data depict PhenoGraph-defined cellular distribution and clustering within peripheral blood (panels A-E), F,J, MLN or K-O, ileum LP. Panels A, F and K show PhenoGraph-defined cellular distribution and clustering cellular distribution and clustering distribution and clustering of all viable singlets

1

(defined as 191Ir+ 193Ir+ 195Pt-), plotted according to tSNE1 and tSNE2, and colored by phenotype designation as noted. Panels B, G, and L quantify the relative frequencies of CD4+, CD8+, CD11b+, and CD19+ cells among viable singlets. Panels C, H, and M show all viable T cells (defined as 191Ir+ 193Ir+ 195Pt- CD3+ MHCII-) subjected to the PhenoGraph algorithm, plotted according to tSNE1 and tSNE2, with panels according to protein expression for CD4, CD8, CD44, and CD62L. Panels D, I, and N show PhenoGraph-defined cellular phenotypes among T cells, plotted according to tSNE1 and tSNE2 and colored by the designated phenotype. Panels E, J, and O quantify the relative frequencies of T cell subsets. Statistical analysis done using an unpaired t test between control and DOP treated conditions, subjected to multiple testing correction, with statistical significance identified as follows: *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. No designation, not significant.

Supplementary Figure 6. Effect of S1P lyase inhibition on thymic size. Representative images of thymi from TNFΔARE mice treated with DOP (30 mg/L) or vehicle at indicated time points.

Supplementary Table 1. CyTOF antibody staining panel epitopes, clones, suppliers, and isotope label. All Fluidigm antibodies were purchased pre-conjugated. All other supplier antibodies were purchased in a carrier-free format and conjugated with the respective metal isotope using the MaxPar-X8 Conjugation Kit (Fluidigm).

Supplementary Figure 1

Supplementary Figure 2

Supplementary Figure 3

Supplementary Figure 4

Supplementary Figure 5

Supplementary Figure 6

Target epitope	Clone	Supplier	Isotopic label
CD31 (PECAM-1)	390	Fluidigm	165Ho
CD14	Sa14-2	Fluidigm	156Gd
F4/80	BM8	Fluidigm	146Nd
CD11b (Mac-1)	M1/70	Fluidigm	143Nd
DEC205	NLDC-145	BioLegend	173Yb
I-A/I-E (MHC class II)	M5/114.15.2	Fluidigm	174Yb
ROR gamma (t)	B2D	Fluidigm	159Tb
CD45	30-F11	Fluidigm	89Y
CD127 (IL-7Ra)	A7R34	Fluidigm	175Lu
CD161 (NK1.1)	PK136	Fluidigm	170Er
CD335 (NKp46)	29A1.4	Fluidigm	153Eu
CD40	HM40-3	Fluidigm	161Dy
CD86	GL1	Fluidigm	172Yb
CD11c	N418	TONBO	115In
CD19	6D5	Fluidigm	149Sm
CD45R (B220)	RA3-6B2	Fluidigm	176Yb
Tbet	4B10	Fluidigm	160Gd
Foxp3	FJK-16s	Fluidigm	158Gd
CD25 (IL-2R)	3C7	BioLegend	169Tm
CD49d (Integrin alpha 4)	R1-2	Fluidigm	151Eu
CD44	IM7	Fluidigm	171Yb
CD62L (L-selectin)	MEL-14	Fluidigm	164Dy
CD8a	53-6.7	Fluidigm	168Er
CD4	RM4-5	Fluidigm	145Nd
CD3e	145-2C11	Fluidigm	152Sm
CD29	ΗΜβ1-1	BioLegend	166Er
CCR9	9B1	BioLegend	155Gd
CD103	2E7	BioLegend	163Dy
Integrin b7	FIB504	Fluidigm	162Dy
Gata3	TWAJ	Fluidigm	167Er
KLRG-1	2F1	TONBO	154Sm
Siglec F	E50-2440	BD	147Sm
Ly-6G	1A8	Fluidigm	141Pr
Ly-6C	HK1.4	Fluidigm	150Nd

Supplementary Table 1