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Abstract 30 

Background: The swimming crab, Portunus trituberculatus, is an important commercial 31 

species in China and is widely distributed in the coastal waters of Asia-Pacific countries. 32 

Despite increasing interest in swimming crab research, genomic information, including 33 

whole-genome sequencing, is lacking, with only limited transcriptome data currently 34 

available. Findings: Here, we assembled the first chromosome-level reference genome of P. 35 

trituberculatus by combining the short reads, Nanopore long reads, and Hi-C data. The 36 

genome assembly size was 1.00 Gb with a contig N50 length of 4.12 Mb. In addition, 37 

BUSCO assessment indicated that 94.7% of core eukaryotic genes were present in the 38 

genome assembly. Approximately 54.52% of the genome was identified as repetitive 39 

sequences, with a total of 16,796 annotated protein-coding genes. In addition, we anchored 40 

contigs into chromosomes and identified 50 chromosomes with a N50 length of 21.80 Mb by 41 

Hi-C technology. Conclusions: We anticipate that this chromosome-level assembly of the P. 42 

trituberculatus genome will not only promote study of basic development and evolution but 43 

also provide important resources for swimming crab reproduction. 44 

 45 

Keywords: Portunus trituberculatus; genome assembly; crab; chromosome; evolution 46 

 47 

Introduction 48 

The swimming crab, Portunus trituberculatus (NCBI: txid210409), belonging to Brachyura, 49 

Portunidae, Portunus, is named for its shuttle-shaped head breastplate and three verrucous 50 

bumps on the back of the stomach and heart regions [1, 2]. The chelipeds of swimming crabs 51 

are well developed for feeding and attacking, with the first three pairs and last pair used for 52 

crawling and swimming, respectively [3, 4]. Male and female crabs are distinguished by their 53 

type of abdomen, with the male having a triangular abdomen and the female having an almost 54 

circular one [5]. Due to their lack of drilling ability, swimming crabs often live in soft mud or 55 

sand [6] or in water grass near the shore, and also show a certain level of phototaxis, spending 56 

time on the sea floor during the day and foraging at night [5]. Swimming crabs are also 57 

omnivorous, feeding on shellfish, small fish, shrimp, algae, and decomposing animal and 58 
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plant carcasses [7]. 59 

The swimming crab is widely distributed in the coastal waters of Korea, Japan, China, and 60 

Southeast Asia and is one of the most valuable marine crustaceans in Asia 61 

(http://species-identification.org/species.php?species_group=crabs_of_japan&menuentry=soo62 

rten&id=1106&tab=beschrijving). It is widely found in Chinese coastal waters of the Bohai 63 

Sea, Yellow Sea, East China Sea, and South China Sea and is an important commercially 64 

cultured species [8]. Swimming crabs are considered highly nutritious, especially in regard to 65 

crab cream, and are very popular in China [9, 10]. As a result, the crab has been heavily 66 

overfished, resulting in substantial declines in its natural population [11] and initiation of 67 

artificial breeding [12, 13]. With continued research on the crab, it has become clear that 68 

morphological, physiological, but the genetic changes are poorly understood. At present, 69 

genomic research on the swimming crab has only been conducted at the transcriptome level 70 

[14-16], with the whole genome not yet described. 71 

In the present study, we constructed a chromosome-level genome assembly of P. 72 

trituberculatus by combining short reads, Nanopore long reads, and Hi-C sequencing data. 73 

This chromosome-level genome will not only promote study on development and evolution, 74 

but also provide important resources for reproductive studies of P. trituberculatus and other 75 

crab species. 76 

 77 

Sampling, library construction, and sequencing 78 

A male swimming crab was collected in Bohai Bay, Hebei Province, China, for sequencing 79 

(Figure 1). To obtain sufficient high-quality DNA for the Oxford Nanopore (Oxford, UK) and 80 

BGISEQ-500 platforms (BGI, China), the swimming crab was rinsed five times with clean 81 

water and dissected immediately. Fresh muscle tissue was collected and snap-frozen in liquid 82 

nitrogen. The samples were then used to extract DNA with a Qiagen Blood & Cell Culture 83 

DNA Mini Kit and prepared for Nanopore, BGISEQ-500, and Hi-C sequencing. Muscle RNA 84 

was also extracted using TRIzol (Invitrogen) according to the manufacturer’s instructions. To 85 

obtain an overview of the transcriptome, polyadenylated RNA was chosen by oligo (dT) 86 

purification and reverse-transcribed to cDNA and sequenced using the BGISEQ-500 platform. 87 
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Extracted DNA was sequenced using both the BGISEQ and Oxford Nanopore platforms. The 88 

short reads generated from the BGISEQ platform were used for estimation of genome size 89 

and error correction of the assembled genome, and the Nanopore long reads were used for 90 

genome assembly. To this end, one library with insertion lengths of ~300 bp was sequenced 91 

on the BGISEQ-500 platform, and another library with an average length of 20 kb was 92 

constructed using the Oxford Nanopore platform according to the manufacturers’ protocols. 93 

 94 

Data filtering 95 

Three different sources of reads were used to achieve the high-quality genome assembly, i.e., 96 

Nanopore long reads, short reads, and Hi-C reads. Thus, we used different methods for 97 

filtering. For the Nanopore long reads, any reads less than 1 kb or with a mean quality value 98 

of < 7 were removed. For the short reads, any reads with more than 10% unknown reads or 99 

low-quality bases more than 50% along with its paired-end read were removed. All adaptor 100 

sequences and duplicated reads produced by polymerase chain reaction (PCR) were removed. 101 

The low-quality Hi-C reads were filtered using HiC-Pro v2.10.0 [17]. 102 

 103 

Genome characteristic estimation 104 

All filtered BGISEQ short reads were used for estimation of genome size and other 105 

characteristics. In addition, 17-mer was chosen for k-mer analysis and the 17-mer depth 106 

frequency distribution was calculated using the k-mer method. Genome size was estimated as: 107 

Genome size = TKN17-mer / PKFD17-mer, where TKN17-mer is the total k-mer number and 108 

PKFD17-mer is the peak k-mer frequency depth of 17-mer. The estimated genome size was 109 

used to determine subsequent genome assembly results. 110 

 111 

Genome assembly 112 

To improve the quality of the genome and reduce the error ratio, self-error correction of all 113 

Nanopore long reads was performed using NextDenovo software 114 

(https://github.com/Nextomics/NextDenovo). The error-corrected Nanopore long reads were 115 

then used to assemble the raw genome via contig construction with WTDBG software [18] 116 
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and parameters: -p 0 -k 15 -AS 2 -E 1 -s 0.05 -L 5000. The assembled genomic sequences 117 

were further polished by Racon v1.2.1 [19] with four iterations using the error-corrected 118 

Nanopore long reads. After this, all filtered BGISEQ short reads were polished by Pilon v1.21 119 

[20] at the single-base level. After completion of the error-correction steps, the Hi-C data 120 

were used to obtain a chromosome-level genome assembly. All Hi-C sequencing data were 121 

first filtered by Hic-Pro v2.10.0 [17] and then mapped to the polished swimming crab genome 122 

to improve the connection integrity of the contigs. Finally, 3D de novo assembly software 123 

(v180419) [21] with default parameters was used to determine contig location and direction. 124 

 125 

Genome assembly evaluation 126 

Three different strategies were used to evaluate the completeness and accuracy of the 127 

assembled genome. First, the quality of the assembled genome and gene completeness were 128 

assessed using BUSCO [22] with the core gene sets of the eukaryote and metazoan databases, 129 

respectively. Second, all filtered short reads generated by BGISEQ were mapped to the 130 

assembled genome using BWA-MEM v0.7.12 [23] to detect genome integrity. Third, 131 

transcripts were mapped to the assembled genome using BLAT software [24]. 132 

 133 

Repetitive element annotation 134 

Tandem repeats and transposable elements (TEs) were also annotated in the 135 

chromosome-level genome. Tandem repeats were annotated using Tandem Repeat Finder 136 

v4.04 [25] with default parameters. The TEs were annotated at the protein level using 137 

RepeatProteinMask (RM-BLASTX) to search the protein database and at the DNA level 138 

using RepeatMasker (open-4.0.7) [26] to search the de novo libraries and repbase. The de 139 

novo-repeat libraries were constructed using RepeatModeler 140 

(http://www.repeatmasker.org/RepeatModeler/), with consensus sequences used for de novo 141 

library construction. 142 

 143 

Gene structure prediction and function annotation 144 

After repetitive element annotation, the repeat-masked genome was used for gene set 145 
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annotation with three different methods, i.e., de novo prediction, RNA-seq-based annotation, 146 

and homology-based annotation. We first assembled the RNA-seq reads into transcripts using 147 

Bridger r2014-12-01 [27]. The assembled genome and transcripts were then used for 148 

Augustus training to obtain an accurate Augustus annotation species model. Augustus v2.5.5 149 

[28] was used for de novo prediction of coding genes with the previous training results. 150 

Second, proteins of Bicyclus anynana (GCF_900239965.1) [29], Bombus terrestris 151 

(GCF_000214255.1) [30], Drosophila melanogaster (GCA_000001215.4) [31], Mus 152 

musculus (GCF_000001635.26) [32], Stegodyphus mimosarum (GCA_000611955.2), 153 

Penaeus vannamei (GCA_003789085.1), Mesobuthus martensii (downloaded from: 154 

http://lifecenter.sgst.cn/main/en/scorpion.jsp.) [33], Eriocheir japonica sinensis (i.e., 155 

Eriocheir sinensis) (GigaDB:100186) [34-39], and Tachypleus tridentatus 156 

(GCA_004102145.1) [40] were downloaded from the NCBI, GigaDB, or their own databases. 157 

The longest transcript of each gene was selected for further annotation and phylogenetic 158 

analysis. All filtered genes were searched with an e-value cutoff of 1e-5, with the blast results 159 

then formatted and prepared for Genewise [41] prediction of the gene structure of the 160 

swimming crab genome. Third, for the RNA-seq-based method, all assembled transcripts 161 

were aligned against the genome using BLAT [24] (identity >90% and coverage >90%), with 162 

PASA used to filter overlaps to link the spliced alignments. Finally, EvidenceModeler (EVM) 163 

v1.1.1 was used to integrate the above data into an EVM-derived gene set [42]. 164 

Five different public protein databases were used for gene functional annotation, with 165 

InterProScan v4.8 [43] used to screen proteins against the five databases (Pfam, release 27.0, 166 

PRINTS, release 42.0, PROSITE, release 20.97, ProDom, 2006.1, and SMART, release 6.2) 167 

to determine the number of InterPro and GO predicted protein-coding genes. In addition, the 168 

Kyoto Encyclopedia of Genes and Genomes, UniProt/SwissProt, and UniProt/TrEMBL 169 

databases were also used for functional annotation with BLAST v2.3.0 [44]. 170 

 171 

Identification of orthologous genes 172 

The annotated genes in the swimming crab and six other species, including Aedes aegypti 173 

(GCF_002204515.2), B.anynana, D. melanogaster, S. mimosarum, P.vannamei, and E. j. 174 
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sinensis, were used for orthologous gene identification with OrthoMCL v2.0.9 [45]. The 175 

identified genes were then used to run reciprocal alignment and pairwise relationship analysis. 176 

The reciprocal best similarity pairs in different species were considered as putative 177 

orthologous genes and reciprocal better similarity pairs in one species were considered as 178 

paralogous genes. The 1:1:1:1:1:1:1 single-copy genes in the seven species were also 179 

identified for further phylogenetic and divergence time estimation analysis. 180 

 181 

Phylogenetic analysis and divergence time estimation 182 

Using the single-copy genes of the seven species (P. trituberculatus, A. aegypti, B. anynana, 183 

D. melanogaster, S. mimosarum, P. vannamei, and E. j. sinensis), we connected the genes in 184 

each species into one super-gene for phylogenetic tree building. Maximum likelihood-based 185 

phylogenetic analysis was conducted using RAxML v8.2.10 [46] with default parameters. The 186 

MCMCTREE program in the PAML package v4.8 [47] was then used to calculate divergence 187 

time, with all fossil records downloaded from the TIMETREE website 188 

(http://www.timetree.org) for calibration. 189 

 190 

Relative evolution rate 191 

The relative evolution rate of species was analyzed with LINTRE software [48] using the tpcv 192 

model and S .mimosarum as an outgroup. We then evaluated the relative evolution rate 193 

between the swimming crab and other related species. 194 

 195 

Gene family expansion and contraction 196 

Using the divergence time results calculated by MCMCTREE and the gene pairwise 197 

relationships calculated by OrthoMCL [45], we determined gene family expansion and 198 

contraction for each node using CAFÉ v3.1 [49]. The expansion and contraction genes of the 199 

swimming crab were extracted for GO/KEGG enrichment analysis [50, 51]. 200 

 201 

Results 202 

Chromosome level genome assembly 203 
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To obtain a high-quality chromosome-level swimming crab genome, we extracted 204 

high-quality DNA from the muscle tissue and constructed libraries for genome sequencing. To 205 

estimate the genome characteristics of the swimming crab, we generated 205.40 Gb of 206 

BGISEQ data (Additional File: Table S1), with 17-mer analysis indicating a genome size of 207 

~918.52Mb (Additional File: Figure S1). In total, we generated 54.97 Gb (54.75-fold 208 

coverage) of Nanopore long read data with N50 over 20kb (Additional File: Table S2). The 209 

Nanopore long reads were assembled into contigs using WTDBG software [18] (genome size: 210 

1.00 Gb; N50: 4.12 Mb) (Table 1). To further improve genome accuracy, we aligned all 211 

corrected Nanopore long reads to the assembled genome and conducted error-correction using 212 

Racon [19] with four iterations. The genome was subsequently corrected using all filtered 213 

BGISEQ clean reads via Pilon [20] with two iterations. We then constructed the 214 

chromosome-level genome with 95.95 Gb of Hi-C sequencing data (Additional File: Table S3) 215 

by 3D de novo assembly [21]. Finally, we obtained 50 chromosomes and a mounting rate of 216 

97.80% (Figure 2; Additional File: Table S4), which is the first chromosome-level crab 217 

genome with N50 of 21.79 Mb (Table 1). The high mounting rate suggested successful 218 

assembly of the swimming crab genome at the chromosome level. 219 

 220 

Genome quality evaluation 221 

We next assessed the completeness of the swimming crab genome by BUSCO [22] and 222 

identified 94.7% Eukaryota and 92.9% Metazoa conserved core genes in the genome (Table 223 

2). We checked the mapping rates of the BGISEQ short reads to our genome and found that 224 

95.85% of reads were properly pair-mapped to the genome (Additional File: Table S5). We 225 

then de novo assembled the transcripts using the RNA-seq data (Additional File: Table S6) 226 

with Bridger software [27] and a N50 length of 2,124 bp (Additional File: Table S7). After 227 

transcript mapping, we found that 97.80% of the transcripts could be mapped to the 228 

swimming crab genome (Additional File: Table S8). We also analyzed the genome quality of 229 

previously published high-quality genomes from closely related species and determined that 230 

the quality of the assembled chromosome-level swimming crab genome was markedly higher 231 

or comparable with that of other species (Additional File: Table S9). In summary, these results 232 
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indicated that we acquired a high-quality swimming crab genome. To investigate genome 233 

characteristics, such as GC content, we analyzed the GC distribution in the genome with a 234 

slide-window method. The peak value of GC content was ~41%, which agrees with the 235 

average GC content in the swimming crab genome. We also found that the GC content in the 236 

swimming crab was closer to that of mouse than of shrimp (Additional File: Figure S2). 237 

 238 

Genome annotation 239 

The repetitive sequences of the swimming crab genome were identified through four different 240 

methods, resulting in 547.39 Mb of repeated sequences and accounting for 54.52% of the 241 

assembled genome (Additional File: Table S10). Among the repeated sequences, 19.28% 242 

(~193.56 Mb) were tandem repeats and 52.29% (~525.49 Mb) were TEs (Additional File: 243 

Table S10; Table 3). The TEs could be further divided into four main types, including 0.014% 244 

(~142.88kb) of short interspersed elements (SINE), 15.23% (~153.03 Mb) of long 245 

interspersed elements (LINE), 14.90% (~149.71 Mb) of DNA elements, and 4.50% (~45.19 246 

Mb) of long terminal repeats (LTR) (Table 3). 247 

After masking the repeated sequences, we annotated the protein-coding genes using de novo 248 

prediction, homology-based prediction, and transcript-based prediction. We merged the 249 

results and obtained 16,791 protein-coding genes. We checked the quality of the annotated 250 

genes by comparing with several closely related species. Results showed that the mRNA, 251 

CDS, exon, intron length distributions of the swimming crab were similar to those of the 252 

closely related species, suggesting that the swimming crab annotation results were dependable 253 

(Figure 3). 254 

We also performed functional annotation of the 16,791 genes with InterPro, GO, KEGG, 255 

SwissProt, and TrEMBL. The highest annotation rate (74.77%) was found for SwissProt, in 256 

which 12,558 genes were annotated. In total, 16,053 genes (~95.58%) were annotated, 257 

indicating that most genes could be found in the public protein databases (Table 4). Thus, 258 

taken together, we acquired a high-quality protein-coding gene set for the swimming crab. 259 

 260 

Orthologous identification and gene family analysis 261 
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For comparative genomics analysis of the swimming crab, we analyzed the orthologous gene 262 

relationships among several species, including A. aegypti, B. anynana, D. melanogaster, S. 263 

mimosarum, P. vannamei, and E. j. sinensis using OrthoMCL. In total, 15,503 gene families 264 

were clustered in the seven species and 1,018 one-to-one single-copy genes were identified 265 

(Figure 4A). Because the swimming crab has several unique characteristics, we employed 266 

gene family analysis and found 8,832 gene families shared among the seven species, with 328 267 

gene families unique to the swimming crab (Figure 4B). We then employed functional 268 

analysis and identified 34 enriched KEGG terms. Among them, the Notch signaling pathway 269 

(Q-value = 0.003579101), vascular smooth muscle contraction (Q-value = 0.025737431), and 270 

retinol metabolism (Q-value = 0.033319138) were significantly enriched (Additional File: 271 

Table S11). As these all play important roles in development and physiological processes, 272 

genes in these families may have key functions in the swimming crab. 273 

 274 

Phylogenetic relationships and divergence time 275 

Although the phylogenetic relationships of the swimming crab and closely related species 276 

have been analyzed in previous studies, most used few nuclear and mitochondrial genes. To 277 

determine the evolutionary relationship of the swimming crab, we analyzed all single-copy 278 

genes using RAxML software [46], with the spider used as the outgroup species. Results 279 

showed that the swimming crab has a close relationship with the Chinese mitten crab and 280 

shrimp (Figure 5A). The seven species of pancrustaceans—P. trituberculatus, A. aegypti, B. 281 

anynana, D. melanogaster, S. mimosarum, P. vannamei, and E. j. sinensis—formed two clades: 282 

i.e., Hexapoda and Crustacea. The Hexapoda group consisted of all lepidopteran and 283 

dipterous insects, whereas the second clade comprised all other crustaceans, with P. 284 

trituberculatus and E. j. sinensis forming a Pleocyemata clade, followed by Dendrobranchiata 285 

shrimp (P. vannamei). In addition, Hexapoda and Crustacea were both found to be 286 

monophyletic (Figure 5A). To determine divergence time, we employed MCMCTREE 287 

analysis in the PAML package [47] and found that the Chinese mitten crab and swimming 288 

crab diverged ~183.5 million years ago (Mya), and diverged from shrimp ~428.5 Mya (Figure 289 

5A). 290 
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 291 

Relative evolution rate 292 

Species in different environments can experience different survival pressures. As such, we 293 

conducted relative evolution rate analysis in LINTRE [48], with spider as the outgroup 294 

species and swimming crab as the reference species. Results showed that the shrimp had the 295 

slowest evolution rate among the seven species, whereas the fruit fly and butterfly exhibited 296 

relatively fast evolution rates, suggesting greater survival pressures on these two species 297 

(Figure 5B; Additional File: Table S12). Interestingly, the slowest evolution rates were found 298 

among the Malacostraca (Figure 5B; Additional File: Table S12), suggesting that these 299 

species experience relatively low survival pressure in their habitats. 300 

 301 

Gene family expansion and contraction 302 

We performed gene family expansion and contraction analysis of the seven species using 303 

CAFÉ v4.0, and identified 148 and 25 expanded and contracted gene families (P< 0.05) in the 304 

swimming crab, respectively. We then employed KEGG functional enrichment analysis of the 305 

expanded gene families and found that the HIF-1 signaling pathway (Q-value = 0.000109025), 306 

focal adhesion (Q-value = 0.000135977), Hippo signaling pathway (Q-value = 0.000184649), 307 

and insulin signaling pathway (Q-value = 0.000357592) were enriched (Additional File: Table 308 

S13). These biological processes are related to early development, hypoxia adaptation, and 309 

other key processes, suggesting important functions of these genes in the development and 310 

environmental adaptation of the unique body plan of the swimming crab. 311 

 312 

Conclusions 313 

Based on BGISEQ, Nanopore, and Hi-C sequencing data, we assembled a chromosome-level 314 

high-quality genome of the swimming crab. Evaluation results indicated that the genome 315 

quality of swimming crab was comparable with that of most high-quality model species. We 316 

also successfully obtained 16,791 high-quality protein-coding genes by integrating three 317 

different methods. The genome and annotation data will help researchers better understand 318 

the evolution of crabs and improve their economic value. The phylogenetic results indicated 319 
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that the swimming crab is closely related to the Chinese mitten crab, from which it diverged 320 

~183.5 Mya. The unique and/or expanded gene family analysis provides clues to swimming 321 

crab development and environmental adaptation. 322 

 323 

Availability of supporting data 324 

The raw sequencing data were deposited in the NCBI database under accession number 325 

PRJNA555262. The genome assembly and annotation results are available via the 326 

GigaScience repository GigaDB. 327 

 328 

Additional files 329 

Table S1: Statistics on genome sequencing data from BGISEQ platform. 330 

Table S2: Statistics on sequencing reads from Oxford Nanopore platform. 331 
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Table 1: Assembly of swimming crab genome. 523 

Term 
Contig phase Hi-C phase 

Size (bp) Number Size (bp) Number 

N90 439,683 334 11,273,125 41 

N80 1,225,551 203 14,151,211 33 

N70 2,035,154 141 16,942,622 27 

N60 2,950,146 100 19,786,189 21 

N50 4,121,416 71 21,793,880 17 

Max length 17,984,318 - 42,710,960 - 

Total length 1,004,084,521 - 1,005,046,021 - 

Number>=100bp - 2446 - 523 

Number>=10kb - 1756 - 314 

Note: Contig phase represents results assembled by WTDBG software, and Hi-C phase 524 

represents scaffold statistics of genome after chromosome assembly. 525 

 526 

Table 2: Quality evaluation of assembled swimming crab genome by BUSCO. 527 

Library Eukaryota Metazoa 

Complete BUSCO (C) 287 909 

Complete and single-copy BUSCO (S) 283 903 

Complete and duplicated BUSCO (D) 4 6 

Fragmented BUSCO (F) 2 19 

Missing BUSCO (M) 14 50 

Total BUSCO groups searched 303 978 

Summary 94.7% 92.9% 

 528 

Table 3: Statistics on transposable elements (TEs) in swimming crab genome. 529 

Type 

RepbaseTEs TE proteins De novo Combined TEs 

Length (bp) 
% in 

genome 
Length (bp) 

% in 

genome 
Length (bp) 

% in 

genome 
Length (bp) 

% in 

genome 

DNA 131,799,733 13.11% 2,434,533 0.24% 19,288,080 1.92% 149,711,951 14.90% 

LINE 16,171,649 1.61% 75,759,827 7.54% 131,530,457 13.09% 153,027,744 15.23% 

SINE 142,878 0.01% 0 0 0 0 142,878 0.014% 

LTR 26,546,055 2.64% 10,195,324 1.01% 18,421,957 1.83% 45,189,365 4.50% 

Other 89,969,319 8.95% 0 0 211,157,523 21.01% 230,116,216 22.90% 

Unknown 34,752 0.0035% 0 0 90,989,908 9.05% 91,007,921 9.06% 

Total 213,558,503 21.25% 88,375,336 8.79% 464,908,824 46.26% 525,492,271 52.29% 

 530 

Table 4: Functional annotation of predicted protein-coding genes. 531 

Term Gene number Percentage (%) 

GO 8,712 51.87 

InterPro 11,691 69.61 

KEGG 10,880 64.78 

SwissProt 12,558 74.77 
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TrEMBL 12,256 72.97 

Annotated 16,053 95.58 

Unannotated 743 4.42 

Total 16,796 100 

 532 

Figure 1: Swimming crab, Portunus trituberculatus. 533 

 534 

Figure 2: Genome characteristics of swimming crab. 535 

 536 

Figure 3: Annotation quality comparison of protein-coding genes. 537 

 538 

Figure 4: Gene family analysis of swimming crab. A. Orthologous genes among species. B: 539 

Unique and common gene families among species. 540 

 541 

Figure 5: Phylogenetic relationships, divergence time, and evolution rate analysis. A. 542 

Phylogenetic relationship and divergence time of species. Red dot represents fossil record 543 

used here. B. Relative evolution rate of species. 544 

 545 

 546 

 547 

 548 
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Dear Editors, 

We would like to submit the enclosed manuscript, entitled “Chromosome-level genome 

assembly reveals adaptive evolution of the swimming crab (Portunus trituberculatus)” for 

your consideration of publication as an original research paper in “GigaScience”. 

The swimming crab, Portunus trituberculatus, is an important commercial species in 

China and is widely distributed in the coastal waters of Asia-Pacific countries. Swimming 

crabs are considered highly nutritious, especially in regard to crab cream, and are very 

popular in China. As a result, the crab has been heavily overfished, resulting in substantial 

declines in its natural population and initiation of artificial breeding. With continued research 

on the crab, it has become clear that morphological, physiological, but the genetic changes are 

poorly understood. At present, genomic research on the swimming crab has only been 

conducted at the transcriptome level, with the whole genome not yet described. 

In this study, based on BGISEQ short reads, Nanopore, and Hi-C sequencing data, we 

assembled the first chromosome-level high-quality genome of the swimming crab. Evaluation 

results indicated that the genome quality of swimming crab was comparable with that of most 

high-quality genomes in other species. We also successfully obtained 16,791 high-quality 

protein-coding genes by integrating three different methods. The genome and annotation data 

will help researchers better understand the evolution of crabs and improve their economic 

value. The phylogenetic results indicated that the swimming crab is closely related to the 

Chinese mitten crab, from which it diverged ~183.5 Mya. The unique and/or expanded gene 

family analysis provides clues to swimming crab development and environmental adaptation. 

We believe these findings will be of interest to a broad audience of evolutionary and 

developmental biologists, as well as to researchers working to understand the molecular basis 

of the development in the swimming crab. In addition, these genomic resources could help 

scientists studying the development and ecological adaptation of the swimming crab. As a 

premier international journal devoted to the rapid dissemination of significant biological 

findings, GigaScience represents the ideal platform for sharing these results with the 

international research community. 

We thank you for your consideration of our manuscript and look forward to hearing from 

you at your earliest convenience. 
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