In the format provided by the authors and unedited.

Enzyme-catalysed [6+4] cycloadditions in the biosynthesis of natural products

Bo Zhang^{1,5}, Kai Biao Wang^{1,5}, Wen Wang^{1,5}, Xin Wang^{2,5}, Fang Liu², Jiapeng Zhu³, Jing Shi¹, Ling Yu Li¹, Hao Han¹, Kuang Xu¹, Hong Yun Qiao¹, Xiao Zhang², Rui Hua Jiao¹, Kendall N. Houk⁴*, Yong Liang²*, Ren Xiang Tan^{1,3}* & Hui Ming Ge¹*

¹State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Nanjing University, Nanjing, China. ²State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China. ³State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Life Sciences and Medicine, Nanjing University of Chinese Medicine, Nanjing, China. ⁴Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA. ⁵These authors contributed equally: Bo Zhang, Kai Biao Wang, Wen Wang, Xin Wang. *e-mail: houk@chem.ucla.edu; yongliang@nju.edu.cn; rxtan@nju.edu.cn; hmge@nju.edu.cn This PDF file includes:

Supplementary Text

Supplementary Fig. 1. Generation of the S. seoulensis A01 mutant strains.

Supplementary Fig. 2. SDS-PAGEs of the purified proteins.

Supplementary Fig. 3a-3h. HR-ESIMS and NMR spectra of 4.

Supplementary Fig. 4a-4g. HR-ESIMS and NMR spectra of 5.

Supplementary Fig. 5a-5h. HR-ESIMS and NMR spectra of 6.

Supplementary Fig. 6a-6f. HR-ESIMS and NMR spectra of mixture of 6 and 7.

Supplementary Fig. 7a-7h. HR-ESIMS and NMR spectra of 8.

Supplementary Fig. 8a-8g. HR-ESIMS and NMR spectra of 10.

Supplementary Fig. 9. Structures of NgnD and comparison with structure of $\alpha + \beta$ barrel superfamily protein.

Supplementary Fig. 10. Distances between residues and the center of mass of the substrate/TS for the time between 10th and 11th ns.

Supplementary Table 1. Bacterial strains and plasmids.

Supplementary Table 2. Oligonucleotide primers used in this study.

Supplementary Table 3. Annotation of the ngn cluster.

Supplementary Table 4. NMR spectroscopic data of 4.

Supplementary Table 5. NMR spectroscopic data of 5.

Supplementary Table 6. NMR spectroscopic data of 6.

Supplementary Table 7. NMR spectroscopic data of 7.

Supplementary Table 8. Experimental and calculated ¹³C NMR data for compound 7.

Supplementary Table 9. NMR spectroscopic data of 8.

Supplementary Table 10. NMR spectroscopic data of 10.

Supplementary Table 11. Annotation of the *stmD* homologueand its neighboring genes in *N. tenerifensis* NBRC 101015.

Supplementary Table 12. Annotation of the *stmD* homologue and its neighboring genes in *S. tsukubaensis* F601.

Supplementary Table 13. Annotation of the *stmD* homologue and its neighboring genes in *S*. sp. Root369.

Supplementary Data 1. DFT-computed energies and Cartesian coordinates. **References**

References

Supplementary Text

General experimental procedures. All NMR spectra were acquired on Bruker Avance 600 at 600 MHz for ¹H and 150 MHz for ¹³C or AvanceIII 400 at 400 MHz for ¹H and 100 MHz for ¹³C. High resolution LC-MS analysis was conducted on an Agilent 6530 TOF LC-MS spectrometer with a Porshell 120 (EC-C18 column, 4.5×50 mm, 2.7μ m, Agilent Techonologies). X-ray crystallographic data was obtained on a Bruker Smart APEXIII single crystal diffractometer. Analytical HPLC was performed on an Agilent 1260 HPLC system with a DAD detector equipped with a Porshell 120 (EC-C18, 4.5×50 mm, 2.7μ m, Agilent Techonologies). UV absorbance was measured on a NanoDrop 2000c spectrometer (Thermo Technology). Biochemicals and media were purchased from Sinopharm Chemical (China), Oxoid (UK) or Sigma-Aldrich (USA). Chemical reagents were purchased from standard commercial sources including J&K (China), Sigma- Aldrich (USA), Merck (Germany).

Physical data of isolated compounds

Compound **4**, yellow amorphous oil, UV(MeOH): $\lambda max (log\epsilon) = 229 \text{ nm} (0.759)$, 296 nm (0.866); IR (KBr) v_{max} 3303, 2962, 2932, 2874, 1622, 1589, 1532, 1395, 1007, 973 cm⁻¹; HR-ESIMS (positive mode): m/z calcd. for C₂₁H₃₁O₅Na₂: 409.1967, found 409.1965 [M-H+2Na]⁺. ¹H and ¹³C NMR data see **Supplementary Table 4**.

Compound **5**, yellow amorphous oil, UV(MeOH): $\lambda max (log\epsilon) = 234$ nm (0.298), 293 nm (0.417); IR (KBr) v_{max} 3359, 2927, 1690, 1615, 1396, 1303, 1242, 1140, 1061, 1007, 969 cm⁻¹; HR-ESIMS (positive mode): m/z calcd. for C₂₁H₃₂O₆Na: 403.2097, found 403.2096 [M+Na]⁺. ¹H and ¹³C NMR data see **Supplementary Table 5**.

Compound **6**, colorless needle, UV(MeOH): $\lambda max (log\epsilon) = 218 \text{ nm } (0.96), 222 \text{ nm } (0.7); IR (KBr) <math>v_{max}$ 3380, 2944, 2832, 1449, 1115, 1033, 670 cm⁻¹; HR-ESIMS (positive mode): m/z calcd. for C₂₁H₃₀O₄Na: 369.2042, found 369.2041 [M+Na]⁺. ¹H and ¹³C NMR data see **Supplementary Table 6.**

Compound **7**, HR-ESIMS (positive mode): m/z calcd. for C₂₁H₃₀O₄Na: 369.2042, found 369.2037 [M+Na]⁺. ¹H and ¹³C NMR data see **Supplementary Table 7**.

Compound **8**, colorless needle, UV(MeOH): λ max (log ε) = 206 nm (0.25), 218 nm (0.75); HR-ESIMS (positive mode): m/z calcd. for C₂₁H₃₀O₄Na: 369.2042, found 369.2043 [M+Na]⁺. ¹H and ¹³C NMR data see **Supplementary Table 9**.

Compound **10**, yellow amorphous oil, UV(MeOH): $\lambda max (log\epsilon) = 234$ nm (0.21), 275 nm (0.31), 327 nm (0.22); IR (KBr) v_{max} 3385, 3181, 2970, 2937, 2881, 1729, 1675, 1531, 1457, 1386, 1255, 1203 cm⁻¹; HR-ESIMS (positive mode): m/z calcd. for C₂₅H₃₉NO₅SNa: 488.2447, found 488.2440 [M+Na]⁺. ¹H and ¹³C NMR data see **Supplementary Table 10**.

Crystal data of compounds 6 and 8

Crystal Data for compound **6**, $C_{21}H_{30}O_4$ (M = 346.45 g/mol): monoclinic, space group P21 (no. 4), a = 7.1821(12) Å, b = 10.1451(17) Å, c = 12.471(2) Å, $\alpha = 90^{\circ}$, $\beta = 97.763(5)^{\circ}$, $\gamma = 90^{\circ}$, V = 900.4(3) Å3, Z = 2, T = 153 K, μ (CuK α) = 0.087 mm⁻¹, *Dcalc* = 1.278 g/cm³, *F*(000) = 376; 5600 reflections measured ($5.196^{\circ} \le 2\Theta \le 50.014^{\circ}$), 2845 unique ($R_{int} = 0.051$, $R_{sigma} = 0.0644$) which were used in all calculations. The final R_1 was 0.0391 ($I > 2\sigma$ (I)) and wR_2 was 0.1137 (all

data); The crystallographic data have been deposited in the Cambridge Crystallographic Data Centre as CCDC 1843311.

Crystal Data for compound **8**, C₂₁H₃₀O₄ (M = 346.45 g/mol): triclinic, space group P1 (no. 1), a = 6.9357(11) Å, b = 8.1669(15) Å, c = 8.4498(13) Å, $\alpha = 84.343(5)^{\circ}$, $\beta = 87.877(4)^{\circ}$, $\gamma = 79.868(3)^{\circ}$, V = 468.77(13) Å3, Z = 1, T = 153 K, μ (CuK α) = 0.083 mm⁻¹, *Dcalc* = 1.227 g/cm³, F(000) = 188; 3277 reflections measured ($4.846^{\circ} \le 2\Theta \le 50.012^{\circ}$), 2263 unique ($R_{int} = 0.0434$, $R_{sigma} = 0.0739$) which were used in all calculations. The final R_1 was 0.0457 (I > 2 σ (I)) and wR_2 was 0.1226 (all data); The crystallographic data have been deposited in the Cambridge Crystallographic Data Centre as CCDC 1843314.

Computational details. The DFT calculations were performed with the Gaussian 09 program package³⁷. The procedure starts with a preliminary conformation search with molecular mechanics (MM). Schrödinger Maestro 9.8 and AMBER were used for MM calculations. We used the force field OPLS 2005, GB/SA solvent model for water, and the mixed torsional/lowmode sampling method that was built in the program. For the transition structures, we constrained the forming C-C bonds to around 2.2 Å by setting corresponding very high bond stretching force constants. The low-energy conformers that are within 5 kcal/mol of the global minimum were saved and then optimized with DFT in Gaussian 09. The geometry optimizations of minima and transition states involved were carried out at the B3LYP-D3 level of theory³⁸ with the 6-31G(d) basis set. The vibrational frequencies were computed at the same level to check whether each optimized structure is an energy minimum or a transition state and to evaluate its zero-point vibration energy (ZPVE) and thermal corrections at 298 K. The conformer with lowest energy was presented in the text. For a transition structure, we consider the lowest conformer with one negative normal-mode force constant for the desired vibration is the transition structure that we describe in more detail. Solvation energies were computed at the M06-2X level of theory³⁹ with the 6-311+G(d,p) basis set using the gas-phase optimized structures and the CPCM model^{40,41} in water. NMR chemical shift calculations were performed with B3LYP/6-311+G(2d,p) in acetonitrile using the CPCM model on the QM-optimized structures. Quasi-classical molecular dynamics simulations on a B3LYP-D3/6-31G(d) energy surface were initiated in the region of the potential energy surface near TS-1 or TS-3. Each real normal mode of TS-1 or TS-3 was given its zero-point energy (ZPE) plus a Boltzmann sampling of the thermal energy available at 298 K with a random phase. The trajectories were integrated in time (the step length for integration was 1 fs) in both the forward and backward directions until either the [6+4] or [4+2] adduct was formed or reactant **3** was reformed. We started with the monomer structure of NgnD and performed molecular dynamics (MD) simulations on the protein in water for 15 ns, which is long enough for equilibration. We found that the size of the pocket (potential active site) reaches its largest at 11 ns, so we took the structure at the end of 11 ns and docked in the DFT-optimized structures of reactant 3 or transition state TS-1. For the reaction in enzyme, the substrate or TS were docked into the enzyme active site using AutoDock Vina⁴². The binding mode that ranks best in each case was then used as a starting point for subsequent MD simulations. The docking structures were solvated in a water box using AmberTools 16^{43} . Separate ensembles of substrates were constructed by carrying out classical MD equilibrations in NgnD using MM for environment. Classical MD was performed using Amber 16 on the reactant and the transition state for 11 ns in NgnD. The molecular models constructed in the first step (water boxes and docked protein complexes) were used for MD simulations with RESP⁴⁴ charges

assigned on substrate and TS. The FF99SBildn⁴⁵ force field was used for protein residues. General Amber Force Field (GAFF)⁴⁶ was used for reactant and transition structures. In the enzyme, the system was minimized for 20000 steps, and gradually heated to 300 K and then equilibrated for 100 ps under constant T and P. Production run was conducted for 11 ns under constant volume and temperature. During the classical MD on the TS, restraining potentials of 200 kcal/mol/Å² were applied to the reaction coordinates in the TS. In each case, 10 residues are found to be close to the substrate/TS (**Fig. 3c**). Then, we analyzed the distances between these residues and the center of mass of the substrate/TS for the time between 10th and 11th ns (**Supplementary Fig. 10**). Snapshots (typically 2500) of reactant or TS were sampled from last 1 ns production MD runs at 400 fs intervals in NgnD.

Supplementary Fig. 1. Generation of the S. seoulensis A01 mutant strains. (a) Construction of in frame deletion of stmD-stmF1 in S. seoulensis A01 strain. Two homologous are jointed together through a scar of target gene. The genotype of each mutant is confirmed by PCR amplification using the genomic DNA from the mutant or wild type strain as the template and the size of predicted fragments are indicated. For large fragments deletion, two pair of primers were used for genotype confirmation. (b) The S. seoulensis HG02001 mutant ($\Delta stmD$). Lane 1, HG02001 mutant; Lane 2, S. seoulensis A01; Lane M, Trans2K[®] Plus II DNA marker; (c) The S. seoulensis HG02005 mutant ($\Delta stmD$ -stmF1). (d) The S. seoulensis HG02006 mutant ($\Delta stmY$ stmF1). (e) The S. seoulensis HG02004 mutant (Δ stmA). Lane 1 and 4, each mutant strain; Lane 2 and 5, S. seoulensis A01 as negative control; Lane 3 and 6, each plasmid used for gene deletion as positive control, Lane M, Trans2K[®] Plus II DNA marker.; Lane 1-3 all amplificated by the screen-F1/R1 primers, product of which is too large to be amplified in WT strain. Lane 4-6 all amplificated by the screen-F2/R2 primers, product of which is located in the deletion region and cannot be amplified in mutant strain and plasmid. All these screening experiments were repeated independently to identify at least three desired mutants and the fermentation results of each individual mutant are similar.

Supplementary Fig. 2. SDS-PAGEs of the purified proteins. (a) StmD (16.6 kDa). (b) NgnD (16.6 kDa). (c) Root369D (16.6 kDa), (d) 101015D (16.7 kDa), (e) F601D (16.9 kDa), (f) StmC/half-ACP-TE (36.1 kDa), (g) StmC/ACP-TE (38.1 kDa), (h) NgnC/TE (33.9 kDa), (i) NgnC/ACP-TE (39.4 kDa), (j) NgnC/module9-TE (208.5 kDa). M, protein ladder. The expression and purification of these proteins were repeated independently at least twice with similar results.

Supplementary Fig. 3a. HR-ESIMS spectrum of 4.

Supplementary Fig. 3b. ¹H NMR spectrum of 4 in acetone- d_6 (400 MHz).

Supplementary Fig. 3f. $^{1}H^{-1}H$ COSY NMR spectrum of 4 in acetone- d_{6} (400 MHz).

Supplementary Fig. 3h. NOESY spectrum of 4 in acetone-*d*₆ (600 MHz).

Supplementary Fig. 4a. HR-ESIMS of spectrum of 5.

Supplementary Fig. 4b. ¹H NMR spectrum of **5** in acetone- d_6 (400 MHz).

Supplementary Fig. 5a. HR-ESIMS spectrum of 6.

Supplementary Fig. 5b. ¹H NMR spectrum of 6 in acetone- d_6 (400 MHz).

Supplementary Fig. 5f. ${}^{1}\text{H}{}^{-1}\text{H}$ COSY NMR spectrum of 6 in acetone- d_6 (400 MHz).

Supplementary Fig. 6a. HR-ESIMS spectrum of 7.

Supplementary Fig. 6b. ¹H NMR spectrum of mixture of 6 and 7 in acetonitrile- d_3 (600 MHz).

6.0 7.0 6.5 5.0 4.5 4.0 5.5 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 Supplementary Fig. 6c. HSQC NMR spectrum of mixture of 6 and 7 in acetonitrile- d_3 (600 MHz). The signals for 7 were pointed.

Supplementary Fig. 6d. HSQC NMR spectrum of 6 in acetonitrile-d₃ (600 MHz).

Supplementary Fig. 6e. ${}^{1}\text{H}{}^{-1}\text{H}$ COSY NMR spectrum of mixture of **6** and **7** in acetonitrile- d_3 (600 MHz).

Supplementary Fig. 6f. HMBC NMR spectrum of mixture of **6** and **7** in acetonitrile- d_3 (600 MHz).

Supplementary Fig. 7a. HR-ESIMS spectrum of 8.

Supplementary Fig. 7b. ¹H NMR spectrum of 8 in acetone- d_6 (400 MHz).

Supplementary Fig. 7f. ${}^{6.5}$ ${}^{6.0}$ ${}^{5.5}$ ${}^{5.0}$ ${}^{4.5}$ ${}^{4.0}$ ${}^{3.5}$ ${}^{3.0}$ ${}^{2.5}$ ${}^{2.0}$ ${}^{1.5}$ ${}^{1.0}$ ${}^{0.5}$ ${}^{0.0}$ Supplementary Fig. 7f. 1 H- 1 H COSY NMR spectrum of 8 in acetone- d_{6} (400 MHz).

Supplementary Fig. 7h. NOESY spectrum of 8 in acetone- d_6 (600 MHz).

Supplementary Fig. 8a. HR-ESIMS spectrum of 10.

Supplementary Fig. 8f. ${}^{1}\text{H}{}^{-1}\text{H}$ COSY NMR spectrum of **10** in acetone- d_6 (600 MHz).

Supplementary Fig. 9. Structures of NgnD and comparison with structure of $\alpha + \beta$ barrel superfamily protein. (a) Colored surface of NgnD and transpancy NgnD viewed from bottom to reveal the active cavity. The molecular surface was colored by amino acid hydrophobicity according to the Kyte-Doolittle scale, the minimal hydrophobicity was colored dodger blue, while the most hydrophobicity was colored orange red and the zero hydrophobicity was colored as white. (b) Superimposed cartoon structure of NgnD and Bal32a (PDB: 1TUH). Chains of NgnD were colored as light blue, and Bal32a was colored as cyan. Proteins of dimeric $\alpha+\beta$ barrel superfamily are evolutionarily conserved with diverse functions, including monooxygenase in antibiotic biosynthesis²⁶, meroterpenoid isomerase²⁷, limonene-1,2-epoxide hydrolases²⁸, type II polyketide cyclase SnoL²⁹, and scytalone dehydratase³⁰, all of which share similarities to NgnD with r.m.s. deviations of 1.82–3.33 Å, albeit no sequences similarities.

Supplementary Fig. 10. Distances between residues (blue dot shown on the structure) and the center of mass of the substrate/TS for the time between 10th and 11th ns. The black line and the red line represent the reactant and the transition state, respectively.

Supplementary Fig. 10 (cont.). Distances between residues (blue dot shown on the structure) and the center of mass of the substrate/TS for the time between 10th and 11th ns. The black line and the red line represent the reactant and the transition state, respectively.

Plasmid/Strain	Relevant characteristics	Reference
Plasmid		
pKC1139	E. coli-Streptomyces shuttle plasmid used for gene disruption, temperature sensitive	47
pSET152- <i>kasO</i> p*	pSET152 derived plasmid containing the promoter kasOp*	48
pET-28a(+)	Protein expression vector used in E. coli, encoding N-terminal His-tag, kanamycin resistance	Novagen
pET-22b(+)	Protein expression vector used in E. coli, encoding C-terminal His-tag, ampicillin resistance	Novagen
pHG02001	pKC1139 derived plasmid for disruption of <i>stmA</i>	This study
pHG02002	pKC1139 derived plasmid for disruption of <i>stmD</i>	This study
pHG02003	pKC1139 derived plasmid for disruption of <i>stmD-stmF1</i>	This study
pHG02004	pKC1139 derived plasmid for disruption of stmY-stmF1	This study
pHG02005	pSET152-kasOp* derived plasmid for complementation of stmD in HG02001	This study
pHG02006	pSET152- <i>kasO</i> p* derived plasmid for complementation of <i>ngnD</i> in HG02001	This stud
pHG02007	pET-28a(+) derived plasmid for expressing N-terminal His-tag StmD	This stud
pHG02008	pET-28a(+) derived plasmid for expressing N-terminal His-tag NgnD	This stud
pHG02009	pET-28a(+) derived plasmid for expressing N-terminal His-tag 101015D	This stud
pHG02010	pET-28a(+) derived plasmid for expressing N-terminal His-tag F601D	This stud
pHG02011	pET-28a(+) derived plasmid for expressing N-terminal His-tag Root369D	This stud
pHG02012	pET-22b(+) derived plasmid for expressing C-terminal His-tag StmD	This stud
pHG02013	pET-22b(+) derived plasmid for expressing C-terminal His-tag NgnD	This stud
pHG02014	pET-22b(+) derived plasmid for expressing C-terminal His-tag 101015D	This stud
pHG02015	pET-22b(+) derived plasmid for expressing C-terminal His-tag NgnD variant (Y13A)	This stud
pHG02016	pET-22b(+) derived plasmid for expressing C-terminal His-tag NgnD variant (F34Y)	This stud
pHG02017	pET-22b(+) derived plasmid for expressing C-terminal His-tag NgnD variant (P37A)	This stud
pHG02018	pET-22b(+) derived plasmid for expressing C-terminal His-tag NgnD variant (Y55A)	This stud
pHG02019	pET-22b(+) derived plasmid for expressing C-terminal His-tag NgnD variant (Y55F)	This stud
pHG02020	pET-22b(+) derived plasmid for expressing C-terminal His-tag NgnD variant (V56A)	This stud
pHG02021	pET-22b(+) derived plasmid for expressing C-terminal His-tag NgnD variant (V56S)	This stud
pHG02022	pET-22b(+) derived plasmid for expressing C-terminal His-tag NgnD variant (W67A)	This stud
pHG02023	pET-22b(+) derived plasmid for expressing C-terminal His-tag NgnD variant (M69A)	This study
pHG02024	pET-22b(+) derived plasmid for expressing C-terminal His-tag NgnD variant (N87A)	This study
pHG02025	pET-22b(+) derived plasmid for expressing C-terminal His-tag NgnD variant (I89A)	This study

Supplementary	Table 1	 Bacterial 	strains	and	plasmids.
---------------	---------	-------------------------------	---------	-----	-----------

pHG02026	pET-22b(+) derived plasmid for expressing C-terminal His-tag NgnD variant (Q113A)	This study
pHG02027	pET-28a(+) derived plasmid for expressing N-terminal His-tag StmC-HACP-TE	This study
pHG02028	pET-28a(+) derived plasmid for expressing N-terminal His-tag StmC-ACP-TE	This study
pHG02029	pET-22b(+) derived plasmid for expressing C-terminal His-tag NgnC-TE	This study
pHG02030	pET-28a(+) derived plasmid for expressing N-terminal His-tag NgnC-ACP-TE	This study
pHG02031	pET-28a(+) derived plasmid for expressing N-terminal His-tag NgnC-M9-TE	This study
pHG02032	pSET152- <i>kasO</i> p* derived plasmid for complementation of <i>ngnD (F34Y/W67A)</i> in HG02001	This study
pHG02033	pET-22b(+) derived plasmid for expressing C-terminal His-tag NgnD variant (F34A/W67A)	This study
E. coli strains		
DH5a	General cloning host	49
BL21 (DE3)	Heterologous host for protein expression	NEB
ET12567 (pUZ8002)	Methylation-deficient host used for E. coli-Streptomyces intergeneric conjugation	47
S. seoulensis strains		
A01	Wild type strain for streptoseomycin (STM) production	
HG02001	$\Delta stmD$, in-frame deletion mutant strain in WT, STM non-producing	This study
HG02002	complementation of <i>AstmD</i> mutant by <i>stmD</i> , STM producing	This study
HG02003	complementation of <i>AstmD</i> mutant by <i>ngnD</i> , STM producing	This study
HG02004	$\Delta stmA$, in-frame deletion mutant strain in WT, STM non-producing	This study
HG02005	$\Delta stmD-stmF1$, in-frame deletion mutant strain in WT, STM non-producing	This study
HG02006	$\Delta stmY$ -stmF1, in-frame deletion mutant strain in WT, STM non-producing	This study

Oligonucleotide	Sequence ^a	Enzyme sites
a. for amplification of homo	ologous arms from genomic DNA for gene disruption (5'-3')	
$\Delta stmA$ -UP-F	AACGACGGCCAGTGCCAAGCTTCAGTTCCATCGGCCAGAAGAT	HindIII
$\Delta stmA$ -UP-R	AACGACGGCCAGTGCCAAGCTTCAGTTCCATCGGCCAGAAGAT	
$\Delta stmA$ -DOWN-F	ATGGCGACGCCTCATATG	
$\Delta stmA$ -DOWN-R	AGCTATGACATGATTACGAATTCGGTTCGATGAAGGTGGTGT	EcoRI
$\Delta stmD$ -UP-F	AACGACGGCCAGTGCCAAGCTTCTGGATGACATCGACCGAAAC	HindIII
∆ <i>stmD</i> -UP-R	CGCGGATCAGTAGCGTCGCATGTGTCCTCCGCTTGC	
∆ <i>stmD</i> -DOWN-F	CGACGCTACTGATCCGCG	
∆ <i>stmD</i> -DOWN-R	AGCTATGACATGATTACGAATTCGATCGGCTGCATGTACGACTA	EcoRI
$\Delta stmD$ -stmF1-UP-F	AACGACGGCCAGTGCCAAGCTTGTGGTCATGTCAGGTGTG	<i>Hin</i> dIII
∆stmD-stmF1-UP-R	GTGCGCATTGAACTGGAC CTGGGTTATCTCAGCCAT	
$\Delta stmD$ -stmF1-DOWN-F	GTCCAGTTCAATGCGCAC	
∆stmD-stmF1-DOWN-R	AGCTATGACATGATTACGAATTCATCGACTCGGCGAACAC	EcoRI
$\Delta stm Y$ -stm F1-UP-F	AACGACGGCCAGTGCC <u>AAGCTT</u> CGTTTCGGCCATCCTGTTT	HindIII
∆stmY-stmF1-UP-R	GTGCGCATTGAACTGGACGACGCCTTCGCGTTGATC	
$\Delta stmY$ -stmF1-DOWN-F	GTCCAGTTCAATGCGCAC	
∆stmY-stmF1-DOWN-R	AGCTATGACATGATTACGAATTCATCGACTCGGCGAACAC	EcoRI
b. for screening of the corre	ect mutants (5'-3')	
Screen∆stmA-F	AGCCACCGCCCGTGTACC	
Screen∆stmA-R	GTCCTGGTTGACGGCCGAAC	
Screen∆stmD-F	AAATAGCTCCGATGGAATCCG	
Screen∆stmD-R	ATCGAACACCTGGCACTG	
Screen∆stmD-stmF1-F1	AATGCTTGAACGCGCGAA	
Screen∆stmD-stmF1-R1	CGCCTTCAGGAAGTAGGAGAC	
Screen∆stmY-stmF1-F1	TACGGTGCAGCCACTGCT	
Screen∆stmY-stmF1-R1	AGGTTGACTTTCCGCACTACTC	
Screen∆stmD-stmF1-F2	GCATTTCCCATATTCGAGAGAGA	
Screen∆stmD-stmF1-R2	CGGAGAACAGATAGGTGAAGAAC	
Screen∆stmY-stmF1-F2	GCATTTCCCATATTCGAGAGAGA	
Screen∆stmY-stmF1-R2	CGGAGAACAGATAGGTGAAGAAC	
c. for genes complementation	on (5'-3')	
152-StmD-F	TGCTGCATGCATACGTACTAGTCATTCTCACGGTGTGACC	SpeI
152-StmD-R	CTATGACATGATTACGAATTCCCTGGGAACCACACGAC	EcoRI

Supplementary Table 2. Oligonucleotide primers used in this study.

152-NgnD-F	TGCTGCATGCATACGTACTAGTGTCCTGGAAGCTCTGCGA	SpeI
152-NgnD-R	CTATGACATGATTAC<u>GAATTC</u>GGCATTGTCCACGGTAGATT	EcoRI
d. for protein expression (5'-3	')	
28a-StmD-F	GTGCCGCGCGGCAGC <u>CATATG</u> GCTGAGATAACCCAGGAA	NdeI
28a-StmD-R	CTCGAGTGCGGCCGCAAGCTT TCAGTAGCGTCGCTCTCC	<i>Hin</i> dIII
22b-StmD-F	GTGCCGCGCGGCAGC <u>CATATG</u> GCTGAGATAACCCAGGAA	NdeI
22b-StmD-R	CTCGAGTGCGGCCGCAAGCTTGTAGCGTCGCTCTCCGGC	<i>Hin</i> dIII
22b-NgnD-F	GTGCCGCGCGGCAGCCATATGACCGAGATCACCCCC	NdeI
22b-NgnD-R	CTCGAGTGCGGCCGCAAGCTTGTAGCGGCGTTCGCCGTC	<i>Hin</i> dIII
28a-101015D-F	GTGCCGCGCGGCAGCCATATGACCGAGATCACCCCCGAG	NdeI
28a-101015D-R	CTCGAGTGCGGCCGCAAGCTT TCAGTAGCGGCGTTCGCC	<i>Hin</i> dIII
22b-101015D-F	GTGCCGCGCGGCAGCCATATGACCGAGATCACCCCCGAG	NdeI
22b-101015D-R	CTCGAGTGCGGCCGCAAGCTTGTAGCGGCGTTCGCCGTC	<i>Hin</i> dIII
28a-F601D-F	GTGCCGCGCGGCAGCCATATGACTGAGATCACCCCCGAG	NdeI
28a-F601D-R	CTCGAGTGCGGCCGC <u>AAGCTT</u> TCAGAGGTAGCGACGTTC	<i>Hin</i> dIII
28a-Root369D-F	GTGCCGCGCGGCAGCCATATGACCGCGATCACCCCCGAG	NdeI
28a-Root369D-R	CTCGAGTGCGGCCGCAAGCTTGCGGTTCCTGCGTGTTCC	<i>Hin</i> dIII
28a-StmC-HACPTE-F	GTGCCGCGCGGCAGC <u>CATATG</u> GATCTGCGCAACCGGCTG	NdeI
28a-StmC-HACPTE-R	CTCGAGTGCGGCCGCAAGCTTTCACAGGGTCCCCAGCCA	<i>Hin</i> dIII
28a-StmC-ACPTE-F	GTGCCGCGCGGCAGCCATATGGTGGAGCGGGACACGCCG	NdeI
28a-StmC-ACPTE-R	CTCGAGTGCGGCCGCAAGCTTTCACAGGGTCCCCAGCCA	<i>Hin</i> dIII
22b-NgnC-TE-F	GTGCCGCGCGGCAGCCATATGGAATTGGCACAGACGGCC	NdeI
22b-NgnC-TE-R	CTCGAGTGCGGCCGCAAGCTT TTTCGTCCTCTTTGTTCGGT	<i>Hin</i> dIII
28a-NgnC-ACPTE-F	GTGCCGCGCGGCAGCCATATGCTGTCCACCCGGCTCGCC	NdeI
28a-NgnC-ACPTE-R	CTCGAGTGCGGCCGCAAGCTT TCATTTCGTCCTCTTGTTC	<i>Hin</i> dIII
28a-NgnC-M9TE-F	GTGCCGCGCGGCAGC <u>CATATG</u> GACATTGCCGTAGCTGCC	NdeI
28a-NgnC-M9TE-R	CTCGAGTGCGGCCGC <u>AAGCTT</u> TCATTTCGTCCTCTTGTTC	<i>Hin</i> dIII
d. for NgnD site mutation (5'-	3')	
NgnD-M69A-F	CACGTGGAGCgcaCAGCCCGTCACGCTG	
NgnD-M69A-R	CCGCCGGAAGCCTCCAGC	
NgnD-F34Y-F	GGACCTGCGCtatCTGGCGCCGG	
NgnD-F34Y-R	TCCGACCAGTACAGCGCG	
NgnD-V56S-F	CATGTCCTATagtCAGGGAATGCTGGAGGCTTC	

- NgnD-V56S-R AAGTCGTCGATGCCGACC
- NgnD-Y13A-F CGCCGCCGCTgcaCAGGCGGTCA

NgnD-Y13A-R	ACCAGTTCGGGGGTGATC
NgnD-P37A-F	CTTCCTGGCGgcaGGTAGCCACG
NgnD-P37A-R	CGCAGGTCCTCCGACCAG
NgnD-Y55A-F	CTTCATGTCCgcaGTGCAGGGAATGCTGGAGGCTTCC
NgnD-Y55A-R	TCGTCGATGCCGACCCGC
NgnD-Y55F-F	CTTCATGTCCttcGTGCAGGGAATGCTGGAGG
NgnD-Y55F-R	TCGTCGATGCCGACCCGC
NgnD-V56A-F	CATGTCCTATgcaCAGGGAATGCTGG
NgnD-V56A-R	AAGTCGTCGATGCCGACC
NgnD-W67A-F	CGGCGGCACGgcaAGCATGCAGC
NgnD-W67A-R	GAAGCCTCCAGCATTCCC
NgnD-N87A-F	GATCGACGCCgcaCGGATCCACG
NgnD-N87A-R	GAGTAGCCGTCCTCGTTG
NgnD-I89A-F	CGCCAACCGGgcaCACGCGGTAC
NgnD-I89A-R	TCGATCGAGTAGCCGTCC
NgnD-Q113A-F	CTCCGGCGTGgcaATGCTCAAGTG
NgnD-Q113A-R	ATATCGAGCACGTCGAAC

^{*a*} Letters highlighted in bold are sequences used for ligation independent cloning and the enzyme sites are indicated by underline. Lowercase letter indicated mutated nucleotide.

Gene	Size ^b	Proposed function	homologs ^C	Identity/Similarity (%/%)
orfl	180	acetyl-CoA carboxylase biotin carboxyl carrier protein subunit	AccB WP_107660550.1	89/93
orf2	363	GGDEF domain-containing protein	ABR67765.1	84/88
orf3	479	peptidase M14	(WP_107657111.1)	96/98
ngnN2	325	keto-acyl ACP-synthase	NgnN2 (AEI59693.1)	97/93
ngnN3	700	prolyl carrier protein dehydrogenase	NgnN3 (AEI59692.1)	96/93
ngnN4	520	proline adenyltransferase	NgnN4 (AEI59690.1)	92/91
ngnN5	91	proline carrier protein	NgnN5 (AEI59691.1)	93/90
ngnJ	315	LysR family transcriptional regulator	WP_040706732.1	90/94
ngnI	308	retinol dehydrogenase	AGC42222.1	35/49
ngnO3	265	Phytanoyl-CoA dioxygenase	StmO3 (AWH12930.1)	51/66
ngnP2	405	Cytochrome P450	StmP2 (AWH12921.1)	41/58
ngnF	65	ferredoxin	StmF (AWH12920.1)	41/55
ngnM	278	methyltransferase	StmM2 (AWH12917.1)	55/68
ngnG	280	short-chain dehydrogenase	DC31_16040 (KDA05327.1)	50/65
ngnO1	310	LLM class flavin-dependent oxidoreductase	StmO1 (AWH12914.1)	56/66
ngnO2	421	pristinamycin IIA synthase subunit A	StmO2 (AWH12915.1)	82/90
ngnP1	420	cytochrome P450	StmP1 (AWH12916.1)	78/89
ngnK	348	L-glyceraldehyde 3-phosphate reductase	StmK (AWH12918.1)	70/82
ngnA	5961	type I polyketide synthase	StmA (AWH12936.1)	68/77
ngnB	4762	type I polyketide synthase	StmB (AWH12937.1)	64/73
ngnC	3663	type I polyketide synthase	StmC (AWH12938.1)	64/74
ngnD	152	nuclear transport factor 2 family protein	StmD (AWH12907.1)	86/91
ngnV	259	thioesterase	StmV (AWH12931.1)	54/67
orf4	1187	DNA polymerase III subunit alpha	DnaE (GAJ85646.1)	85/92
orf5	104	hypothetical protein	WP_107657113.1	89/92
orf6	60	hypothetical protein	WP_040742977.1	66/86

Supplementary Table 3. Annotation of the ngn cluster^a.

^aThe sequence has been deposited in GenBank with accession number MH544245. ^bNumbers are in amino acids. ^cGiven in numbers are NCBI accession numbers.

	HMBC			
No.	$\delta_{ m C}$	$\delta_{\rm H} (J \text{ in Hz})$	COSY	HMBC
1	166.7, C			
2	120.6, CH	5.91, d (15.1)	H3	
3	144.9, CH	7.29, dd (15.1, 11.4)	H2, H4	1, 2, 4, 5
4	128.3, CH	6.36, dd (14.9, 11.4)	H3, H5	2, 3
5	140.9, CH	6.68, dd (14.9, 10.8)	H4, H6	3, 6, 7
6	131.9, CH	6.27, dd (15.1, 10.8)	H5, H7	8
7	136.6, CH	6.07, dt (15.1, 7.4)	H6, H8	5, 8, 9
8	41.5, CH2	2.33, m	H7, H9	6, 7, 9, 10
9	70.2, CH	3.90, m	H8, H10	7
10	43.8, CH2	1.62, m	H9, H11	8, 9, 11, 12
11	72.0, CH2	4.38, dd (12.4, 6.6)	H10, H12	9, 10, 12, 13
12	130.3, CH	5.59, dd (15.7, 6.6)	H11, H13	10, 11, 13
13	134.3, CH	6.22, d (15.7)	H12	11, 15
14	132.0, C			
15	136.1, CH	5.35, d (9.9)	H16	13
16	38.9, CH	2.50, ddt (13.5, 9.9, 6.7)	H15, H17, H21	14, 15, 17
17	76.3, CH	3.23, m	H16, H18	
18	27.9, CH2	1.28, m	H17, H19	16, 17, 19
		1.50, m		
19	9.8, CH3	0.91, t (7.4)	H18	17, 18
20	12.1 CH3	1.74, d (0.9)		14, 15,
21	15.9, CH3	0.99, d (6.7)	H16	16, 17

No.	$\delta_{ m C}$	$\delta_{\rm H} (J \text{ in Hz})$	COSY	HMBC
1	167.0, C			
2	120.5, CH	5.88, d (15.1)	H3	
3	144.8, CH	7.29, dd (15.1, 11.3)	H2, H4	1, 2, 4, 5
4	128.3, CH	6.35, dd (14.9, 11.3)	H3, H5	2, 3
5	140.9, CH	6.67, dd (14.9, 10.6)	H4, H6	3, 6
6	131.9, CH	6.26, dd (15.0, 10.6)	H5, H7	8
7	136.6, CH	6.05, dt (15.0, 7.4)	H6, H8	5
8	41.5, CH2	2.31, t (6.6)	H7, H9	6, 7, 9, 10
9	70.2, CH	3.89, m	H8, H10	7
10	43.8, CH2	1.62, m	H9, H11	8, 9, 11, 12
11	72.0, CH2	4.38, dd (12.9, 6.6)	H10, H12	9, 10, 12, 13
12	130.4, CH	5.58, dd (15.5, 6.6)	H11, H13	10, 11, 13
13	134.3, CH	6.22, d (15.5)	H12	11
14	132.3, C			
15	135.8, CH	5.34, d (9.9)	H16	13, 16, 17
16	39.5, CH	2.50, m	H15, H17	14, 15, 17, 18
17	74.0, CH	3.54, ddd (9.5, 7.3, 2.4)	H16, H18	
18	37.4, CH2	1.51, m	H17, H19	16, 17, 19
		1.66, m		
19	60.2, CH2	3.70, m	H18	17, 18
20	12.3, CH3	1.74, d (1.0)		14, 15
21	15.9, CH3	1.0, d (6.7)	H16	16, 17

$\begin{array}{c} 9 \\ H \\$	Me HO OH
	- COSY

Supplementary Table 6. NMR spectroscopic data of **6** (acetone-*d*₆).

НИВС					
No.	$\delta_{ m C}$	$\delta_{\rm H} \left(J \text{ in Hz} \right)$	COSY	HMBC	
1	173.0, C				
2	46.3, CH	3.09, dd (11.0, 8.5)	H3, H15	1, 3, 4, 14, 15	
3	122.4, CH	5.23, dd (16.7, 8.5)	H2, H4	1, 2, 5	
4	134.0, CH	5.53, dd (16.7, 8.7)	H3, H5	2, 3, 6	
5	126.1, CH	6.16, t (10.2)	H4, H6	3, 4, 7	
6	135.1, CH	6.26, m	H5, H7	4, 5, 7	
7	33.9, CH	2.94, m	H6, H8, H12	4, 5, 8, 9, 11, 12	
8	35.6, CH2	2.14, m	H7, H9	6, 9, 12	
		1.95, ddd (14.4, 5.5, 3.1)		5, 6, 7, 9, 12,	
9	67.2, CH	4.25, m	H8,H10, 9OH	7, 10, 11	
10	37.8, CH2	2.18, m	H9, H11	8, 9, 12	
		1.79, dt (14.3, 2.8)		9, 11, 12,	
11	69.8, CH	3.80, m	H10, H12, 11OH	7, 9, 10, 12,	
12	47.1, CH	2.85, m	H11, H13	7, 11, 6, 13	
13	137.7, CH	4.97, d (10)	H12	11, 15, 20	
14	130.6, C				
15	58.9, CH	1.40, dd (11.1, 4.2)	H2, H16	2, 3, 13, 16, 17, 21	
16	32.2, CH	2.38, m	H15, H17	2, 15, 21	
17	80.3, CH	4.41, ddd (8.4, 4.7, 3.5)	H16, H18	15, 18, 19, 21	
18	24.3, CH2	1.71, m	H17, H19	16, 17, 19	
		1.63, m		17, 19	
19	9.8, CH3	1.02, t (7.4)	H18	17, 18	
20	11.4, CH3	1.67, br s		13, 14, 15	
21	14.5, CH3	0.93, d (7.1)	H16	15, 16, 17	
	9-OH	4.59, d (4.8)	H9	8, 9, 10	
	11-OH	3.88, d (8.3)	H11	10, 11, 12	

ОН

Supplementary Table 7. NMR spectroscopic data of compound **7** (acetonitrile- d_3).

		- COSY		
		→ HMBC		
No.	$\delta_{ m C}$	$\delta_{\rm H}(J \text{ in Hz})$	COSY	HMBC
1	170.0, C			
2	125.60, CH	5.85, d (16.2)	H3	1, 3, 4
3	145.95, CH	5.63, dd (16.2, 10.0)	H2, H4	1
4	47.94, CH	2.62, t (10.0)	H3, H5, H13	
5	126.28, CH	5.75, br d (10.0)	H4, H6	3,4, 7, 13
6	133.50, CH	5.82, ddd (10.0, 5.2, 2.2)	H5, H7	
7	35.58, CH	2.13, m	H6, H8, H12	
8	39.38, CH2	1.11, m	H7, H9	
9	69.27, CH	3.54, m	H8, H10	
10	40.16, CH2	1.80, m	H9, H11	
		1.34, m		
11	72.22, CH	3.69, m	H10, H12	
12	39.64, CH	2.33, m	H7, H11, H13	
13	48.04, CH	1.93, m	H4, H12	
14	136.4, C			
15	137.39, CH	4.51, d (8.1)	H16	13
16	37.11, CH	2.72, m	H15, H17, H21	
17	84.20, CH	4.50, m	H16, H18	
18	26.9, CH2	1.56, m	H19	
		1.70, m		
19	11.6, CH3	0.95, t (7.4)	H18	17, 18
20	12.73, CH3	1.61, br s		13
21	12.4, CH3	0.97, d (7.0)	H16	15, 16, 17

Supplementary Table 8. Experimental and calculated ¹³C NMR data for compound 7 (acetonitrile- d_3). Regression line is indicated for experimental measured ¹³C NMR data (*x* axis) correlated with computed chemical shift (*y* axis) with correlation coefficient $R^2 = 0.9995$, which is caculated in Excel.

	180									
	160 -									•
(mq	140 -									
shift (p	120 -									
nical s	100 -									
d cher	80 -									
ipute	60 -									
COL	40 -		-				y = 0).9916x	+ 1.4217	7
	20 -							R ² = 0.9	995	
	20	÷								
	0 + 0	20	40	60	80	100	120	140	160	180
				mea	asured ch	emical s	shift (ppr	n)		
No	. O	bserved	$\delta_{ m C}$		Calcu	lated	$\delta_{ m C}$	_		
1	17	70.0, C			168.4			_		
2	12	25.60, C	Ή		123.8					
3	14	45.95, C	Н		147.8					
4	47	7.94, CH	H		50.1					
5	12	26.28, C	Н		126.8					
6	13	33.50, C	Ή		133.2					
7	35	5.58, CI	H		37.9					
8	39	9.38, CI	H2		39.8					
9	69	9.27, CI	H		70.4					
10	40).16, CI	H2		41.6					
11	72	2.22, CH	H		74.3					
12	39	9.64, CI	H		41.4					
13	48	3.04, CI	H		50.3					
14	13	36.4. C			136.8					
15	13	37.39. C	Н		138.5					
16	37	7.11. CH	H		38.9					
17	84	4.20, CH	H		84.4					
18	26	5.9. CH	2		29.0					
19	1	1.6. CH	3		11.0					
20	12	2.73. CI	H3		12.4					
21	12	2.4, CH	3		12.3					

	-
$\begin{array}{c} 19 \\ Me \\ H^{10} \\ H^{10} \\ 17 \\ 21 \\ Me \\ H^{11} \\ 16 \\ 15 \\ 3 \\ 14 \\ 16 \\ 15 \\ 3 \\ 4 \\ 10 \\ 11 \\ 10 \\ 11 \\ 10 \\ 9 \\ 0H \end{array}$	Me O Me HO HO OH
	- COSY

Supplementary Table 9. NMR spectroscopic data of compound 8 (acetone-*d*₆).

→ HMBC					
No.	δC	$\delta H (J \text{ in Hz})$	COSY	HMBC	
1	172.6, C				
2	42.4, CH	3.19, t (9.7)	H3, H15	1, 3, 4, 14	
3	128.4, CH	5.57, ddd (11.1, 8.3, 1.4)	H2, H4	1, 2, 5	
4	129.5, CH	6.19, ddd (11.1, 4.3, 1.4)	H3, H5	2, 5, 6	
5	126.7, CH	5.88, dd (11.0, 4.3)	H4, H6	3, 6, 7, 12	
6	136.8, CH	5.23, ddd (11.0, 8.4, 1.3)	H5, H7	4, 7, 8	
7	32.6, CH	2.61, m	H6, H8, H12	5, 6, 8, 12	
8	38.5, CH2	2.02, m	H7, H9	6, 7, 9, 10, 12	
		1.58, m		7, 12	
9	66.7, CH	4.17, br s	H8,H10, 9OH		
10	36.7, CH2	2.10, m	H9, H11	7, 8, 9, 11, 12	
		1.68, m		8	
11	68.9, CH	3.92, m	H10, H12,		
			11OH		
12	46.5, CH	2.11, m	H11, H13	6, 14	
13	129.7, CH	5.29, d (10.4)	H12	11, 15, 20	
14	131.9 C				
15	55.7, CH	1.69, m	H2, H16		
16	33.0, CH	2.25, m	H15, H17	2, 12, 14, 15, 18, 21	
17	80.3, CH	4.39, ddd (8.1, 5.1, 2.6)	H16, H18	1, 15, 18, 19, 21	
18	24.3, CH2	1.63, m	H17, H19	16, 17	
		1.68, m		16, 17, 19	
19	9.73, CH3	1.00, t (7.4)	H18	17, 18	
20	12.9, CH3	1.55, d (0.9)		2, 12, 13, 14, 15	
21	14.0, CH3	0.91, d (7.1)	H16	15, 16, 17	
	9-OH	4.55, d (3.8)	H9		
	11-OH	4.45, d (7.8)	H11	10, 11	

Me H S S 1 2 4 6 8 9 10 11 12 17 19 $Me Me Me S S 1 2 4 6 8 9 10 11 12 12 17 19$ $Me Me M$	
Me Nie S Me Me Me	
Me N S Me	
— cosy	
→ HMBC	
No. δC $\delta H (J in Hz)$ HMBC	
1 189.1, C	
2 127.8, CH 6.24, d (15.3)	
3 141.8, CH 7.25, dd (15.3, 11.3) 1, 2, 4, 5	
4 128.8, CH 6.34, dd (14.9, 11.3) 2, 3	
5 143.9, CH 6.79, dd (14.9, 11.0) 3	
6 132.9, CH 6.29, dd (15.2, 11.0) 8	
7 138.5, CH 6.12, m 5, 8, 9	
8 42.4, CH2 2.34, m 6, 7, 9, 10	
9 71.1, CH 3.90, m 7	-
10 44.7, CH2 1.65, m 8, 9, 11, 1	2
11 72.9, CH 4.37, dd (12.4, 6.4) 9, 10, 12,	
12 131.2, CH 5.58, dd (15.6, 6.4) 10, 11, 14	
13 135.2, CH 6.21, d (15.8) 11, 15	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
17 77.2, CH 5.22, III 18 22.3 CH2 1.20 m 16.17	
10 22.5, CH2 1.29, III 10, 17	
10 10.7 CH3 0.01 t (7.4) 18.10	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
21 16.8. CH3 0.99 d (67) 16.17	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
23 39.7, CH2 3.33, m 22. 24	
24 169 9 C	
25 22.8. CH3 1.86. s 24	
9-OH 4.24. br s	
11-OH 4.19, br s	

Supplementary Table 10. NMR spectroscopic data of compound 10 (acetone-*d*₆).

Supplementary Table 11. Annotation of the *stmD* homologue and its neighboring genes in *N*. *tenerifensis* NBRC 101015.

101015D

$-\frac{11}{-7} - 6 - 5 - 4 - 3 - 2 - 1 \qquad 1 2 3 4$					
Protein	Size (aa)	Proposed function	Homolog	Identity/similarity, (%/%)	
Orf7	283	hypothetical protein	TU76_02335 (KMN02617.1)	53/72	
Orf6	324	LLM class flavin-dependent oxidoreductase	StmO1 (AWH12914.1)	53/64	
Orf5	421	pristinamycin IIA synthase subunit A	StmO2 (AWH12915.1)	82/90	
Orf4	423	cytochrome P450	StmP1 (AWH12916.1)	75/87	
Orf3	394	cytochrome P450	StmP3 (AWH12925.1)	76/86	
Orf2	63	ferredoxin	StmF1 (AWH12935.1)	76/87	
Orf1	2771	type I polyketide synthase	StmC (AWH12938.1)	47/58	
101015D	152	nuclear transport factor 2 family protein	StmD (AWH12907.1)	82/90	
Orf_1	256	thioesterase	StmV (AWH12931.1)	50/63	
Orf_2	1214	DNA polymerase III subunit alpha	WP_081869253.1	86/93	
Orf_3	112	hypothetical protein	CLV40_101308 (PPK71119.1)	58/67	
Orf_4	59	hypothetical protein	WP_043660705.1	58/72	

^aGiven in numbers are NCBI accession numbers. Gene marked in red is the homolog of *stmD*; genes marked in blue is those conserved in *stm* or *ngn* gene cluster.

Supplementary Table 12. Annotation of the *stmD* homologue and its neighboring genes in *S. tsukubaensis* F601.

6

F601D

#

-1

Protein	Size (aa)	Proposed function	Homolog	Identity/similarity, (%/%)
Orf1	1229	type I polyketide synthase	StmC (AWH12938.1)	61/50
F601D	153	nuclear transport factor 2 family protein	StmD (AWH12907.1)	78/88
Orf_1	398	cytochrome P450	StmP3 (AWH12925.1)	73/83
Orf_2	47	ferredoxin	StmF1 (AWH12935.1)	53/70
Orf_3	276	SAM-dependent methyltransferase	StmM2 (AWH12917.1)	55/69
Orf_4	439	cytochrome P450	StmP1 (AWH12916.1)	74/87
Orf_5	436	pristinamycin IIA synthase subunit A	StmO2 (AWH12915.1)	78/87
Orf_6	351	LLM class flavin-dependent oxidoreductase	StmO1 (AWH12914.1)	48/56
Orf_7	246	SDR family oxidoreductase	WP_040742805.1	76/86
Orf_8	401	cytochrome P450	StmP4 (AWH12932.1)	40/55
Orf_9	75	ferredoxin	WP_091433785.1	61/77
Orf_10	228	TetR family transcriptional regulator	WP_098010282.1	48/62
Orf_11	277	hypothetical protein	WP_058940059.1	54/68
Orf_12	425	Cytochrome P450	WP_083895055.1	63/75
Orf_13	280	O-methyltransferase	SnogM (AAG42853 1)	43/60

^{*a*}Given in numbers are NCBI accession numbers. Gene marked in red is the homolog of *stmD*; genes marked in blue is those conserved in *stm* or *ngn* gene cluster.

Supplementary Table 13. Annotation of the *stmD* homologue and its neighboring genes in *S*. sp. Root369.

-#-	-2	-1 1 2 3 4 5 6		
Protein	Size (aa)	Proposed function	Homolog	Identity/similarity, (%/%)
Orf2	3606	type I polyketide synthase	StmB (AWH12937.1)	47/59
Orf1	3858	type I polyketide synthase	StmC (AWH12938.1)	52/63
root369D	151	nuclear transport factor 2 family protein	StmD (AWH12907.1)	48/66
Orf_1	278	thioesterase	StmV (AWH12931.1)	49/64
Orf_2	642	monooxygenase	ASD17_03920 (KQX23592.1)	51/68
Orf_3	507	aldehyde dehydrogenase	QR97_20565 (AKN71864.1)	94/97
Orf_4	426	transcriptional regulator	AQI94_17755 (KUM87198.1)	93/95
Orf_5	199	N-acetylmuramoyl-L-alanine amidase	CLW08_0629 (PKB34464.1)	75/85
Orf_6	337	acetamidase	SZN_09603 (EGX60014.1)	94/97
Orf_7	402	ROK domain-containing protein	SSEG_09798 (EDY59080.1)	95/96
Orf_8	481	xylulose kinase	ABB07_32890 (AKJ14687.1)	92/95
Orf_9	388	xylose isomerase	DF19_25540 (KDN75320.1)	95/97
Orf_10	149	hypothetical protein	WP_079163039.1	96/99
Orf_11	446	esterase-like activity of phytase family protein	SLINC_1292 (ANS63516.1)	87/92

^{*a*}Given in numbers are NCBI accession numbers. Gene marked in red is the homolog of *stmD*; genes marked in blue is those conserved in *stm* or *ngn* gene cluster.

Supplementary Data 1. DFT-computed energies and Cartesian coordinates.

Gibbs free energies (in kcal/mol)	B3LYP- D3/ 6-31G(d)	CPCM(water)-B3LYP- D3/6-311+G(d,p)// B3LYP-D3/6-31G(d)	CPCM(water)-M06- 2X/6-311+G(d,p)// B3LYP-D3/6-31G(d)	CPCM(water)- ωB97XD/6- 311+G(d,p)// B3LYP-D3/6-31G(d)
TS-1	21.1	21.1	23.1	24.1
TS-2	9.5	11.3	5.6	6.1
TS-3	21.4	21.5	23.0	24.0
TS-4	9.4	11.5	5.9	6.3
6	-9.4	-6.5	-19.1	-20.9
7	-5.2	-4.2	-16.7	-19.1
8	-15.1	-12.2	-25.5	-27.4
9	-4.0	-1.1	-13.7	-15.9

3 $G_{\text{water}} = -1118.553272$ Hartree

С	-4.838327	0.340397	2.574520
С	-4.045270	-0.717842	1.801237
С	-3.893228	-0.373560	0.321884
С	-3.155840	-1.427967	-0.549512
С	-1.734781	-1.680686	-0.110544
С	-0.585285	-1.339447	-0.735490
С	0.690352	-1.783993	-0.154947
С	1.918221	-1.588625	-0.668248
С	3.597022	1.929025	1.109610
С	2.725743	2.608134	0.334959
С	1.316817	2.644578	0.639154
С	0.332314	2.978962	-0.233999
С	-1.004587	2.486189	-0.037564
С	-1.994173	2.490638	-0.959209

С	-3.145902	1.579917	-0.870997
С	-3.945880	-2.750857	-0.598032
С	3.195945	-2.112719	-0.042304
С	3.963506	-1.029221	0.734162
С	4.602454	0.045335	-0.149454
С	4.897467	1.368818	0.619655
С	-0.517703	-0.544982	-2.018510
0	-3.951007	1.409273	-1.770405
0	-3.146293	0.865360	0.286128
0	2.952035	-3.150041	0.908349
0	5.793003	-0.529045	-0.683678
Η	-4.343644	1.314521	2.515243
Η	-4.933641	0.066545	3.630924
Η	-5.848847	0.452113	2.162697
Η	-3.047120	-0.834391	2.241062
Η	-4.546816	-1.689202	1.882139
Η	-4.877548	-0.193716	-0.126755
Н	-3.163732	-1.013569	-1.560944
Η	-1.642943	-2.253284	0.814440
Η	0.618266	-2.347839	0.775192
Η	2.045538	-1.028818	-1.592556
Η	3.247344	1.570755	2.077318
Η	3.042175	2.975531	-0.642481
Η	1.023579	2.180881	1.581915
Η	0.579132	3.445880	-1.187267
Η	-1.173760	1.917417	0.873572
Η	-1.907248	3.020897	-1.903069
Η	-3.914840	-3.279096	0.361707
Η	-3.519878	-3.417027	-1.355139
Η	-4.997222	-2.572677	-0.854315
Η	3.855393	-2.480512	-0.846806
Η	4.763564	-1.516138	1.303708
Η	3.265068	-0.586863	1.449472
Η	3.909277	0.310952	-0.964069
Η	5.392667	2.061762	-0.074690
Η	5.595597	1.155938	1.436947
Η	0.081657	0.360890	-1.868230
Η	-0.031281	-1.128969	-2.810509
Η	-1.497722	-0.231239	-2.380316
Η	2.429883	-3.832659	0.457052
Η	6.142018	0.074965	-1.357615

6 $G_{\text{water}} = -1118.583634$ Hartree

С	6.245788	-0.829626	1.306347
С	5.218194	-1.403899	0.326158
С	3.912978	-0.614137	0.316659
С	2.769749	-1.215527	-0.518809
С	1.516632	-0.282396	-0.466468
С	0.289124	-0.865113	0.212368
С	-0.913717	-0.669209	-0.357368
С	-2.280709	-0.912494	0.222192
С	-2.829901	0.340727	1.018027
С	-2.785650	1.670281	0.281151
С	-1.693012	2.441890	0.124438
С	-0.373955	2.023884	0.587178
С	0.770928	2.106516	-0.107654
С	1.879585	1.143103	0.179477
С	3.231525	1.602004	-0.339476
С	3.179885	-1.481370	-1.975110
С	-3.272094	-1.381744	-0.872188
С	-4.645207	-1.705679	-0.261910
С	-5.231544	-0.526680	0.518284
С	-4.241204	0.012999	1.561406
С	0.474875	-1.435383	1.597929
0	3.450885	2.669882	-0.859672
0	4.241197	0.703125	-0.192773
0	-3.373097	-0.453098	-1.945214
0	-5.591271	0.465745	-0.467437
Η	6.476940	0.209283	1.052530
Η	7.177179	-1.405220	1.281209
Н	5.865712	-0.850219	2.335452
Η	5.635422	-1.409464	-0.686538
Η	4.983337	-2.445282	0.584274
Η	3.571358	-0.506827	1.357517
Η	2.522835	-2.178745	-0.056601
Η	1.237619	-0.048354	-1.499026
Η	-0.945711	-0.185669	-1.331299
Η	-2.236600	-1.723916	0.963511
Η	-2.172193	0.427812	1.892082
Η	-3.710974	2.000326	-0.180372
Η	-1.763670	3.343671	-0.482493
Η	-0.365085	1.415260	1.489925
Η	0.834500	2.665781	-1.038385
Η	1.984018	0.993895	1.262774
Н	3.523248	-0.560193	-2.458703
Н	2.323817	-1.863844	-2.541306
Н	3.983683	-2.221030	-2.045549
Н	-2.861659	-2.297828	-1.316150
Н	-4.548778	-2.559593	0.420750

Н	-5.339768	-1.992138	-1.058933
Н	-6.146258	-0.854249	1.036264
Η	-4.150333	-0.753603	2.343394
Н	-4.668372	0.899502	2.051595
Н	-0.453303	-1.837479	2.010945
Η	0.835045	-0.666691	2.297757
Η	1.218659	-2.241373	1.616592
Н	-4.050223	0.198918	-1.693124
Н	-5.915759	1.253146	-0.003114

7 $G_{water} = -1118.579852$ Hartree

0	1.964748	-2.324614	-1.500148
0	4.538944	-1.109038	2.398866
0	-2.901642	2.324491	1.935865
С	2.892810	-1.398307	-0.945877
С	3.229219	-1.720605	0.513434
С	4.311514	-0.777245	1.031465
С	3.874892	0.680977	0.860433
С	3.442051	1.015131	-0.590859
С	2.988213	2.447847	-0.672911
С	1.707539	2.807003	-0.770367
С	0.554321	1.836124	-0.825480
С	0.992033	0.344132	-0.456093
С	2.357309	0.037807	-1.122700
С	-0.563314	2.190793	0.114250
С	-1.827736	1.832468	-0.140816
С	-2.791750	1.614050	0.962196
С	-0.168077	-0.598494	-0.737161
С	-0.529172	-0.873740	-2.176923
С	-0.955480	-0.947781	0.294838
С	-2.318652	-1.604686	0.262470
С	-2.601832	-2.316526	1.594611
С	-3.427538	-0.571637	-0.102976
С	-4.828223	-1.175578	-0.221210
С	-5.847330	-0.184275	-0.790114
0	-3.549441	0.474104	0.898778
Η	2.255356	-3.216736	-1.256219
Η	5.216111	-0.504608	2.741411
Η	3.833621	-1.445343	-1.525522
Η	2.333005	-1.633211	1.138037
Η	3.584992	-2.756259	0.599911
Η	5.231159	-0.944839	0.441497
Η	4.690438	1.355093	1.159021

Η	3.046350	0.869367	1.552851
Η	4.330855	0.897255	-1.230081
Η	3.762350	3.212325	-0.618083
Η	1.442769	3.862422	-0.818527
Η	0.162592	1.821975	-1.853509
Η	1.146458	0.345889	0.628517
Η	2.255401	0.212145	-2.201976
Η	-0.290801	2.499733	1.122895
Η	-2.084789	1.476937	-1.132529
Η	-1.001606	0.003548	-2.643403
Η	-1.234390	-1.704851	-2.266280
Η	0.352307	-1.128564	-2.767887
Η	-0.641600	-0.636037	1.291741
Η	-2.350746	-2.346751	-0.547734
Η	-2.701031	-1.583598	2.402731
Η	-3.522017	-2.907383	1.557223
Η	-1.777551	-2.992845	1.845020
Η	-3.167595	-0.131004	-1.071114
Η	-5.153453	-1.512211	0.769087
Η	-4.764510	-2.066184	-0.860514
Η	-5.561548	0.143442	-1.797831
Η	-6.843051	-0.635990	-0.855022
Η	-5.914726	0.701990	-0.151861

G_{water} = -1118.593862 Hartree

С	-3.383753	-1.572376	-0.548189
С	-4.782891	-1.560937	0.088163
С	-5.261990	-0.142499	0.405193
С	-4.239861	0.610418	1.261441
С	-2.828535	0.632174	0.643688
С	-2.345673	-0.838167	0.345869
Η	-5.493260	-2.043360	-0.592048
Η	-4.769342	-2.137377	1.022059
Η	-3.049739	-2.612109	-0.654107
Η	-4.588385	1.639124	1.436183
Η	-4.198219	0.130924	2.250297
Η	-2.874932	1.140717	-0.327466
Η	-2.304946	-1.371111	1.305897
Η	-6.224486	-0.188021	0.937430
0	-5.463663	0.515939	-0.864397
Η	-5.609806	1.460492	-0.698802
0	-3.410992	-1.041207	-1.869586
Η	-4.049267	-0.304504	-1.861006

С	-1.001041	-0.800701	-0.320954
Н	-1.062503	-0.563454	-1.380656
С	-1.866998	1.363383	1.542978
Η	-2.018778	1.219798	2.614068
С	0.213657	-0.855181	0.246694
С	0.458450	-1.149189	1.707629
Η	1.160797	-1.982465	1.840226
Η	-0.460026	-1.408471	2.237978
Η	0.892269	-0.283428	2.225001
С	1.412033	-0.429967	-0.583349
С	1.735408	1.094753	-0.260777
С	2.685436	-1.321999	-0.443060
Η	1.108767	-0.446408	-1.635347
Η	1.740999	1.199662	0.832292
С	3.743231	-0.588239	0.397279
Η	2.421140	-2.234456	0.104681
Η	3.299735	-0.317331	1.366956
С	-0.805031	2.078074	1.144523
Η	-0.137718	2.474121	1.912114
С	3.214902	-1.737343	-1.824378
Η	2.424485	-2.240592	-2.391459
Η	3.544152	-0.866179	-2.400911
Η	4.060034	-2.428518	-1.746456
С	5.036292	-1.352491	0.662287
Η	4.769897	-2.336820	1.070072
Η	5.547973	-1.526251	-0.290461
С	5.970424	-0.611396	1.623940
Η	5.494879	-0.463365	2.601640
Η	6.897135	-1.172953	1.783005
Η	6.229561	0.372757	1.222087
0	4.126235	0.633407	-0.285504
С	3.140286	1.458433	-0.724230
0	3.419405	2.405398	-1.421094
С	0.702439	2.005389	-0.859498
Η	0.888956	2.306052	-1.887362
С	-0.437633	2.373453	-0.259698
Η	-1.162165	2.941689	-0.844553

 $G_{\text{water}} = -1118.575181$ Hartree

С	-3.089137	-1.296908	-0.702882
С	-4.405084	-1.690792	-0.007788
С	-5.181752	-0.474818	0.508784
С	-4.304807	0.429112	1.387305

С	-3.022796	0.847499	0.657542
С	-2.225334	-0.418169	0.228264
Η	-5.034655	-2.250607	-0.707966
Η	-4.185689	-2.348432	0.842825
Н	-2.524322	-2.209496	-0.933686
Н	-4.879238	1.316495	1.693317
Н	-4.053691	-0.110257	2.311596
Н	-3.327703	1.358666	-0.269081
Н	-2.075020	-0.993853	1.148652
Н	-6.056376	-0.813964	1.084295
0	-5.639512	0.231453	-0.665240
Н	-6.021260	1.078383	-0.385747
0	-3.319374	-0.659265	-1.957113
Η	-4.122829	-0.118153	-1.851706
С	-0.838605	-0.110991	-0.404489
Η	-0.883274	-0.391756	-1.460999
С	-2.132848	1.782447	1.434056
Η	-2.466994	2.179571	2.391022
С	0.328430	-0.849782	0.237815
С	0.347366	-0.997915	1.742451
Η	-0.404625	-1.717727	2.091280
Η	0.109352	-0.044587	2.229313
Η	1.313797	-1.342378	2.117396
С	1.377081	-1.190175	-0.532443
С	1.886897	1.664030	-0.284100
С	2.744466	-1.682836	-0.100015
Η	1.289738	-1.005292	-1.603453
Η	1.839291	1.474614	0.783200
С	3.618143	-0.520022	0.463954
Η	2.631651	-2.382677	0.739453
Η	3.051339	-0.022308	1.257930
С	-0.939431	2.086920	0.912393
Η	-0.234434	2.750548	1.407173
С	3.438564	-2.418613	-1.256830
Η	2.785681	-3.203525	-1.653182
Η	3.667245	-1.719881	-2.068484
Η	4.374673	-2.887967	-0.939977
С	4.953073	-0.978130	1.056297
Η	4.756063	-1.811061	1.744268
Η	5.584175	-1.367925	0.250406
С	5.686673	0.151233	1.785542
Η	5.089115	0.536100	2.621826
Η	6.643323	-0.196530	2.189923
Η	5.885566	0.981213	1.100923
0	3.971639	0.443933	-0.560004
С	3.173828	1.469370	-0.993459

0	3.527385	2.099392	-1.964292
С	0.756361	1.799979	-0.988723
Η	0.838220	1.916671	-2.067886
С	-0.597582	1.495317	-0.432934
Η	-1.351260	1.841486	-1.153885

 $G_{\text{water}} = -1118.516518 \text{ Hartree}$ Imaginary frequency: -372.3 cm⁻¹

С	-6.01009900	-0.37007400	-1.62776500
С	-5.19958800	-1.17886400	-0.61061700
С	-3.83469100	-0.54999000	-0.32202600
С	-2.89993000	-1.43805100	0.55202500
С	-1.51059700	-0.86353900	0.72980100
С	-0.38187100	-1.14622300	0.00098100
С	0.88671100	-0.69130500	0.48406000
С	2.14781100	-1.03061400	-0.02224800
С	2.94217000	0.54122400	-1.24705800
С	2.87172600	1.75272600	-0.53439500
С	1.67351200	2.37900600	-0.17979200
С	0.42318600	1.92236500	-0.57503700
С	-0.80759500	2.25276400	0.03188100
С	-1.95223200	1.58883500	-0.31309900
С	-3.18292100	1.69900700	0.47666900
С	-3.51233600	-1.71927700	1.93669000
С	3.28781800	-1.22894300	0.99050100
С	4.63336300	-1.57378300	0.32951100
С	5.22704800	-0.48866300	-0.56771100
С	4.27729500	-0.03473300	-1.68995300
С	-0.43320800	-1.91319400	-1.30324900
0	-3.42020100	2.58914500	1.26804600
0	-4.11896800	0.70598200	0.32039700
0	3.38818100	-0.16564500	1.92202100
0	5.60848900	0.59490400	0.30058100
Н	-6.17348600	0.64779000	-1.26143300
Н	-6.98673900	-0.83165800	-1.80910800
Н	-5.48611100	-0.30419200	-2.58980600
Н	-5.76008200	-1.25824400	0.32688700
Н	-5.03726400	-2.20074700	-0.97892200
Н	-3.34021900	-0.37671000	-1.28652400
Н	-2.82383200	-2.38910600	0.00795800
Н	-1.36827500	-0.29273800	1.64483300
Н	0.88632700	-0.14667700	1.42486900
Н	2.16534900	-1.76370600	-0.83123000

Η	2.14096500	0.35018500	-1.95510800
Η	3.78366900	2.14013200	-0.09200600
Η	1.71715500	3.19359100	0.54213500
Н	0.37018900	1.21749400	-1.40082200
Н	-0.82745600	2.91967600	0.89193100
Н	-1.94211100	0.95709500	-1.19113000
Н	-3.71258600	-0.77978800	2.46210000
Н	-2.82149800	-2.31327600	2.54405400
Н	-4.45298100	-2.27266400	1.85914800
Н	3.00758900	-2.10530500	1.59274900
Н	4.51112700	-2.48529300	-0.26998800
Н	5.35725900	-1.79594800	1.12099300
Н	6.13281500	-0.89723200	-1.04323300
Н	4.10311100	-0.90292500	-2.33812400
Н	4.80490200	0.70390300	-2.31417700
Н	0.11407700	-2.86206100	-1.23618200
Н	0.03451800	-1.33419800	-2.11025700
Н	-1.45504200	-2.13880700	-1.61639200
Н	3.97499800	0.50325900	1.53014100
Н	5.99620900	1.29923300	-0.24237600

 $G_{\text{water}} = -1118.544415 \text{ Hartree}$ Imaginary frequency: -269.5 cm⁻¹

С	-6.08939000	-0.48829600	-1.54669400
С	-5.21959600	-1.22154000	-0.52099300
С	-3.85736000	-0.55404300	-0.33118200
С	-2.86043200	-1.36406000	0.54718100
С	-1.50063000	-0.69755400	0.66247800
С	-0.35787700	-0.98794800	-0.07907000
С	0.84947000	-0.35564200	0.27778300
С	2.20319000	-0.74121200	-0.25984500
С	2.93342000	0.35146700	-1.15054900
С	2.92435000	1.71450600	-0.51799200
С	1.76478700	2.34520100	-0.25370600
С	0.48413800	1.75961900	-0.61208600
С	-0.72669300	2.10601000	-0.00470000
С	-1.90188600	1.45675900	-0.33408000
С	-3.13992300	1.66540400	0.42938900
С	-3.42203900	-1.62585000	1.95619100
С	3.10707500	-1.19557200	0.92621100
С	4.47459800	-1.69277400	0.43018300
С	5.20907800	-0.64787500	-0.41012600
С	4.33144700	-0.15136300	-1.56668600

С	-0.44019600	-1.76421400	-1.37887300
0	-3.33310300	2.57208200	1.21254000
0	-4.13159000	0.73121700	0.25393800
0	3.23866200	-0.19375600	1.92288900
0	5.57685600	0.41549700	0.49247800
Н	-6.25543000	0.54688400	-1.23388400
Н	-7.06415500	-0.97560300	-1.65653800
Н	-5.60928000	-0.47121300	-2.53334500
Н	-5.73655900	-1.25391300	0.44386300
Н	-5.05323800	-2.26078900	-0.83515900
Н	-3.40936200	-0.42284300	-1.32561700
Н	-2.74334600	-2.32877000	0.03571100
Н	-1.33711800	-0.18047900	1.60447200
Н	0.89397200	0.10126500	1.26081200
Н	2.09594500	-1.61397200	-0.91850800
Н	2.33852200	0.40168500	-2.07335700
Н	3.86553500	2.15099900	-0.20014400
Н	1.76148600	3.27538900	0.31272500
Н	0.42654000	1.25003400	-1.57237800
Н	-0.72028800	2.72421700	0.89164900
Н	-1.96119300	0.93178600	-1.27977000
Н	-3.66509600	-0.68018000	2.45186100
Н	-2.68340900	-2.15456300	2.56778800
Н	-4.32941400	-2.23628300	1.92302500
Н	2.59477500	-2.03026900	1.42053500
Н	4.33687000	-2.59363400	-0.18156500
Н	5.09086600	-1.96538800	1.29349900
Н	6.12629100	-1.09418100	-0.82471900
Н	4.21538600	-0.98913300	-2.26792600
Н	4.85859500	0.63912200	-2.11969800
Н	0.12358300	-2.70456800	-1.33026800
Н	-0.01756900	-1.18292300	-2.20891200
Н	-1.46820100	-2.01437500	-1.65144700
Н	3.94138400	0.41180500	1.62767100
Н	6.00758700	1.11621800	-0.02139700

 $G_{\text{water}} = -1118.516568 \text{ Hartree}$ Imaginary frequency: -378.5 cm⁻¹

С	-3.41351700	-1.29077100	-0.88130800
С	-4.75838800	-1.43550000	-0.14962200
С	-5.26631300	-0.16666600	0.53590700
С	-4.27531300	0.43582200	1.53917200
С	-2.95833400	0.85015500	0.91992500

С	-2.24077300	-0.98571400	0.06229400
Н	-5.51387700	-1.75889400	-0.87458400
Н	-4.67070400	-2.22610800	0.60630200
Н	-3.19921300	-2.26972000	-1.33488100
Н	-4.75232800	1.31502600	2.00380200
Н	-4.11115700	-0.27787900	2.35781300
Н	-3.04487000	1.24275300	-0.08816200
Н	-2.27846400	-1.53962900	1.00004000
Н	-6.20074100	-0.40600100	1.06651600
0	-5.55884500	0.76925100	-0.52365600
Н	-5.77519400	1.62884200	-0.12931200
0	-3.47485900	-0.37365200	-1.96863700
Н	-4.15672700	0.28586600	-1.74638800
С	-0.97868400	-0.79043300	-0.50885400
Н	-0.95974300	-0.48835300	-1.55323900
С	-1.93016100	1.36754100	1.71661000
Н	-1.98748900	1.21792400	2.79472600
С	0.27400400	-1.09278100	0.11123200
С	0.27932300	-1.55421000	1.55525300
Н	-0.15745600	-2.55710000	1.65570700
Н	-0.31484800	-0.87842400	2.17853100
Н	1.28704500	-1.58749800	1.97644100
С	1.43122300	-0.99012700	-0.62594700
С	1.90601100	1.59550200	-0.21965000
С	2.79952700	-1.53339100	-0.26955000
Н	1.32600300	-0.66448400	-1.65834300
Н	1.88182200	1.24590200	0.80250800
С	3.73256700	-0.48534200	0.40576800
Н	2.67890000	-2.32904500	0.47799600
Н	3.20861600	-0.07330700	1.27783200
С	-0.73555200	1.85845500	1.18502200
Н	0.09312100	2.01403400	1.87443400
С	3.44674400	-2.14219500	-1.52731700
Н	2.76030200	-2.85031500	-2.00315400
Н	3.68730300	-1.35629000	-2.25065600
Н	4.37021500	-2.67822500	-1.28839200
С	5.06484800	-1.05699300	0.89427300
Н	4.85635200	-1.95538200	1.49065400
Н	5.65554200	-1.37355800	0.02812000
С	5.86424900	-0.04490400	1.72057900
Н	5.30859800	0.26249500	2.61564500
Н	6.81885800	-0.47037800	2.04838300
Н	6.07226900	0.85084500	1.12784900
0	4.07944200	0.57122400	-0.50818200
С	3.16116500	1.48303500	-0.97095500
0	3.43306300	2.11246700	-1.97307900

С	0.77669000	2.12146000	-0.78697900
Н	0.84099000	2.43011400	-1.82814100
С	-0.49914200	2.06242500	-0.17621600
Η	-1.35416800	2.17344400	-0.83869600

 $G_{\text{water}} = -1118.543914 \text{ Hartree}$ Imaginary frequency: -276.6 cm⁻¹

С	-3.24844000	-1.28513100	-0.82531400
С	-4.59531000	-1.61598700	-0.16038800
С	-5.24654500	-0.39002700	0.48387700
С	-4.28350800	0.31509300	1.44557300
С	-2.95285100	0.68414500	0.77412200
С	-2.27337900	-0.61819200	0.18896700
Н	-5.27406400	-2.03680500	-0.91034600
Н	-4.44261400	-2.37631900	0.61586300
Н	-2.78928200	-2.22025600	-1.16861500
Н	-4.76258800	1.21927200	1.84923000
Н	-4.09808700	-0.34378900	2.30596800
Н	-3.18006900	1.30955000	-0.09945900
Н	-2.17136500	-1.30695600	1.03699100
Н	-6.15401600	-0.69582200	1.02621300
0	-5.62418500	0.48169000	-0.60435000
Н	-5.90533600	1.33284900	-0.23338000
0	-3.41231100	-0.48321800	-1.98943500
Н	-4.16055100	0.11612000	-1.81322500
С	-0.92707000	-0.42111600	-0.45844300
Н	-0.96569300	-0.25851700	-1.53060800
С	-2.01903600	1.41822300	1.68496400
Н	-2.24462600	1.45026300	2.74960300
С	0.27117500	-0.93118500	0.08185800
С	0.30904100	-1.40277100	1.52390500
Н	1.32667900	-1.59096600	1.87350500
Н	-0.25753900	-2.33353900	1.65863600
Н	-0.13486700	-0.65416800	2.18823500
С	1.44287500	-0.82828900	-0.66514900
С	1.85066000	1.49352600	-0.16596100
С	2.78497300	-1.46180700	-0.34305500
Н	1.32411400	-0.53721600	-1.70586300
Н	1.82652300	1.24322800	0.88827000
С	3.72539200	-0.50477200	0.44525300
Н	2.62094700	-2.32051600	0.32191600
Н	3.19100600	-0.16026900	1.34090500
С	-0.86173500	1.91892700	1.21111900

Η	-0.12105500	2.33973300	1.89010400
С	3.44119000	-1.96805600	-1.63965500
Н	2.74672800	-2.61155300	-2.19012200
Н	3.71509500	-1.12665100	-2.28441100
Н	4.34581900	-2.54863900	-1.43598100
С	5.03807900	-1.14172400	0.90064600
Н	4.80147900	-2.08118800	1.41804900
Н	5.63393300	-1.39954500	0.01860600
С	5.84720700	-0.21918700	1.81728300
Н	5.28455100	0.02861000	2.72628100
Н	6.78619500	-0.69315300	2.12281000
Н	6.08548000	0.71604400	1.30200900
0	4.09771000	0.62410900	-0.36560000
С	3.15008000	1.48944200	-0.85449300
0	3.42836600	2.16385000	-1.82425700
С	0.72035700	2.00685800	-0.77492300
Н	0.80844900	2.26753200	-1.82743600
С	-0.55714800	1.90007000	-0.21683600
Н	-1.38986200	2.13818200	-0.87643800

References

- 37. Frisch, M. J. et al. GAUSSIAN 09, Revision D.01 (Gaussian Inc., 2013).
- 38. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).
- 39. Zhao, Y. & Truhlar, D. G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. *Theor. Chem. Acc.* **120**, 215–241 (2008).
- 40. Barone, V. & Cossi, M. Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. *J. Phys. Chem. A* **102**, 1995–2001 (1998).
- 41. Cossi, M., Rega, N., Scalmani, G. & Barone, V. Energies, Structures, and electronic properties of molecules in solution with the C-PCM solvation model. *J. Comput. Chem.* **24**, 669–681 (2003).
- Trott, O. & Olson, A. J. AutoDock Vina: improving the speed and accuracy of docking with anew scoring function, efficient optimization and multithreading. *J. Comput. Chem.* **31**, 455– 461 (2010).
- 43. Case, D. A. et al. AmberTools 16, University of California, San Francisco (2016).
- Bayly, C. I., Cieplak, P., Cornell, W. & Kollman, P. A. A well-behaved electrostatic potentialbased method using charge restraints for deriving atomic charges: the RESP model. *J. Phys. Chem.* 97, 10269–10280 (1993).
- 45. Lindorff-Larsen, K. *et al.* Improved side-chain torsion potentials for the Amber ff99SB protein force field. *Proteins* **78**, 1950–1958 (2010).
- 46. Wang, J. *et al.* Development and testing of a general AMBER force field. *J. Comput. Chem.*25, 1157–1174 (2004).
- 47. Bierman, M. *et al.* Plasmid cloning vectors for the conjugal transfer of DNA from *Escherichia coli* to *Streptomyces* spp. *Gene* **116**, 43–49 (1992).
- 48. Li, L. *et al.* Engineered jadomycin analogues with altered sugar moieties revealing JadS as a substrate flexible *O*-glycosyltransferase. *Appl. Microbiol. Biot.* **101**, 5291–5300 (2017).
- Green, M. R. & Sambrook, J. Molecular cloning: alaboratory manual 4th ed (Cold Spring Harbor Laboratory Press, 2012).