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Appendix Figure S1: predicted cellular component of the identified proteins in the 

proteomics by GO Ontology analysis software. Only results with P<0.05 (calculated by 

Bonferroni correction for multiple testing) are displayed. Only cellular components that were 

predicted to have more than 3 proteins are displayed. The numbers present the fold enrichment. 

The red arrow indicates organelles that are extracellular vesicles. 
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30/60=50% Appendix Figure S2: images of uptake of EVs by CD4 cells, in each image the calculation of percentage of labeled 

cells in a taken image is shown. The red line represent of 20m. 

The EVs were stain with Thiazole Orange as written in the Materials and Methods. To avoid a high background 

staining, after the labeling, the EVs were washed in ~70 ml RPMI. Still there are trances of non-EVs color residues 

in the control that probably stained cells with a defective cytoplasmatic membrane that looks totally different from 

EV-staining cells. Obviously, these cells were not counted (the white arrow that is shown in image 3 min 

Schistosoma lower image mark example of none specific staining). 
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Appendix Figure S3: Detection of miR-10 and Bantam in the same fractions with the 

schistosomal-EVs in density sucrose gradient EVs were isolated from 100ml 

Schistosomal growing medium. The EVs were concentrated into 500l of PBS, then loaded 

onto the top OptiPrep™ density sucrose gradient (see Methods). After centrifugation, 8 

fractions of 1ml were collected (from top to bottom). From each fraction, RNA and proteins 

were extracted and subjected to: A) qRT- PCR using specific primers to Schistosomal-

miRNAs, Bantam and miR-10-5p. B) Ponceau staining and Western blot analysis using 

anti-human HSP70 antibodies (since there are no available antibodies recognizing any 

Schistosomal-EV proteins, and the identity between human and Schistosomal-hsp-70 is 

83%). 
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Appendix Figure S4: Uptake of schistosomal-labeled EVs and schistosomal-

miRNAs by Jurkat cells. A) EVs were purified from culture medium where the 

Schistosomes grew in or from fresh unused medium. Both were stained using Thiazole 

Orange. ~5 × 106 purified EVs were incubated with 1 × 106 cells for 10min at 37 °C or 4°C. 

EV-uptake was detected by image stream flow cytometry (IFC). The mean +/- SEM was 

calculated from 3 independent experiments. Statistics were performed using Mann 

Whitney t-test (*p<0.05). B) ~5 × 106 purified EVs were added to 1 × 106 Jurkat cells for 

48h. RNA was extracted and subjected to qRT-PCR with specific primers to Schistosomal-

miR-Bantam or schistosomal-miR-125. The data are presented as the delta Ct from average 

control background. The mean +/- SEM was calculated from 3 independent experiments. 

Statistics were performed using Unpaired t-test with Welch's correction (*p<0.05)  
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Position 2274-2280 of CCL22 3' UTR 
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5'   ...GCUGGUGCCGCUCUGCAGGGUAU... 

                       ||||||   

3'      GGUUUGAGCCCAGAUGUCCCAA 

Position 236-242 of GATA3 3' UTR 
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Appendix Figure S5: Schistosoma miR-10 putative targets analysis A) The putative 

binding sites of miR-10 on OX40L (TNFSF4), CCL22 and GATA3 3' UTR are shown (taken 

from TargetScan at http://www.targetscan.org/vert_72/). (B) Human Jurkat cells stably 

expressing Schistosomal-miR-10 were transfected with either psiCHECK-II vector (empty 

plasmid), psiCHECK-OX40L-3’UTR-luciferase, psiCHECK-II-CCL22-3'UTR-luciferase 

or psiCHECK-II-GATA3-3'UTR-luciferase. 24h after transfection the cells lysates were 

subjected to luciferase assay. The results are presented as the ratio of expression of 

renilla/luciferase that was normalized relative to Jurkat cell transfected with control vector 

not expressing miR-10. Values are expressed as the mean+SD of at lesst 3 independent 

experiments. Statistic were performed using t-test *p<0.05.  

Position 826-832 of TNFSF4 3' UTR 

 

Schistosoma  miR-10a-5p 

5'   ...GGGAACUGGACAUCUCAGGGUAA... 

                       ||||||   

3'      GGUUUGAGCCCAGAUGUCCCAA 
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http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=hsa-miR-10a-5p
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Appendix Figure S6: Three Western blot assays, using anti-MAP3K7 or GAPDH 

antibodies, for protein extracts from Th cells that were either exposed or not exposed to 

the Schistosomes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix Figure S7: Three Western blot assays, using anti-MAP3K7 or GAPDH 

antibodies, for protein extracts from Jurkat cells overexpressing miR-10 or control 

plasmid 

GAPDH 

MAP3K7 

Control 
Exposed to 

schistosomes 

35 

25 

45 

60 
75 
100 

GAPDH 

MAP3K7 

Control 
Exposed to 

schistosomes 

MAP3K7 

m
iR

-1
0

 

m
iR

-1
0

 

m
iR

-1
0

 

co
n

tro
l 

co
n

tro
l 

co
n

tro
l 

GAPDH 



8 
 

 

 

 

 

*Out of 84 proteins presented in FunRich analysis software, 59 could be mapped to a specific 

predicted cellular component. In the table are displayed cellular component with more than 1.5% 

of the 59 proteins ** (Bonferroni method). 

 

  

Appendix Table S1: FunRich bioinformatic analysis of the distribution of the identified schistosomal-proteins in 

cellular components 
Cellular 

component 

No. of proteins out of the 59 

proteins mapped to the 

specific cellular component * 

Expected Percentage of proteins 

in specific cellular component out 

of the data set of 28328 proteins 

display 

Percentage of 

protein found 

in our 

proteomics  

Corrected  

p-value ** 

 

Exosomes 45 7.1 76.27 1.71E-25 

Lysosome 33 19.88 55.93 3.35E-15 

Centrosome 19 5.7 32.20 1.64E-10 

Cytoplasm 45 20.4 76.27 3.62E-07 

Cytosol 19 2.2 32.20 5.109E-06 

Proteasome 

complex 

4 4.1 6.78 0.000581 

Intracellular 

ferritin complex 

2 12.2 3.39 0.000891 

Proteasome core 

complex 

2 4.42 3.39 0.0053 

Microtubule 5 6.38 8.47 0.00911 

Perinuclear region 5 4.3 8.47 0.01053 

Mitochondrion 14 1.5 23.72 0.0226 

Cytoskeleton 7 0.45 11.86 0.091 

Nucleolus 12 0.46 20.34 0.195 

Nucleosome 2 3.9 3.39 0.251 

Nucleus 33 0.12 55.93 0.524 

Eukaryotic 

translation 

elongation factor 

1 complex 

1 1.23 1.69 0.66 
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Appendix Table S2: Genes that were downregulated in the presence of Schistosomes, and are 

known to be regulated by NF-B. 

Gene symbol Fold change 

Schistosoma/ 

control 

P value 

t-test 

Reference  

Mmp7 0.036 5.8685E-06 (1, 2)  

Pld1 0.037 6.60044E-06 (3)  

Olr1 0.085 0.00021079 (4)  

Ngb 0.085 0.00021079 (5)  

Plcb1 0.149 0.002303683 (6)  

Aire 0.198 0.003921811 (7)  

Serpine2 0.307 0.000703478 (8)  

Cx3cr1 0.318 0.006648255 (9)  

Mmp10 0.425 3.22662E-05 (10)  

Alpl (TNAP) 0.476 0.000848196 (11)  

IL-10 0.477 0.000753686 (12)  

Tnfsf4 (OX40L) 0.483 0.00358029 (13)  

Spp1 

(osteopontin) 

0.484 0.007954298 (14)  

Aqp9 (aquaporin 

9) 

0.490 0.010170549 (15)  

Prkcdbp 0.491 0.029094084 (16)  

Ccl22 0.505 0.020326852 (17)  

Lhx2 0.513 0.024820865 (18)  

Cxcl2 0.523 0.034296724 (19)  

IL-2 0.537 0.03103846 (20)  

Clspn (Claspin) 0.552 0.000417044 (21)  

Pax6 0.565 0.002198222 (22)  

Inhba (activin) 0.565 0.002289994 (23)  

S100a6 0.587 0.000947966 (24)  

IL-13 0.588 0.005429866 (25)  

Ccne1(cyclin E1) 0.615 0.001209538 (26)  

Arg2(arginase II) 0.620 0.041714036 (27)  

Cd80 (B7.1) 0.621 0.04309922 (28)  

Crmp1 0.644 0.017272692 (29)  

IL-4 0.654 0.003695783 (30)  
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Appendix Table S3:  Genes that were downregulated in the presence of Schistosomes and are 

known as NF-B activators 

Gene symbol Fold change 

Schistosoma/ control 

P value 

t-test 

Reference 

Matn2 0.059 4.67284E-05 (31) 

Mapk15 0.105 0.000518879 (32) 

Nos1 0.156 0.000278261 (33) 

Hspb2 0.178 0.004999194 (34) 

Plce1 0.237 0.00054487 (35) 

Ch25h 0.289 0.034860576 (36) 

Hmga2 0.372 0.014173237 (37) 

Egf 0.383 0.016443394 (38) 

Ripk4 0.403 0.00109687 (39) 

Pth 0.404 0.000371483 (40) 

Fgfr2 0.437 0.019419708 (41) 

Ffar2 0.556 0.025468136 (42) 

Rrm2 0.569 0.00041276 (43) 

Il5ra 0.615 0.026085869 (44) 

Prlr 0.616 0.016251622 (45) 

Setd6 0.658 0.02201673 (46) 
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