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Table S1. Crystal-size dependent framework flexibility reported for MOFs. 

MOF crystal size range Downsizing effect reference 

[Cu2(pypz)2] 500 m ~ 1 m The phase transition temperature from the 
metastable guest-free phase (B) to the stable 
guest-free phase (C) increases. 

This work

MAF-4 
(ZIF-8) 

15.8 m ~ 10 nm The second step of gas adsorption isotherm 
starts at higher pressure. 

[1, 2] 

DUT-49 4.08 m ~ 100 nm The pressure amplifications in the n-butane 
and N2 adsorption isotherms gradually 
vanish. 

[3] 

[Cu2(bdc)2(bpe)] 700 nm ~ 50 nm The guest removal-induced open to close 
framework shrinkage gradually vanishes. 

[4] 

DUT-8(Ni) 500 nm The guest removal-induced open to close 
framework shrinkage vanishes. 

[5] 

[Cu2(bdc)2(bpy)] 160 nm ~ 50 nm The guest removal-induced open to close 
framework shrinkage gradually vanishes. 

[4] 

[Pt(CN)4Fe(py)2] 16 nm From no adsorption to gate-opening behavior. [6] 
 



Table S2. Crystallographic data and structure refinements. 

compound A B C 

formula C20H17Cu2N6 C16H12Cu2N6 C16H12Cu2N6

FW 468.47 415.40 415.40 

T (K) 150(2) 150(2) 150(2) 

space group P21/c P21/c P21/c 

a (Å) 5.71894(10) 5.3901(3) 5.2359(1) 

b (Å) 20.3635(3) 20.5512(6) 15.3176(5) 

c (Å) 15.3915(2) 15.2289(6) 19.5258(6) 

/(o) 94.0980(14) 98.504(4) 93.307(3) 

V/(Å3) 1787.88(5) 1668.4(1) 1563.37(8) 

Z 4 4 4 

Dc/g cm–3 1.740 1.654 1.765 

 (mm-1) 3.085 3.218 3.435 

reflns coll. 15562 12581 10113 

unique reflns. 3686 3059 2755 

Rint 0.0180 0.0478 0.0867 

R1 (> 2) a 0.0279 0.0643 0.0669 

wR2 (> 2) b 0.0779 0.2005 0.1700 

R1 (all data) a 0.0292 0.0724 0.0859 

wR2 (all data) b 0.0843 0.2103 0.1854 

GOF 1.022 1.094 1.055 

a R1 = Fo-Fc/Fo, b wR2 = [w(Fo
2-Fc

2)2/w(Fo
2)2]1/2 

 



Table S3. Comparison of pX adsorption selectivities reported for MOFs. 

MOF pXoX pXmX pX/(oX + mX) component reference 

3C 53.9 48.9 51.3 ternary This work

3B 17 15 16 ternary This work

1B 16 14 15 ternary This work

Ag4(O2CCF3)4(phen)3 9.13a 14.2a NA binary [7] 

Cu(CDC) 10 7 NA binary [8] 

[Nd(HTCPB)] NR 6.33 NA binary [9] 

[Ce(HTCPB)] 5.65 4.55 NA binary [9] 

MIL-125(Ti)_NH2 2.2 4.4 NA binary [10] 

MIL-125(Ti) NR 3.5 NA binary [10] 

[Zn(4-L)] 3.2 2.7 2.9 ternary [11] 

MAF-4 (ZIF-8) 3.1 NR NA binary [12] 

CAU-1(Al)-NH2 NR 2.8 NA binary [10] 

MIL-140B 1.8 1.6 1.7 quaternary [13] 

MOF-48 1.7 1.7 1.7 quaternary [13] 

a This is not adsorption selectivity. The guests were included during the synthesis of the framework. 

NR: Not reported 

NA: Not available 
phen = phenazine 

H2CDC = trans-1, 4-cyclohexanedicarboxylic acid 

H2TCPB = 4’,5’-bis(4-carboxyphenyl)-[1,1’,2’,1’’-terphenyl]-4,4’’-dicarboxylic acid 

L = biphenyl-3,5-dicarboxylic acid



 

Figure S1. SEM images of A. (a) 1, (b) 2, and (c) 3. 

 

 

Figure S2. Crystal structure of A: (a) a zigzag coordination layer (adjacent helical chains are 
highlighted in olive and violet); (b) the packing structure along the channel direction (p-xylene 
molecules are shown in space-filling mode and highlighted in green). 



 
 
Figure S3. Detailed pore structures of (a) A and (b) B viewing along three typical directions (the pores 
shown in the top pannels have are shown in the same direction as in Figure 3). 
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Figure S4. TG curves of (a) 1, (b) 2, and (c) 3. 
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Figure S5. PXRD patterns of [Cu2(pypz)2]·0.5pX (1, 2, 3) after DCM extraction. 
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Figure S6. Magnified Figure 2d. 
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Figure S7. Magnified Figure 2e. 
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Figure S8. Magnified Figure 2f.  

 



 

Figure S9. The full illustration of the proposed transformation mechanism from B to C. 

 

 
E1 = -1168.1218953 
Ha 

E2 = -472.8931741 Ha E3 = -1641.0536590 Ha

E = E1+E2-E3 = 101.3 kJ/mol 

Figure S10. Optimized and energies of the structural fragments involved in the transformation from B 
to C. 
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Figure S11. TG curves of (a) 3B and (b) 3C after adsorption of xylene isomers. (c) Summary of xylene 
uptakes. Colour scheme: o-xylene, orange; m-xylene, yellow; p-xylene, dark cyan; ternary xylene 
mixture, dark grey. 
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Figure S12. PXRD patterns of (a) 3B and (b) 3C after loaded with xylene isomers. 
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Figure S13. TG curves for (a) 3B and (b) 3C after immersion into equimolar mixture of xylene isomers 
for different times. (c) The corresponding adsorption kinetic profiles. 
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Figure S14. Gas chromatography curve of the n-heptane solution containing equimolar ternary mixture 
of xylene isomers. The integrated peak areas have been added in the parentheses above their 
corresponding peaks. 
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Figure S15. Xylene selectivities of 3B in three consecutive ad-/desorption cycles. Gas chromatography 
curves of the digestion solutions of 3B samples after immersed in equimolar mixture of xylene isomers 
in the (a) first, (b) second, and (c) third ad-/desorption cycle. Three parallel tests have been performed 
for each cycle. (d) Relative xylene isomer uptake in 3B for three consecutive ad-/desorption cycles. 
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Figure S16. Xylene selectivities of 3C in three consecutive ad-/desorption cycles. Gas chromatography 
curves of the solutions of 3C samples after immersed in equimolar mixture of xylene isomers in the (a) 
first, (b) second, and (c) third ad-/desorption cycle. Three parallel tests have been performed for each 
cycle. (d) Relative xylene isomer uptake in 3C for three consecutive ad-/desorption cycles. 
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Figure S17. TG curves for 1B after immersed in equimolar mixture of xylene isomers for different 
times. 
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Figure S18. Xylene selectivities of 1B in three consecutive ad-/desorption cycles. Gas chromatography 
curves of the digestion solutions of 1B samples after immersed in equimolar mixture of xylene isomers 
in the (a) first, (b) second, and (c) third ad-/desorption cycle. Three parallel tests have been performed 
for each cycle. (d) Relative xylene isomer uptake in 1B for three consecutive ad-/desorption cycles. 
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