Cell Reports, Volume 29

Supplemental Information

COA6 Is Structurally Tuned to Function

as a Thiol-Disulfide Oxidoreductase in Copper

Delivery to Mitochondrial Cytochrome c Oxidase

Shivatheja Soma, Marcos N. Morgada, Mandar T. Naik, Aren Boulet, Anna A. Roesler, Nathaniel Dziuba, Alok Ghosh, Qinhong Yu, Paul A. Lindahl, James B. Ames, Scot C. Leary, Alejandro J. Vila, and Vishal M. Gohil

(A) Longitudinal relaxation rates (R1), (B) transverse relaxation rates (R2), and (C) Heteronuclear ¹H-¹⁵N NOEs, are plotted as a function of residue number for COA6 at two different protein concentrations. (D) Overlay of the ¹H-¹⁵N HSQC spectra of human COA6 at three different protein concentrations: 14.8 μ M (blue), 236 μ M (green) and 947 μ M (red). (E) Average chemical shift deviation of ¹⁵N-labeled COA6 at 947 μ M TCEP when compared to treatment with 14.8 μ M TCEP. The horizontal solid line represents the mean and the dashed line represents the mean + SD of chemical shift perturbation for all residues. (F) Elution profile of COA6 from a Superdex 75 gel filtration column in the presence and absence of 1mM TCEP. (G) Overlay of the ¹H-¹⁵N HSQC spectra of human COA6 with and without 1mM TCEP. (H) Average chemical shift deviation of ¹⁵N-labeled COA6 upon addition of 1mM TCEP.

Figure S2 (related to Figure 1). Yeast Coa6 is a helical protein.

(A) ¹H-¹⁵N HSQC spectrum of yeast Coa6. (B) The chemical shift index is shown as a function of residue number. Negative values represent an α -helical propensity, while positive values are indicative of a β -strand. A red asterisk denotes residues which were unassigned.

Α

Figure S3 (related to Figure 4). A subset of human patient mutations in SCO1 and SCO2 are in close vicinity to the COA6 interaction surface.

A) Alignment of human SCO1 and SCO2 proteins. The amino acids shown in red undergo chemical shift perturbation in the presence of COA6, which is indicative of their involvement in an interaction. The residues shown in red and bold are the residues that are identical or similar in both SCO proteins. B) SCO1 (PDB: 2GVP) and SCO2 (PDB:2RLI) amino acid residues that interact with COA6 are highlighted in red and side-chains of the residues mutated in human patients are depicted in purple. Patient mutations listed here are from OMIM database (OMIM:603644, OMIM:604272) and from Leary et al., 2013 and Rebelo et al., 2018.

Figure S4 (related to Figure 5). Recombinant COA6 only binds copper when reconstituted with the metal ion and reductant.

(A) 63 Cu and protein traces of recombinant COA6 analyzed by LC-ICP-MS. (B) 63 Cu and protein traces of recombinant COA6 reconstituted with CuSO₄ and reduced glutathione.

Figure S5 (related to Figure 6). Impact of SCO1, SCO2 and COA6 mutations on the synthesis and turnover of COX2.

In vivo ³⁵S-labeling of mitochondrial translation products in control and patient cell lines. Samples were pulse-chased and analyzed by SDS-PAGE and digital autoradiography.

Figure S6 (related to Figure 6). Epistasis analysis of SCO1, SCO2 and COA6 overexpression on CcO activity in patient cell lines.

(A) Cytochrome c oxidase acitvity (CcO) in COA6, SCO1 and SCO2 patient cell lines alone (baseline) or when overexpressing COA6, SCO1 or SCO2. Data are represented as mean + SEM. (B) SDS-PAGE/Western blot analysis of COA6, SCO1, SCO2, COX2 and GAPDH (loading control) abundance in protein lysates from control and patient cells described in Figure A.

NMP distance and dihedral constraints	
Distance and uneural constraints	
	551
	354
	163
	284
Sequential $(i - j = 1)$	1//
Nonsequential $(i - j > 1)$	214
Long-Range NOE	107
Hydrogen bonds	32
Total dihedral angle restraints	108
ϕ (TALOS+)	54
v (TALOS+)	54
Structure statistics	
Violations (mean and s.d.)	
Distance constraints (Å)	0.01 ± 0.03
Dihedral angle constraints $(^{0})$	0.37 ± 0.88
Max, dihedral angle violation (°)	6.18
Max distance constraint violation (Å)	0.43
Deviations from idealized geometry	0.10
Bond lengths (Å)	0.008
Bond angles (0)	0.600
Bomachandran Blot	0.0
Most favorad	70.6%
Additionally allowed	19.0%
	17.2%
Generously allowed	3.2%
Disallowed	0.1%
Average pairwise r.m.s. deviation* (A)	
Protein structured region (residues 9 to 64)	
Heavy	1.35
Backbone	0.54

 Table S1 (related to Figure 1). NMR and refinement statistics for solution structure of

 COA6

*Pairwise r.m.s. deviation was calculated among 20 refined structures.

Table S2. Related to STAR Methods	. Primers used in this study.
-----------------------------------	-------------------------------

Name	Sequence (5' to 3')
Protein expression	
primers	
Human COA6 isoform 3	GGGCCAGGATCCATGGCAGCACCGAGCATGAAA
Forward	
Human COA6 isoform 3	GGGCCACTCGAGTTAGCTTTTTGCGGTGGTTTC
Reverse	
Yeast Coa6 Forward	TAGCGAAAATCTGTATTTTCAGGGTAGCGAATTCATGGGC
	TTATTTCATTTGATGGTGGC
Yeast Coa6_Stop	GTGGTGGTGGTGGTGCTCGAGTCACTGATTTCGTTCCCT
Reverse	CTGTTTAG
Yeast Coa6 Reverse	GTGGTGGTGGTGGTGCTCGAGCTGATTTCGTTCCCTCTG
	TTTAG
Site Directed	
mutagenesis primers	
HyCOA6 W26C Forward	AGTATICATCTCTAGCACCGCAACACAATTTCTTGGG
HyCOA6 W26C Reverse	
HyCOA6 W33R Forward	
HyCOA6 W33R Reverse	GGGIGCIAGAGAIGAAIACCGGAAAIGIIIGGACGAAAA
HyCOA6 E54X Forward	CATTGTTGTGGGACAAGAAGAGATTAGAAAGAGGGATCTCAACT TCTTA
HyCOA6 E54X Reverse	TAAGAAGTTGAGATCCTCTTTCTAATCTTCTTGTCCACAAC
Primors for Human	AATG
COA6-F	
COA6-R	AGAAAGCTGGGTCTAGGATTTTGCAGTTGTTTCTGA
COA6 W59C-F	GAAAGACAGGTCTGCTGTGGGGCCCCGGGATGAGTAC
COA6 W59C-R	GTACTCATCCCGGGCCCCACAGCAGACCTGTCTTTC
COA6 W66R-F	GCCCGGGATGAGTACCGGAAGTGTTTAGATG
COA6 W66R-R	CATCTAAACACTTCCGGTACTCATCCCGGGC
Protein truncation	
primers	
HyCOA6 Sacl Forward	CCCCTGGAGCTCGCAAAGACGCGCAGCCAAAAA
<i>HyCOA6_64</i> BamH1	GCGCGCGGATCCCTTTTCTTTGAACTTCAAGTAGTCTCT
Reverse	
<i>HyCOA6_7</i> 2 BamH1	GCGCGCGGATCCTGGTTCGAATTGACCGGCTTCGAACTT
Reverse	