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Supplementary Methods

Cloning, expression and purification of tbNadE

tbNadE was cloned, expressed and purified as perviosusly described'. Briefly, the gene encoding NAD-
synthetase from M. tuberculosis genomic DNA was amplified and cloned it into pSMT3 vector (see
Supplementary Table 3 for primers’ sequences). The protein was expressed in Escherichia coli BL21(DE3)
in LB medium containing kanamycin (50 mg/ml/l) and induced with 0.2% (w/v) lactose at 18°C for 48 h.
Frozen cells were suspended to 0.1 g ml-1 in ice-cold lysis buffer (50 mM Tris, pH 8.0, 150 mM NaCl, 1
mM benzamidine, | mM PMSF, 1 mM DTT, 20% (v/v) glycerol) and lysed by French press at 12,000 psi.
Cell debris were removed by centrifugation and the protein purified on a nickel-nitrilotriacetic acid
(NiINTA) agarose resin (Qiagen) with a linear gradient of 20—120 mM imidazole in 50 mM Tris, pH 8.0,
300 mM NaCl, 1 mM DTT, 20% (v/v) glycerol. The SUMO tag was cleaved by dialysis (50 mM Tris, pH
8.0, 1 mM DTT, 350 mM NacCl, 30% (v/v) glycerol) with the protease Ulp1 at 4°C for 3 h. NAD: synthetase
was then dialyzed in 20 mM Tris, pH 7.5, 1 mM DTT, 30% (v/v) glycerol and ran on a Sepharose CL-6B

column (Amersham Biosciences) with 20 mM Tris, pH 7.5, 1 mM DTT and 15% (v/v) glycerol.

Synthesis of sulfonamide derivative 1 (SFI)
5’-0O-(tert-Butyldimethylsilyl)-N:-tert-butoxycarbonyl-2’,3’-O-isopropylideneadenosine (1)
TBDMSCI (56.7 mmol, 8.55 g) was added to a solution of 2°,3’-O-Isopropylideneadenosine (16.2 mmol,
5.00 g) and imidazole (24.3 mmol, 1.65 g) in CH.CL (120 ml) at O °C. The resulting solution was stirred at
r.t. for 16 h, then filtered and the filtrate was concentrated under reduced pressure. The crude solid was
directly used for the next step.

NaH (60% dispersion in mineral oil, 17.8 mmol, 0.71 g) was slowly added to a solution of the above solid

in THF (200 ml) and DMF (50 ml) at 0 -C. After 30 min at O °C, a solution of Boc,O (16.2 mmol, 3.54 g) in



THF (10 ml) was added via cannula followed by another addition after 30 min at O “C of Boc,O (8.1 mmol,
1.77 g) in THF (10 ml). The reaction mixture was allowed to reach r.t. and stirred for 16 h. The solution
was diluted with CH.Cl, and washed with saturated aq. NaHCO.. The organic phase was washed with H,O
and brine, dried (MgSO.), and concentrated. Purification by flash chromatography (EtOAc/hexanes = 2/1)
afforded the compound 1 (2.1 g, 25%): '"H NMR (300 MHz, CDCI,) O (ppm) -0.0033 (m, 6H), 0.82 (s, 9H),
141 (s,3H), 1.56 (s,9H), 1.64 (s,3H), 3.78 (dd, 1H,J =11 Hz,2 Hz), 3.90 (dd, 1H,J =11 Hz,2 Hz), 4 .47

(m, 1H),4.94 (dd, 1H,J =6 Hz,2Hz), 5. 26 (dd, 1H, J =6 Hz, 2Hz), 6.20 (d, 1H, J = 2.7 Hz), 8.19 (s, 1H),

8.79 (s, 1H).
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Ne-tert-Butoxycarbonyl-2’,3’-O-isopropylideneadenosine (2)

TBAF (1M solution in THF, 6.92 mmol, 6.92 ml) was added to a solution of 1 (4.61 mmol, 2.40 g) in THF
(50 ml) at rt. After 4h at r.t., the reaction mixture was concentrated under reduced pressure. Purification by
flash chromatography (EtOAc/hexanes = 5/1) afforded the compound 2 (1.29 g, 69%): 'H NMR (300 MHz,
CDCL) O (ppm) 1.37 (s, 3H), 1.55 (m, 12H), 1.64 (s, 3H), 3.79 (m, 1H), 3.96 (m, 1H), 4.12 (m, 1H), 4.55

(s, 1H),5.11 (m, 1H), 5.19 (m, 1H), 5.90 (m, 1H), 8.20 (s, 1H), 8.72 (s, 1H).

5’-0-(Sulfamoyl)-N:-tert-butoxycarbonyl-2’,3’-O-isopropylideneadenosine (3)>

NaH (60% dispersion in mineral oil, 6.63 mmol, 0.26 g) was added to a solution of 2 (4.42 mmol, 1.80 g)
in DME (100 ml) at O *C. After 30 min at O °C, a solution of sulfamoyl chloride: (1.5 g) in DME (30 ml) was
added over 20 min. After warming tor.t. and stirred for 16h, the reaction mixture was quenched with MeOH
at 0 °C and concentrated under reduced pressure. Purification by flash chromatography (EtOAc/hexanes =
5/1) afforded the compound 3 (0.87 g, 41%): '‘H NMR (300 MHz, CDCL) O (ppm) 1.37 (s, 3H), 1.52 (s,
9H), 1.60 (s, 3H), 4.36 (m, 2H), 4.57 (m, 1H), 5.09 (m, 1H), 5.38 (m, 1H), 6.06 (br s, 1H), 6.21 (s, 1H),

8.17 (s, 1H), 8.70 (s, 1H); MS (ES+) [M+H] 487.2. CAS registry number 873556-35-5.

5’-0-[N-(Nicotinyl)sulfamoyl]-N~tert-butoxycarbonyl-2’,3’-O-isopropylideneadenosine (5)

N-Hydroxysuccinimdyl nicotinate4 (2.70 mmol, 594 mg) and Cs.CO. (2.70 mmol, 521 mg) was added to a
solution of 3 (1.80 mmol, 876 mg) in DMF (20 ml) at -20 “C. The reaction mixture was warmed to r.t. and
stirred for 16h. The reaction mixture was concentrated under reduced pressure and the residue was treated
with EtOAc (50 ml) and filtered. The crude solids were washed with additional EtOAc (100 ml) and the
combined filtrate was concentrated. Purification by flash chromatography (EtOAc/MeOH/EtN = 95/5/1)

afforded the compound 5 (910 mg, 86%): ‘H NMR (300 MHz, CD.OD) O (ppm) 1.58 (s, 12H), 4.32 (m,



2H), 4.60 (m, 1H), 5.16 (m, 1H), 542 (m, 1H), 6.29 (d, 1H, J = 2.7 Hz), 742 (m, 1H), 8.30 (m, 1H), 8.55

(m, 2H), 8.63 (s, 1H), 9.09 (s, 1H); MS (ES+) [M+H] 592.2.

5’-0O-[N-(Nicotinyl)sulfamoyl]adenosine triethylammonium salt (6)

80% aq. TFA (30 ml) was added to § (1.35 mmol, 800 mg) at O “C then the reaction mixture was slowly
warmed to r.t. After 2h at r.t., the reaction mixture was concentrated under reduced pressure. Purification
by flash chromatography (EtOAc/MeOH/Et.N = 75/25/1) afforded the compound 6 (524 mg, 70%): 'H NMR
(300 MHz, CD,OD) O (ppm) 1.27 (m, 9H), 3.20 (m, 6H), 4.32-4.41 (m, 4H), 4.69 (m, 1H), 6.08 (d, 1H, J

=5.8 Hz), 742 (m, 1H), 8.14 (s, 1H), 8.38 (m, 1H), 8.53 (m, 2H), 9.13 (s, 1H); MS (ES+) [M+H] 452.2.
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Supplementary Tables

Supplementary Table 1. Stoichiometry analysis for hsNadE catalyzed reaction

Gln concentration | Glu/NAD- % Channel Efficiency
24 1.38 +0.12 72+ 6
50 1.22 £0.06 82 +4
10.0 1.17£0.11 85+8
240 1.39 +0.02 72+ 1
50.0 14+0.1 71+6
75.0 141 +£0.04 71+2




Supplementary Table 2. X-ray diffraction data and structure refinement Statistics

Crystal structure hsNadE (60FB) tbNadE (60FC)
Space group 1222 P422

Unit cell a, b, ¢ (A) 102.3,198.9,219.7 179.3,179.3,208.2
o, B,y (°) 90.0,90.0,90.0 90.0,90.0,90.0
Wavelength (A) 0.9795 0.9795

Resolution range (A)
Total reflections
Unique reflections
Completeness (%)
Redundancy

l/ol

R...(%)

Refinement

Data used in refinement (A)
No. of reflections used in refinement

No. of reflections for R...
R...(%), R.. (%)
No. of atoms
Protein
All heteroatom
Mean B-factor (A:)
Protein
NaAD- or SFI
AMP or SFI
PPi
Mg
Glutamine
Glycerol
Cl
Solvent
RMSD from ideality
Bond lengths (A)
Bond angles (deg.)
Validation
Ramachandran analysis
Favored (%)
Allowed (%)
Outliers (%)
Rotamer outliers (%)
Clashscore

40-2.84 (2.91-2.84)
216,548 (16057)
52456 (3857)

99.5 (99.7)

4.1 (4.2)

13.0 (13)

105 (118.3)

37.4-2.84 (2.99-2.84)
52445 (4764)

2668 (241)
179/21.7

11012
81

72.66

167.7+/ 167.7"
15554/ 155.5"
159.7+/ 155.8"
113.6+/ 107 4=
None

None

81.2

53.95

0011
1.361

944
99.6
04
6.2
89

39.56-3.14 (3.31-3.14)
660,246 (71,651)
58,806 (8,258)

99.0 (96.4)

112 (8.7)

129 (3.5)

18.1 (64.4)

36.1-3.14
58620 (5514)
2962 (260)
18.6/235

20517
334

51.8

789+/72.5/74.8</ 759"
68.34/59.0°/554</69.2°
None*/63 4*/ None</Noner

None

None*/ 57.3*/ 60.0</76.2»
48.5

67.1

450

0.007
0.947
95.0

100

23
8.8




Supplementary Table 3. Primer sequences used for cloning of hsNadE and tbNadE

Length | Tm
Name Sequence (nt) ©C)
hsNadE F | 5'-CAC AGA GAA CAG ATT GGA GGT ATG GGC CGG AAG GTG ACC GTG-3' 42 82
hsNadE R | 5'-GTA CCG CGG CCG CTC TAG TCA GTC CAC GCC GTC CAG GGA-3' 39 88
tbNadE F | 5'-GGC GGC GGA TCC ATG AAC TTT TAC TCC GCC-3' 30 52
tbNadE R | 5'-GGT GGT AAG CTT CTA GCC CTT GGG CAC C-3' 28 54
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Supplementary Figure 1. Protein expression, purification and crystallization of hsNadE. A-D.SDS-PAGE
of protein expression level of hsNadE as hsnade-pSMT?3 (with SUMO/His,) construct in E. coli (A); hsnade-
pFASTBACT (His,) construct in Sf9 cells (B); hsnade-pISUMO* (with SUMO#*/His,) construct in Sf9 cells
(C); and overall SDS-PAGE of hsNadE purification (D). M: protein marker, UN: uninfected cells, IN:
infected cells, Sol: soluble protein, Ins: insoluble fraction, 1:Ni: 1+ Ni column, SUM: proteolysis by SUMO*
protease, 2+Ni: 2« Ni column, GF: Sepharose CL-6B gel filtration. E. crystals of hsNadE in complex with

NaAD-, AMP, and MgPPi. Needle-like crystals (60 x 150 x 30 wm) from optimization plate grew in 0.8 M



(NH.).SO., 30% MPD, 15% glycerol, 85 mM HEPES (pH 7.5) after 7 days growth. F. These crystals

diffracted at SSRL synchrotron between 2.69-3.30 angstrom resolutions.
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Supplementary Figure 2. Structure-based alignment of =NAD- synthetases from prokaryotes and
eukaryotes. A-B. The two glutaminase (A) and synthetase (B) domains are shown separately. The secondary
structure (B-sheet; B, a-helix; o, and loop; L) of tbNadE (3DLA) and hsNadE (60FB) are shown above and

below the alignment, respectively. Yellow diamond labels the conserved catalytic triad residues.
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Supplementary Figure 3. Comparison of the glutaminase and synthetase domains of hsNadE and tbNadE.
A-B. Superimposition of the glutaminase (A) and synthetase domains (B) between the two homologs. C.
Highlight of the different orientations of the synthetase domain between the two structures. The glutaminase
domains alone of hsNadE (green) and tbNadE (grey) are used for superposition. The synthetase domain of
hsNadE (cyan) translates by 103° in respect to the synthetase domain in tbNadE (grey). The linker between
the glutaminase and synthetase domains places the synthetase domains in a different location as shown in
dark blue and yellow for hsNadE and tbNadE. The direction of the synthetase domain from the glutaminase
domain is indicated by arrows. D-E. Truncation elements of the synthetase domain used for structural
comparison between the two homologs to improve the structural overlay of ligands bound in the synthetase

active site.
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Intra-subunit tunnel in hsNadE Inter-subunit tunnel in tbNadE

Supplementary Figure 4. Octameric assembly, intra- and inter-subunit tunnels in hsNadE and tbNadE. A-
B. Distance between the glutaminase and synthetase active sites within one subunit and between two
adjacent subunits in hsNadE (B) and tbNadE (C). Intra-subunit tunnels in hsNadE and inter-subunit tunnels
in tbNadE are calculated by the Caver program. Three residues of Trp54+, Tyr51*, and Leu240 in hsNadE
and Glu61~, Tyr58~, and Leu242™ in tbNadE were used as a crisscross for tunnel calculation. C.
Comparison of the octameric hsNadE and tbNadE generated by symmetry-related molecules from crystal

structure.
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Supplementary Figure 5. Ordering of P2 loop upon binding of the synthetase intermediate analogue. A.
Surface of the synthetase active site in the closed P loop of hsNadE. B. Overlay of the synthetase active
sites in the open tbNadE (PDB 3SZG) and closed hsNadE. C-D. The open P2 loop structure reported
previously in tbNadE with NaAD-+, AMP, and PPi bound (PDB 3SZG). E. Overlay of the synthetase active
sites in the open and closed P2 loop conformations; 3SZG and tbNadE-SFI. F. Surface of the synthetase
active site in the closed P loops of tbNadE-SFI. G. Overlay chain D= and +~C= of the glutaminase active site

upon binding of the SFI, PPi in tbNadE-SFI complex.
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Supplementary Figure 7. Electron density of P2 loop in rebuilding and refinement of hsNadE and tbNadE
structures. hsNadE structures are shown in panels A-D and tbNadE in E-H. 2F.-F., 16 shown in purple and
F,-F., 36 shown in cyan/orange indicate the electron density of P2 loop when traced for the first time in
both complexes (A, E). The main chain of the P2 loop was subsequently built in (B, F) followed by their

side chains (C, G). The 2F,-F. composite omit map: 1o is shown in green in the two final structures (D, H).
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Supplementary Figure 8. Partial occupancy of PPi molecule in subunit B of tbNadE-SFI complex. A.
Positive map (blue mesh, F,-F., 3.0G) observed close to SFI. B. Refinement after adding three water

molecules at occupancy of 1.0. C. Observation of negative density of PPi at occupancy of 1.0 (green map,

F,-F.,3.00). D. Occupancy of PPi was refined to 0.58.



Fluctuation in hsNadE Fluctuation in toNadE
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Supplementary Figure 9. Magnitude of the atomic fluctuation in hsNadE and tbNadE structures. A-B. The
absolute atomic motion in hsNadE and tbNadE complexes was analysed by DynaMut *. The magnitude of

the fluctuation is shown by thin to thick tube and colored in the same was as in the diagram in Figure 2.
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Supplementary Figure 10. Structural comparison of C-E-K triad of the glutaminase active site. The
comparison is shown among six subfamilies of the nitrilase superfamily including nitrilase from Pyrococcus
abyssi * (PDB code 31VZ), formamidase (AmiF) from Helicobacter pylori * (PDB code 2DYU, 2E2L),

amidase from Geobacillus pallidus “(PDB code 4GYL, 4LF0, and 2PLQ), 3-alanine synthase » (PDB code



2VHI), N-carbamyl-D-amino acid amidohydrolase (DCase) from Agrobacterium sp.~ (PDB 1ERZ), and
NitFhit from Caenorhabditis elegans + (PDB code 1EMS). A-I. The strictly conserved glutamate located
on the loop (orange) adjacent to the C-E-K triad (green sticks marked in bold labels) stabilizes the side
chain of the active site lysine on one side and interacts with tyrosine (A-F) or histidine (G) on the other
side. Tyrosine/histidine stabilizing the glutamate located on the loop is not observed in NitFhit and Nit

protein but the hydrogen bonding between glutamate and catalytic lysine remains conserved (H-I).
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Supplementary Figure 11. Superposition of the glutaminase active sites and YRE loops. A. Superposition
of the glutaminase active sites and YRE loops of hsNadE vs. tbNadE in the complex with glutamine, SFI,
and PPi. B. Comparison of glutamine position in different subunits (chains B, C, and D) and glutamate in

tbNadE- product complex (PDB code 3SYT).



