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Section S1: Synthesis of CDMB-8

The improved synthesis of isomeric CDMB-8 referenced in the main test is shown in
Supplementary Fig. 1. Briefly, a change in the reaction medium from CH3CN to toluene (Tol)
led to the production of both of Cs-CDMB-8 (15%) and D44¢-CDMB-8 (25%) rather than only
Cs-CDMB-8 (originally obtained in 20% yield)!. This finding is ascribed to the toluene acting as
a synthesis template for both products as inferred from single crystal X-ray diffraction analyses
of CDMB-8=Tol (Note: Single crystals of [Dsa-CDMB-82Tol] and [Cs-CDMB-82Tols(Tol)o.s]
were grown via slow evaporation of either a toluene solution or a toluene/CHsCN (1.0 mM)
solution; Supplementary Table 1, Supplementary Fig.1. b1 and, b2), as well as the higher reaction
temperature that favours formation of the thermodynamic product (D4d-CDMB-8). As noted
previously, a heat activation process could be used to convert a mixture containing Cs- and
D44-CDMB-8 to pure D4¢-CDMB-8 in quantitative yield.
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Supplementary Figure 1. a, Synthesis of all-hydrocarbon macrocycles Cs- and D4g-CDMB-8. b,
Complexes of Dag- or Cs-CDMB-8 containing toluene as seen in the single crystal structures of
[D4d-CDMB-8=Tol] (b1) and [Cs-CDMB-8=Tols(Tol)os] (b2), respectively.

S2



Supplementary Table 1. X-ray crystallographic data for [D4s-CDMB-82Tol] and

[Cs-CDMB-82Tols(Tol)os]

[D4g-CDMB-83Tol] [Cs-CDMB-8>Tol+(Tol)os]
CCDC No. 1859999 1859991
description prism prism
colour colourless colourless
from solution toluene/CH3CN toluene/CH3CN
empirical formula Cn Hzn Cras0 Hie
Mr 925.28 971.35
crystal size (mm?) 0.10 =<0.06 <0.04 0.12 %0.06 x<0.03
crystal system monoclinic triclinic
space group P21/n P-1
a[A] 16.6449(2) 14.209(3)
b [A] 11.6376(2) 14.451(3)
c[A] 29.0261(3) 15.052(3)
a [deg] 90 106.88(3)
B [deg] 98.0440(10) 101.52(3)
y [deg] 90 94.76(3)
VI [AY 5567.23(13) 2865.0(11)
d/ [g/lcm?] 1.104 1.126
z 4 2
TIK] 100.00(10) 173.1500
R1, wR2 | > 2(]) 0.0813, 0.2267 0.1381, 0.2725
R1, wR2 (all data) 0.0896, 0.2354 0.1630, 0.2886
quality of fit 1.009 1.018

Section S2: Host/guest interactions between CDMB-8 and perylene in solution

It was found that a mixture consisting of Cs- or Dsa-CDMB-8 and 1 molar equiv. of perylene
(Py) (final concentrations = 1.00 mM or 0.25 mM in each; THF/CH3CN = 1/1, v/v) induced little
if any discernible change in the UV-Vis absorption or fluorescence emission spectra
(Supplementary Figs. 2 and 3). Moreover, only a small high field chemical shift change (< 2 Hz)
in the H(B) resonance of D4-CDMB-8 was observed in the *H NMR spectrum when perylene
was added to a THF-ds/CH3CN-ds (1/1, v/v) solution of D4d-CDMB (Supplementary Figs. 4 and
5).

S3



—— C,-CDMB-8 + Py
— Py

— D,,-CDMB-8 + Py
—— C,.-CDMB-8

—— D,-COMB-8 |

u.)

N
L

Absorbance (a.

o
I

340 360 380 400 420 440 460
Wavelength (nm)
Supplementary Figure 2. UV-vis spectra of Dad- or Cs=-CDMB-8 (0.25 %107 M) in the absence
(pink or cyan curves, respectively) and presence (blue or black, respectively) of 1 molar equiv. of
Py. Also shown is the spectrum of Py alone (red curve, 0.25 %10 M) recorded in THF/CH3CN
(1/1, viv) (1 cm optical path).
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Supplementary Figure 3. Emission spectra of Dag- or Cs-CDMB-8 (0.25 %10 M) recorded in
THF/CH3CN (1/1, v/v) in the absence (pink or cyan curves, respectively) and presence (red or
black, respectively) of 1 molar equiv. of Py, also only perylene Py (blue curve, 0.25 <102 M)

(Aex = 365 nm, voltage = 400 V, entrance slit width = 1 nm, exit slit width = 1 nm).
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Supplementary Figure 4. Expansion of the *H NMR spectra of Py (1.00 % 10° M) (a), a
mixture of Cs=CDMB-8 (1.00 %10 M) and 1 molar equiv. of Py (b), and Cs-CDMB-8 (1.00 x
10 M) (c) in THF-ds/CH3CN-ds (1/1, v/v) at 298 K (400 MHz).
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Supplementary Figure 5. Expansion of the *H NMR spectra of Py (1.00 % 10° M) (a), a
mixture of D4g-CDMB-8 (1.00 <10 M) and 1 molar equiv. of Py (b), and D4¢-CDMB-8 (1.00

%10 M) (c) in THF-ds/CH3CN-ds (1/1, v/v) at 298 K (400 MHz).
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Section S3: Single crystal X-ray diffraction studies of the complexes formed from D4a-CDMB-8,

perylene, and organic solvents

Supplementary Table 2. X-ray crystallographic data for

[(Daa-CDMB-8)23(Py*

6CH3CN)*Py*2THF] (Co), [Dad-CDMB-85(NB)2+2NB] (Cp), and [(Dad-CDMB-8),3(Py)2+3To0l]

(Cs)
[(D4g-CDMB-8),2(Py* [D4g-CDMB-82(NB)2* | [(Dad-CDMB-8),2(Py)2*
6CH3CN)*Py<«2THF] 2NB] 3Tol]
CCDC No. 1937315 1937317 1937316
description prism block block
colour yellow yellow yellow
from solution THF/CH3CN nitrobenzene toluene
empirical formula CoaHgsN30 CgsHsaN4Os CoasHss
Mr 1280.71 1325.59 1223.64

crystal size (mm?3)

0.18 x0.06 ><0.04

0.25 x0.20 %<0.1

0.15 x<0.12 =0.05

crystal system monoclinic triclinic monoclinic
space group P 21/n P-1 P21l/c
a[A] 15.5489(2) 15.6471(3) 14.7081(3
b [A] 24.3558(4) 15.7299(3) 19.9521(3)
c[A] 19.4758(3) 30.2933(6) 24.7253(4)
a [deg] 90.00 89.9310(10) 90.00
B [deq] 100.6790(10) 88.093(2) 105.319(2)
y [deq] 90.00 82.0980(10) 90.00
VI [AY 7247.86(19) 7381.1(2) 6998.0(2)
d/ [g/cm?] 1.174 1.193 1.161
YA 4 4 4
T [K] 100.01(10) 100.01(10) 100.01(10)

R1, wR2 | >24]1)

0.1058, 0.2257

0.0719, 0.2024

0.0965, 0.2240

R1, wR2 (all data)

0.1227, 0.2357

0.0795, 0.2107

0.1056, 0.2312

quality of fit

1.027

1.023

1.059
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Supplementary Figure 6. a, Top view in ellipsoid form showing the binding interactions
between D44-CDMB-8 C(1) and Py C(65) as observed in the single crystal structure of
[(D4g-CDMB-8)22(Py+*6CH3CN)+Py«2THF] (Cq). b and c, Structure shown as a top view and
side view in stick form. Displacement ellipsoids are scaled to the 25% probability level. All the
other molecules and atoms have been omitted for clarity. Possible CH-n interactions are inferred
from the following selected distances [A]: C(9)---C(68A) 3.730(8), C(57)---C(72) 3.639(6),
C(41)---C(68) 3.721(8), C(25)---C(72A) 3.807(0). Possible n-n donor-acceptor interactions are
inferred from the following selected interatomic distances [A]: C(69)---C(51) 3.575(3),
C(69)---C(52) 3.673(3), C(71)---C(53) 3.569(1), C(69A)---C(19) 3.479(8), C(71A)---C(20)
3.537(9), C(71A)---C(21) 3.474(1).
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Supplementary Figure 7. a, Top view in ellipsoid form showing the binding interactions
between Dig-CDMB-8 C(1) and N(1), N(2), N(3), N(2A), and N(3A) of the acetonitrile guest as
observed in the single crystal structure of [(Dsd-CDMB-8)23(Py*6CH3CN)*Py«2THF] (Ca). b
and c, Structure shown as a top and side views in stick form. Displacement ellipsoids are scaled
to the 25% probability level. All the other molecules and atoms have been omitted for clarity.
Possible CH-r interactions are inferred from the following selected distances [A]: C(93)---N(2)
3.466(6), C(91)---N(3) 3.471(5), C(93)---N(2) 3.466(6), C(91)---N(3) 3.471(5), C(91)---N(2)
3.691(5), C(93)---N(1) 3.616(5), C(91---N(1) 3.608(5), C(93)---N(1) 3.558(2), C(93)---C(60)
3.655(3), C(91)---C(44) 3.725(7), C(93)---C(28) 3.786(7), C(91)---C(12) 3.661(9). Possible n-n
donor-acceptor interactions are inferred from the following selected interatomic distances [A]:
C(94)---C(29) 3.712(7), C(92)---C(45) 3.622(9), C(94)---C(61) 3.584(0), C(92)---C(13)
3.642(5).
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d Room light UV (365 nm)

Supplementary Figure 8. a and b, Top and side views of the periodic repeat unit
(Dag-CDMB-8)22(Py*6CH3CN)+Py«2THF seen in the solid state. ¢, 1D packing structure seen
within single crystals of [(Dag-CDMB-8)22(Py*6CH3sCN)«Py*2THF] (Cq). d, photographs of
single crystals Cq under normal laboratory light and using a commercial ultraviolet lamp (365

nm).

It is noted that the co-crystalline material C. could be easily prepared on gram scale by adding
CH3CN in isochoric fashion into a solution containing D4d-CDMB-8 (5.00 mM) and 1 molar
equiv. of perylene in THF (Supplementary Movie 1).
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Supplementary Figure 9. Experimental (top) and simulated (bottom) PXRD patterns of Ca.
In the single crystal structure of [D4a-CDMB-85(NB)2¢2NB] (Cs), two nitrobenzene (NB)
guests are located in the centre between two macrocycles via possible CH-n and =n-n
donor-acceptor interactions (Supplementary Fig. 10). Two D4a-CDMB-8 and eight nitrobenzene
molecules form a repeat unit that presumably favours further 1D packing (Supplementary Fig.

11).
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Supplementary Figure 10. a, Top view in ellipsoid form showing the interactions between
D4-CDMB-8 and nitrobenzene with N(3), N(4), and N(8) observed in the single crystal
structure of [D4a-CDMB-8=(NB),*2NB] (Cp). b and ¢, Structure is shown as top and side
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views in stick form. Displacement ellipsoids are scaled to the 25% probability level. All the other
molecules and atoms have been omitted for clarity. Possible CH-n interactions are inferred from
the following selected distances [A]: C(57)---C(144) 3.744(4), C(144)---C(5) 3.893(4),
C(150)---C(21) 3.711(4), C(150)---C(22) 3.851(4). Possible n-m donor-acceptor interactions are
inferred from the following selected interatomic distances [A]: N(3)---C(51) 3.440(4),
N(@3)---C(52) 3.491(4), C(141)---C(53) 4.027(4), C(142)---C(53) 4.170(4), N(4)---C(142)
3.514(4), N(4)---C(141) 3.570(4), O(8)---C(141) 3.465(4), C(142)---C(147) 3.783(4),
C(143)---C(148) 3.792(4), C(144)---C(149) 3.769(4), C(150)---C(145) 3.725(4), C(151)---C(146)
3.703(4), C(152)---C(146) 3.461(4), C(152)---C(141) 3.721(4), C(158)---C(28) 3.730(4),
C(148)---C(144) 3.539(4), N(8)---C(60) 3.645(4).
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Supplementary Figure 11. a, Top view in ellipsoid form showing the dimeric
D4-CDMB-8>5(NB)2¢2NB seen in the single crystal structure of [D4a-CDMB-85(NB)2¢2NB]
(Cp). Displacement ellipsoids are scaled to the 25% probability level. b, top and ¢, side views of

the dimer in stick form. d, 1D packing structure seen within single crystals of Cg.
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In the single crystal structure of [(D4d-CDMB-8).5(Py)2¢3Tol] (Cs), the head of the perylene
guest is inserted within the macrocycle cavity and appears to be stabilized via CH-r interactions.
One toluene solvent molecule is also located in the centre between two macrocycles with
apparent stabilization being provided by both CH-nm and m-m donor-acceptor interactions
(Supplementary Fig. 12). Two Ds-CDMB-8, two perylene, and three toluene molecules form a

repeat unit that allows for further 1D packing (Supplementary Fig. 13).

Supplementary Figure 12. a, Top view in ellipsoid form showing the binding interactions
between Dsg-CDMB-8, Py, and a neighbouring toluene guest observed in the single crystal
structure of [(D4d-CDMB-8)25(Py)2¢3Tol] (Cs). b, Structure shown as a top view. ¢ and d, Side
views in stick form. Displacement ellipsoids are scaled to the 25% probability level. All other
molecules and atoms have been omitted for clarity. Possible CH-x interactions are inferred from
the following selected distances [A]: C(81)---C(95) 3.872(5), C(81)---C(96) 3.957(4),
C(78)---C(28) 3.644(3), C(80)---C(25) 3.759(1), C(73)---C(60) 3.651(2), C(72)---C(57) 4.337(9),
C(31)---C(88) 3.43(5), C(31)---C(87) 3.55(9), C(92)---C(3) 3.63(6), C(57)---C(93) 3.650(0).
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Supplementary Figure 13. a, Top view in ellipsoid form showing the dimer
(Daa-CDMB-8)22(Py)2¢3Tol seen in the single crystal structure of [(D4d-CDMB-8).5(Py)2+3Tol]
(Cs). Displacement ellipsoids are scaled to the 25% probability level. b, top and c, side views of

the dimer in stick form. d, 1D packing structure seen within single crystals of Cs.
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Section S4: Organic solvent vapour promoted solid state molecular motion and related structural

and emission response studies of materials formed between Dsd-CDMB-8, perylene, and organic

solvents
a Layer 5
The lid of petri dish <
Materials loaded on a small Layer 4
borosilicate glass block o
(0.5 x 0.5 x 0.1 cm)
A borosilicate glass plate Layer 3
(4 x4 x 0.3 cm) -
Small borosilicate glass fragments Layer 2
(thickness: 0.3 cm) B
2 mL organic solvents were ) Layer 1

dropwise added on the bottom of
100 mL petri dish

Supplementary Figure 14. a, b, Schematic representation and c, actual picture of organic

solvent vapour treatment conditions used to access various materials formed from Dagd-CDMB-8,

perylene, and organic solvents.
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Supplementary Figure 15. In situ time-dependent emission spectra collection conditions for the
materials formed from D4a-CDMB-8, perylene, and various organic solvents (see main text for a

listing) seen upon exposing to organic solvents in the form of their respective vapours.

As noted in the main text, when Cq was allowed to sit on the bench or in the air (298 K) for
six days or subject to vacuum (2.0 kPa) for 5 hours conversion to lq occurs. PXRD analyses
revealed the crystalline structures of Ca and lq are similar (Supplementary Figs. 16 and 17). The
lower resolution seen for the PXRD spectrum of I« may reflect the smaller particle size as well as
time-dependent crystal weathering. Single crystal X-ray diffraction analyses of samples of C,
monitored under conditions used to produce la revealed that the sample retained essentially the
same unit cell parameters when allowed sit for 24 h in the air or for in 1 hour in vacuum.
However, longer treatment times under both conditions led to further crystal weathering.
Moreover, a *H NMR spectral study of these samples revealed a reduction in the relative molar
ratio of CH3CN and THF as a function of time (Supplementary Figs. 18 and 19). Taken in
concert, these findings lead us to suggest that the intermediates leading to I« maintain a structural
framework similar to Cq even as some solvent components are lost. Subjecting Ca or lq to
grinding led to an amorphous material (Am) as established by a PXRD study (Supplementary Fig.
16b). *H NMR spectral analysis revealed that Am only contains Dsi-CDMB-8 and Py and is free
of organic solvents (Supplementary Fig. 20). Treating Am with THF/CH3CN (1/1, v/v) vapour
could be used to access Ca (Supplementary Fig. 16c¢).
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Supplementary Figure 16. a, Transformation between crystalline materials Cq, Am, and la. b,
Experimental PXRD patterns of Ca, I« and Am. ¢, PXRD studies of the reversible transformation

between co-crystalline Cq or la species and amorphous Am.
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Supplementary Figure 17. Time-dependent experimental PXRD patterns corresponding to the
conversion of Cq into le1 Seen upon letting stand in the air (a) or 2 subjecting to vacuum (2.0
kPa) (b) at 298 K.
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Supplementary Figure 18. *H NMR (400 MHz) spectrum of Cq recorded in CDClsat 298 K (1

mg/ml) (red “*” represents residual CHCls, blue “4” represents H20).
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Supplementary Figure 19. *H NMR (400 MHz) spectrum of I, recorded in CDClzat 298 K (1

mg/ml) (red “*” represents residual CHCl3, blue “4” represents H20).
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Supplementary Figure 20. *H NMR (400 MHz) spectrum of Am recorded in CDClzat 298 K (1

mg/ml) (red “*” represents residual CHCls, blue “4” represents H20).

The emission spectrum of Cq is similar to that produced by perylene in solution when
studied at relatively high concentrations (e.g., 10 mM in THF/CH3CN = 1/1, v/v) as shown in
Supplementary Fig. 21.

470 nm 482 nm

—— Py in solution
— G

Emission Intensity (a. u.)

450 500 550 600 650 700
Wavelength (nm)
Supplementary Figure 21. Normalized emission spectra of Cq (red curve) and Py (black curve,
2.00 x 102 M, THF/CH3CN (1/1, v/v)) (Aex = 365 nm, voltage = 400 V, entrance slit width = 1

nm, exit slit width = 1 nm).
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As Cq is transformed to lq quenching of the emission feature at 482 nm is observed. The

colour changes from green to yellow green. The amorphous material (Am) is characterized by a

strong green yellow emission at 530 nm (Supplementary Fig. 22). Pictures were recorded under

conditions of illumination using a commercially available ultraviolet lamp (365 nm)
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Supplementary Figure 22. a, Transformation between Cq, Am, and lq. b, Photographs showing

the colour changes seen for Cq or Am at different times when exposed to the air, vacuum (2.0

kPa), or THF/CH3CN (1/1, v/v) vapour at 298 K with excitation provided by a commercial

ultraviolet lamp (Zex = 365 nm). ¢ and d, Time-dependent emission spectra corresponding to the

conversion of Cq into lq either in the air or under vacuum (2.0 kPa) at 298 K. e, Time-dependent

emission spectra during the change process from Amto Ce in THF/CH3CN (1/1, v/v) vapour (Zex

= 365 nm, Voltage = 400 V, entrance slit width = 1 nm, exit slit width = 1 nm).

S19



When Cq was exposed to nitrobenzene (Nb) vapour, single crystal X-ray diffraction and
PXRD analyses (Supplementary Fig. 23) revealed that C« maintains its structure over the course
of 20 min. However, *H NMR spectral analysis revealed reduced levels of THF and CH3CN and
increasing (nearly 0.3 molar equiv.) levels of nitrobenzene in solution (Supplementary Fig. 26).
These findings lead us to suggest that a new material (Ig) is being produced as the result of
nitrobenzene vapour covering the surface of Cq. Over longer time scales (from 20 min to 21 h), a
crystalline transformation from Ig to mixed crystals (Me) containing [D4a-CDMB-85(NB)2+2NB]
(Cp) and dimeric perylene (Dry)? is seen as inferred from 'H NMR spectral measurements
(Supplementary Fig. 27) combined with single crystal X-ray diffraction and PXRD analyses
(Supplementary Figs. 23 and 24). M could be transformed back to Ig and C. albeit with
different dynamics (1 min vs. 24 h, respectively) via exposure to THF/CH3CN (1/1, v/v) vapour
(Supplementary Fig. 25).
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Supplementary Figure 23. a, Single crystal structures showing the transformation of
co-crystalline Cq to intermediate Ig and eventually the mixed crystal species Mq. b, Experimental

PXRD patterns for Ca, g, M, and simulated pattern of a mixture containing [Dsi-CDMB-82
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(NB)2+2NB] and [Dry]. ¢, *H NMR spectral analyses (400 MHz) of the co-crystalline species C,

I, and mixed crystal form Mqrecorded in CDClszat 298 K (1 mg/ml).
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Supplementary Figure 24. Experimental PXRD patterns for Ma, Cp, Dpy, and simulated pattern

of a mixture containing Cg and Dry.
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Supplementary Figure 25. PXRD studies of the reversible transformation between

co-crystalline Cq, I, and mixed crystal form M.
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Supplementary Figure 26. *H NMR (400 MHz) spectrum of Ig recorded in CDClzat 298 K (1

mg/ml) (red “*” represents residual CHCls, blue “¢” represents H20).
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Supplementary Figure 27. *H NMR (400 MHz) spectrum of M recorded in CDCls at 298 K (1

mg/ml) (red “*” represents residual CHCl3, blue “4” represents H20).
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When C. was transferred to Ig via nitrobenzene vapour treatment, the emission of C, at 482
nm was found to be almost completely quenched within 20 min. Over longer time scales (from
20 min to 21 h), a crystalline transformation from I to mixed crystalline material Mg is seen that
is accompanied by a rise in the emission intensity that is ascribed to the emission of Dpy (i.€., Jem
=590 nm) (Supplementary Figs. 28-30). Upon exposure of Mqto THF/CH3sCN (1/1, v/v) vapour,
the intensity of the orange emission of My at 590 nm was seen to undergo a reduction. However,
an enhancement of the intensity at 482 nm, corresponding to the transformation of M. to Ig, and

then to Ca was seen over the course of 1 min and 24 h, respectively (Supplementary Fig. 30).
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Supplementary Figure 28. a, Single crystal structures and photographs taken under illumination

with an ultraviolet lamp purchased commercially (lex = 365 nm) showing the transformation
from co-crystalline Cq to quenched intermediate Ig, and the mixed-crystalline species Mo. b,
Photographs of the nitrobenzene vapour-induced fluorescent colour changes for Ce as seen at

different times using a commercial ultraviolet lamp (Zex = 365 nm).
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Supplementary Figure 29. a, Emission spectra of Ca, I, and M. b, Normalized emission
spectra of Ca, M, Dpy, and Cp (lex = 365 nm, voltage = 400 V, entrance slit width = 1 nm, exit
slit width = 1 nm).

a b
Cu_’Ma c IB_)Mu

—~, 482 nm ——0min — — 590 nm

S i S 5

m‘ ——8&min (\j (u

~ ——12min ~ ~

2 —— 16 min 2> >

B —— 20 min ‘O E

% —— 25 min % c

——40 min

E —— 80 min E %

5 o 5 =

B 590 nm —_ 1", 7 2

R0] _ 8 0]

E| oo g, o £ =

Lu e :ﬁ - i s y - e .-.:.: - d I LIJ ; : ; g : . - LIJ i i i i i i I

465 515 565 615 665 715 765 465 515 565 615 665 715 765 465 515 565 615 665 715 765
Wavelength (nm) Wavelength (nm) Wavelength (nm)
M,—C, e M,—lg f le—Cq

—_ 590 nm - 590 nm ——o0min —

5 > 5 482 nm
8 & o
> z =
¥ @ B
5 8 5
£ £ c
5 S 5

IS . =

450 550 650 750 450 550 650 750 450 550 650 750

Wavelength (nm) Wavelength (nm) Wavelength (nm)

Supplementary Figure 30. a-¢, Time-dependent emission spectra of Cq to Ig and further to M

in nitrobenzene vapour. d-f, time-dependent emission spectra of Mq to Ip and further to Cq in
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THF/CH3CN (1/1, v/v) vapour (Aex = 365 nm, voltage = 400 V, entrance slit width = 1 nm, exit
slit width = 1 nm).

In analogy to what was seen with nitrobenzene vapour, it was found that the co-crystalline
material Cq, when exposed to THF vapour for 3 minutes, also generated a new mixed crystalline
species, Mg, which would revert back to C. via treatment with THF/CHsCN (1/1, v/v) vapour for
30 minutes. X-ray diffraction details and 'H NMR spectral analyses are summarised in
Supplementary Figs. 31-33. Form Mp was found to contain single crystals of
[D4d-CDMB-8sTHF+THF]* (C,) and Dry as judged from X-ray diffraction analyses.
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Supplementary Figure 31. a, Single crystal structures showing the transformation between the
co-crystalline material Coand a mixed crystalline species Mg. b, Experimental PXRD patterns of
Co, Mg, Cy, Dpy, and the simulated PXRD pattern of the mixture containing Cy and Dpy. ¢, 'H
NMR (400 MHz) spectra of Cq and Mg recorded in CDClzat 298 K (1 mg/mL).
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Supplementary Figure 32. PXRD studies of the reversible transformation between

co-crystalline Cq and mixed crystalline M.
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Supplementary Figure 33. *H NMR (400 MHz) spectrum of Mg recorded in CDCls at 298 K (1

mg/ml) (red “*” represents residual CHClz, blue “#” represents H20).

The emission colour and the corresponding time-dependent change seen for Ca upon exposure

to THF vapour are shown in Supplementary Fig. 34. Note the colour change from blue to orange.
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A movie record of the transformation of Cq into Mg in the presence of THF vapour is provided in
Supplementary Movie 2. Pictures and movies are recorded under a commercial ultraviolet lamp
(365 nm). The orange emission colour was found to revert back to the original blue after
exposing Mg to THF/CH3CN (1/1, v/v) vapour for 30 minutes (Supplementary Fig. 35).
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Supplementary Figure 34. a, Single crystal structures and photographs under a commercial
ultraviolet lamp (lex = 365 nm) showing the transformation of the co-crystalline material Cq with
fluorescence blue colour to a mixed crystalline species Mg with a characteristic fluorescence
orange colour. b, Photographs of the THF vapour-induced fluorescent colour changes for Cq as
seen at different time scales with visualization provided by a commercial ultraviolet lamp (Aex =
365 nm).
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Supplementary Figure 35. a, Time-dependent emission spectra corresponding to the conversion
of Ca to Mp in THF vapour. b, Time-dependent emission spectra corresponding to the
conversion of Mp to Cq in THE/CH3CN (1/1, v/v) vapour (lex = 365 nm, voltage = 400 V,

entrance slit width = 1 nm, exit slit width = 1 nm).
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When Cq was exposed in toluene vapour, a PXRD pattern for the toluene-treated material
(Cs) is obtained that is completely different from that of the original Cq. This finding leads
support to the contention that a new complex is being created. The simulated PXRD pattern of
Cs is in good accord with the single crystal data for [(D4a-CDMB-8)25(Py)2¢3Tol]
(Supplementary Fig. 36b). 'H NMR spectral studies revealed that the components of Cs are the
same as those of [(D4a-CDMB-8)2o(Py)223Tol] (Supplementary Fig. 38). Thus, in aggregate,
these results serve to confirm that exposure to toluene vapour serves to transform the
co-crystalline species Cq into a different co-crystal, namely [(D4a-CDMB-8),5(Py)2¢3Tol] (Cs),
and can act to regenerate to Cq via treatment with THF/CH3CN (1/1, v/v) vapour (Supplementary

Fig. 37).
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Supplementary Figure 36. a, Single crystal structures showing the transformation between
co-crystalline materials Cq and Cs. b, experimental PXRD patterns of Cq and Cs, as well as the
simulated PXRD pattern for [(Dad-CDMB-8)25(Py)2¢3Tol] (Cs). ¢, expanded *H NMR (400
MHZz) spectra of Cq and Cs recorded in CDClzat 298 K (1 mg/ml).
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Supplementary Figure 37. PXRD studies of the reversible transformation between
co-crystalline materials Cq and Cs.
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Supplementary Figure 38. *H NMR (400 MHz) spectrum of Cs recorded in CDClzat 298 K (1

mg/ml) (red “*” represents residual CHCls, blue “#” represents H20) .
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Only a small change in the emission features (1em, max = 482 nm changing to Aem, max = 478 nm)
was observed when Cq was converted to Cs (Supplementary Fig. 39b). The emission spectrum of
Cs proved concordant with that of [(Dsa-CDMB-8),2(Py)2+3Tol].
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Supplementary Figure 39. a, Single crystal structures and photographs taken under a
commercial ultraviolet lamp (1ex = 365 nm) showing the transformation between co-crystalline
materials Cq and Cs. b, Normalized emission spectra of Cq and Cs (1ex = 365 nm, voltage = 400

V, entrance slit width = 1 nm, exit slit width = 1 nm).
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Supplementary Figure 40. a, Time-dependent emission spectra of Cq to Cs in toluene vapour. b,
Time-dependent emission spectra 0f Cs to Co in THF/CH3CN (1/1, v/v) vapour (ex = 365 nm,

voltage = 400 V, entrance slit width = 1 nm, exit slit width = 1 nm).
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Further studies demonstrating the reversible transformation between materials Ca, Cs, Ip, Ma,
Mg, and Am were carried out using solid fluorescent spectrometry (Supplementary Figs. 42-43)
and summarised in Supplementary Fig. 41. As noted in the main text, treatment with different
organic vapours or grinding can be used to induce the reversible transformation between these

species. This can be followed by the fluorescence colour changes involved.

Amorphous state

o
£
© -
c
=
U]

% . Co-crystalline state X
A\ :
@ M, or Mg
L - i
o IX N

_ Co-crystalline state Crystal mixtures

Supplementary Figure 41. Summary of the reversible transformations between Cq, Cs, Ig, Mq,
Mg, and Am via grinding or treatment with the vapour forms of various organic solvents. Vapour
I: Am to Cq, THF/CH3CN (1/1, v/v) (3 min), Am to Cs, Tol (40 s). vapour II: Am to I,
NB/THF/CH3CN (1/1/1, viviv) (1 min). vapour III: Am to Mg, THF (1 min), Amto Mq, NB (4 h).
vapour IV: Cq to I, PANO2 (20 min), Cs to Ip, NB/THF/CH3CN (1/1/1, viviv) (2 h). vapour V: Ig
to Cq, THF/CH3CN (1/1, viv) (24 h), 1 to Cs, Tol (8 h). vapour VI: Ca to Mg, THF (3 min), Cq
to Mo, NB (21 h), Cs to Mg, THF (10 min). vapour VII: Mg to Ca, THF/CH3CN (1/1, viv) (30
min), Mq to Co, THF/CH3CN (1/1, v/v) (24 h), Mg to Cs, Tol (2 h), Mq to Cs, Tol (12 h). vapour
VIII: Ig to Mg, THF (5 min), Igto Me, NB (21 h). vapour IX: Mg to I, NB/THF/CH3CN (1/1/1,
vIVIV) (4 h), Mg to Ig, THF/CH3CN (1/1, v/v) (1 min).
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Supplementary Figure 42. Time-dependent emission spectra corresponding to the change from
Am to Mg, Cs, I, or Ma (lex = 365 nm, voltage = 400 V, entrance slit width = 1 nm, exit slit
width = 1 nm). a, Am to Mg, in THF vapour. b, Am to Cs, in toluene vapour. ¢, Am to I, in
NB/THF/CH3CN (1/1/1, viviv) vapour. d, Am to Mg, in NB vapour.
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Supplementary Figure 43. Time-dependent emission spectra corresponding to the
transformations between Cs, Ig, Mg, and Ma (Aex = 365 nm, voltage = 400 V, entrance slit width
=1 nm, exit slit width = 1 nm). a, Cs to Ip, in NB/THF/CH3CN (1/1/1, v/v/v) vapour. b, Ip to Cs,
in toluene vapour. ¢, Cs to Mg, in THF vapour. d, Mg to Cs, in toluene vapour. e, Mq to Cs, in
toluene vapour. f, Mg to Ip, in NB/THF/CH3CN (1/1/1, v/v/v) vapour. g, Ig to Mg, in THF vapour.

A summery of the photophysical properties and normalized emission spectra of Ca, Cp, Cy, Cs,

lo, Am, Ig, Mq, Mg, and Dey is provided in the Supplementary Fig. 44, including the fluorescence
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emission peak (dem), quantum yields (®f), and fluorescent lifetime (zr). The experiments

underlying the latter values are shown in Supplementary Fig. 45.
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Supplementary Figure 44. Photophysical properties and normalized emission spectra of various
solid forms considered in this study, namely Ca, Cp, Cy, Cs, la, Am, Ip, Ma, Mg, and Dpy. a,
Fluorescence images, emission peak (Jem), quantum yields (®f), and fluorescent lifetime (zr)
determined using excitation at 365 nm. b, Normalized emission spectra (1em = 365 nm).
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Supplementary Figure 45. Fluorescent lifetime (tf) determinations for Ca, Cs, la, Am, Ip, M,

Mg, and Dpy (ex = 365 nm, voltage = 400 V, entrance slit width = 1 nm, exit slit width = 1 nm).

A number of other organic solvent vapours (saturated in air at 298 K), including ethyl acetate

(EA), acetone, n-hexane, n-octane, DMF, CH3CH2OH, cyclohexane, and DMSO, were found to
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transform Am into mixed crystalline Mg forms consisting of Dsd-CDMB-82solvents adducts
co-crystallized with Dpy. As above, the transformations that served to convert Am into mixed
crystalline species containing Dey and D4d-CDMB-8=solvents were accompanied by a change in
the emission maximum from Aem = 530 nm to Zem = 590 nm. Particularly noteworthy was that
different time scales were required to effect equivalent levels of conversion (e.g., ethyl acetate
(EA; 20 s), acetone and n-hexane (40 s), n-octane (60 s), DMF (80 s), CH3CH>OH (2 min),
cyclohexane (3 min), DMSO (60 min)). Other co-crystalline species (i.e., Dai-CDMB-82Py-
solvent) produced by exposure of Am to organic solvent vapours were found to produce a
monomeric Py emission (around 480 nm) upon UV illumination. Again, a temporal effect was
seen in response to specific organic solvent (e.g., chlorobenzene (1 min), DCM, anisole, dioxane,
and bromobenzene (2 min), triethylamine (TEA; 10 min), and m-dibromobenzene (DB; 60 min))
under identical conditions of exposure (Supplementary Fig. 46).
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Supplementary Figure 46. Time-dependent emission spectra for Am recorded in the presence of
various organic solvent vapours (e.g., ethyl acetate (a), acetone (b), n-hexane (c¢), n-octane (d),

DMF (e), CH3CH.OH (f), cyclohexane (g), DMSO (h), chlorobenzene (i), anisole (j),
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bromobenzene (k), dioxane (I), DCM (m), triethylamine (n), or m-dibromobenzene (0)). (Aex =

365 nm, voltage = 400 V, entrance slit width = 1 nm, exit slit width = 1 nm).

Section S5: Four dimensional information coding

In the main text, initial work showing the transformations from pattern A to D via
THF/CH3CN (1/1, viv) vapour treatment, as well as the dynamic information storage in code B
and C is presented (cf. Fig. 5). Further studies revealed the time dependent properties of the
pattern transformations produced by different organic solvent vapours could be modified. For
instance, by exposing code A to toluene or bromobenzene (PhBr) vapour, a series of dynamic
patterns (namely Bi1-D1or B2-D2) could be produced, albeit with different time scales (i.e., 1-30
min, 2-6 h, and greater than 12 h for toluene vs. 2-5 min, 15-60 min, and greater than 2 h for
bromobenzene). It was also found that the same information (i.e., Info I and Info Il) stored in
codes B and C could also be hidden in other dynamic code pairs, such as i) B1 and Caior ii) B2
and Ca. This information (i.e., Info I and Info I1) could then be produced and read out in a
time-dependent manner in analogy to the experiments shown in main text Figure 5 through

specific exposure to toluene or bromobenzene (Supplementary Fig. 47).

Alternatively, only a single information encoding response (i.e., only Info I or Info 11, but not
both) was produced in a time-dependent manner upon exposing code A to dioxane or
m-dibromobenzene. This exposure allowed code A to be transformed into a designated
information-storing code (i.e., code Bs or Cs) as discussed in the main text (cf. Figure 5).
Treatment with other organic solvent vapours (e.g., THF or NB/THF/CH3CN (1/1/1, viviv)) also
allowed code A to be transformed into other new patterns, namely E-H, and in a time-dependent

manner (Supplementary Figs. 47 and 48).
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Supplementary Figure 47. Transformation and masking made possible by use of i) an original
printed colour pattern, ii) natural and/or UV light, and iii) the time dependent organic

vapour-induced changes in the luminescent features of the constituent code blocks, Am, Ma, Mg,

and Cs.
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Supplementary Figure 48. Time-dependent transformations of pattern A in the presence of
different organic solvent vapours under natural and UV light. The volume ratios of the mixed
organic solvents were either 1:1 or 1:1:1.
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Because of the differing stabilities of C, and the other materials considered in this study, time
dependent dynamic 4D patterns with distinct timelines could be generated. For example, block
Cq could convert to block lIg in the air (298 K) as the result of solvent evaporation, a
transformation that leads to an emission change form blue to green yellow in 1 hour. Thus,
patterns containing Cq block(s) (e.g., B-D) can be transformed into new patterns (e.g., | and J)
by allowing the combined printed and block-containing array to sit in the air for 1 hour at 298 K
(Supplementary Fig. 49). In contrast, other blocks, such as Am, Cs, Mq, and Mg, display greater
stability and retain their structure, emission features, and solvent vapour response characteristics

even after allowing to stand on the bench for more than 24 h.

THF/CH,CN
(11, viv)
vapour

3-10 min

Code B, info A

Inaic, It S0 Inair, rt | 1h Inair, t | 1h

Patterri ' Patter J | Pattern J
Supplementary Figure 49. Time-dependent transformation of codes B, C, and pattern D in air
(298 K) as visualized under natural and UV light.
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Supplementary Figure 50. a, b, Schematic representation and ¢, photograph of organic solvent

vapours response studies showing the setup used.
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