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Appendix E1 

 

Model Development 

 

We chose the architecture, hyper parameters and data augmentation techniques that obtained the highest 

accuracy on our validation set.  

 

 

Pre-processing 

 

First, we resized each image to a 224 x 224 matrix using the Pillow 5.0.0 python package (1). Next, each 

pixel in the images was divided by 255 so all values were in the interval between 0 and 1. Observation 

diameters were normalized by subtracting the mean and dividing by the standard deviation across all 

diameters. The consensus categories were one hot encoded. 

 

 

Model architecture 

 

We implemented two different convolutional neural network architectures: 1) a VGG16 pre-trained 

network (2); and 2) a custom-made network. 

 

1) A VGG16 pre-trained network 

 

A VGG16 model was downloaded through the Keras package (3) with pre-trained weights on ImageNet 

(4), except for the fully-connected layers. Since the model was pre-trained on natural RGB images, triple 

phase images (pre-contrast, late arterial and delayed phases) were assigned to each of the three channels 

as an input. The output tensor was then concatenated with a fully-connected layer with 32 nodes with an 

input of observation diameters and processed with 3 fully-connected layers with 1024, 512, and 4 nodes 

to produce probabilities for the 4 LI-RADS categories (LR-1/2, LR-3, LR-4, and LR-5) with activation 

functions of rectified linear unit, rectified linear unit, and softmax, respectively. We inserted dropout 

layers of 0.5 just after the two fully-connected layers with 1024 and 512 nodes. 

 

2) A custom-made network 

 

A custom-made network was built with a 4-channel image input, to which quadruple phase images (pre-

contrast, late arterial, portal venous, and delayed phases) were assigned. Images data were processed with 

batch normalization layer with first, then processed in one convolutional layer using “Conv2D” function 

in the Keras package (3) with a kernel size of 3×3, same padding, and activation function of rectified 

linear unit. Output images from the convolutional layer were then processed in a max pooling layer with 

“MaxPooling2D” function with a filter size of 2×2, same padding, and a stride of 2. The combination of 

one convolutional layer and one max pooling layer was repeated three times. The number of feature maps 

for each convolutional layer was 8, 16, and 32, respectively. Next, the output tensor was processed in a 

global max pooling layer, which was then concatenated with a fully-connected layer with 32 nodes with 

an input of observation diameters, and processed with 3 fully-connected layers with 64, 64, and 4 nodes to 



produce probabilities for the 4 LI-RADS categories (LR-1/2, LR-3, LR-4, and LR-5) with activation 

functions of rectified linear unit, rectified linear unit, and softmax, respectively. We inserted dropout 

layers of 0.5 just after the two fully-connected layers with 64 nodes. 

 

 

Model training 

 

1) A VGG-16 pre-trained network 

 

The model was first trained on only the fully-connected layers with having all the pre-trained layers 

frozen (epoch = 400), and then the weights for the latter half of the pre-trained convolutional layers as 

well as the fully-connected layers (epoch = 400) were fine-tuned, as part of the training process with a 

batch size of 32. A loss function of categorical cross entropy was applied. The optimization was carefully 

conducted with small learning rates by using stochastic gradient descent with momentum and stochastic 

gradient descent with restarts proposed by Loshchilov et al. (5, 6) with a minimal learning rate of 4e-5, a 

maximum learning rate of 4e-4, a learning rate decay of 0.9, a cycle length of 3, and a factor to multiply 

the cycle length after each cycle of 2. 

 

2) A custom-made network 

 

The model was trained with a batch size of 32 and a loss function of categorical cross entropy by using 

stochastic gradient descent with momentum and stochastic gradient descent with restarts with a minimal 

learning rate of 4e-4, a maximum learning rate of 4e-3, a learning rate decay of 0.9, a cycle length of 3, 

and a factor to multiply the cycle length after each cycle of 2. Although the training dataset did not have 

severe class imbalance, random oversampling was applied to mitigate class imbalance with the 

imbalanced-learn python package (7, 8). 

 

 

Data augmentation 

 

All images were augmented with on­the­fly technique using vertical and horizontal flip, width and height 

shift range of 0.2, zoom range of 0.2, and rotation range of 0.2 within the Keras framework (3). Note that 

when a specific source image is being used again for training on the next epoch, it will likely be flipped 

and rotated differently than on the previous epoch. 

 

 

Hardware and Software 

 

We developed our models with the Python programming language (version 3.6.4, Python Software 

Foundation, https://www.python.org/), Keras (version 2.1.5) (3) with Tensorflow backend (version 1.6.0) 

(9), Pillow (version 5.0.0) (1), and Scikit-learn (version 0.19.1) (10) on a workstation with a GeForce 

GTX 1060 (NVIDIA, Santa Clara, Calif) graphics processing unit, a Core i7-8650U 4.2GHz central 

processing unit (Intel, Santa Clara, Calif), and 16 GB of random access memory. 
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