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Box plots representing the distribution of values for (a) direction selectivity (See Extended Data Figure 3 for 
sample sizes), (b) preferred temporal frequency (See Extended Data Figure 3 for sample sizes), (c) preferred 
spatial frequency (See Extended Data Figure 4 for sample sizes), and (d) receptive field area (See Extended 
Data Figure 5 for sample sizes) for each Cre line and layer across all six visual areas. The box shows the quartiles 
of the data, and the whiskers extend to 1.5 times the interquartile range. Points outside this range are shown 
as outliers.

Supplementary Figure 1 
Response characterizations across all areas
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Supplementary Figure 2
Statistical tests for single cell response metrics
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(a) Heatmaps of p-values of pairwise comparisons for each Cre line across areas using the (two-sided) Kolmogorov-
Smirnov (KS) test with a Bonferroni correction for the number of comparisons. The heatmap is centered on the 
significance criteria. E.g. for comparisons across all six visual areas, p<0.01 (=0.05/5) is significant. For comparisons 
across only 3 visual areas (eg. for Ntsr1) p<0.025 is significant. (b) Heatmaps of p-values for pairwise comparison 
across each Cre-line and layer combination within each visual area, using KS test with a Bonferroni correction for the 
number of comparisons. The colormap for the p-values is centered at the significance criteria. For sample sizes see 
Extended Data Figure 3 (direction selectivity & temporal frequency), Extended Data Figure 4 (spatial frequency), and 
Extended Data Figure 5 (receptive field area).
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Supplementary Figure 3
Sparsity characterization across all areas
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(a) Distribution of evoked responses for two example cells showing high (left) or low (right) lifetime sparseness. 
The corona plot for each cell is inset. These neurons are the top and bottom examples in Figure 2d. (b) Box plots
representing the distribution of values for lifetime sparseness for each Cre line and layer across all six visual areas. 
The box shows the quartiles of the data, and the whiskers extend to 1.5 times the interquartile range. Points outside 
this range are shown as outliers. For sample sizes see Extended Data Figure 6. (c) Strip plot representing the 
population sparseness for each Cre line and layer across all six visual areas. Each dot represents the mean 
population sparseness for a single experiment, with the median for a Cre-line/layer represented by the bar. For 
sample sizes see Extended Data Figure 6 (expts) (d) Strip plot representing the noise correlations for each 
Cre line and layer across all six visual areas. For sample sizes see Extended Data Figure 3 (expts).
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Supplementary Figure 4
Population decoding
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a) Test vs train performance for K-Nearest Neighbor decoding of drifting grating direction for each experiment, across all areas, 
layers and Cre lines. For all experiments, other than Vip, the experiments are close to unity, reflecting good generalization. Error 
bars represent the standard error of the mean across five-fold cross-validation. For sample sizes see Extended Data Figure 3 
(expt). (b) Dependence of decoding performance on the number of cells included in the decoding, ordered by decreasing reliability, 
for all areas and Cre lines. (c) Strip plots summarizing decoding performance across all Cre lines and areas. Each dot represents the 
mean five-fold cross-validated decoding performance of a single experiment, with the median performance for a Cre-line/layer 
represented by the bar. For sample sizes see Extended Data Figure 3 (expt). (d) Strip plots of the difference between the decoding 
performance when trials are shuffled, destroying noise correlations, and trials are kept intact. Positive values indicate that noise c
orrelations hurt decoding performance, while negative values indicate that noise correlations improve decoding performance. For 
sample sizes see Extended Data Figure 3 (expt). (e) Pawplot and strip plot of the median signal correlation in each experiment. For 
sample sizes see Extended Data Figure 3 (expt).
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Supplementary Figure 5
Response Variability
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c  
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e  

Box plots representing the distribution of values for percent responsive trials for responsive neurons for (a) drifting gratings, 
(b) static gratings, (c) natural scenes, and (d) natural movie three for all Cre lines, layers, and areas. The box shows the quartiles 
of the data, and the whiskers extend to 1.5 times the interquartile range. Points outside this range are shown as outliers. For 
sample sizes see Extended Data Figure 3 (drifting gratings), 4 (static gratings), 6 (natural scenes), and 7 (natural movies). 
(e) Histograms of the CC max for all stimuli (see Methods).
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Supplementary Figure 6
Characterization of running activity

a  b  

d  e  f  

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of time running

0

50

100

150

200

Co
un

t

c  

(a) Heatmap of running speed distributions for all imaging sessions, ordered by the mean running speed. (b) Histogram 
of the fraction of time the mouse is running (>1 cm/s) for all imaging sessions. (c) Distribution of the fraction of time the 
mouse is running for each Cre line. The violinplot uses Scott’s rule for the kernel bandwidth and is scaled so each violin 
has the same area. Mice from some Cre lines exhibit more running (eg. Fezf2). (d) Mean (± s.e.m.) running speed for 
grating direction for drifting gratings at each temporal frequency, with the mean running speed during the blank sweep 
indicated by the dashed line ± s.e.m. (gray shading) across all 243 mice. (e) Mean (± s.e.m.) running speed for grating 
orientation for static gratings at each spatial frequency, with the mean running speed during the blank sweep indicated 
by dashed line ± s.e.m. (gray shading) across all 243 mice. (f) Mean (± s.e.m.) running speed for natural scenes, with 
the mean running speed during the blank sweep indicated by the dashed line ± s.e.m. (gray shading) across all 243 mice.
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Supplementary Figure 7
Categorical model and running correlations

b  

a  

c  

(a) Box plots of running (Pearson) correlation for all Cre lines and areas. The box shows the quartiles of the data, 
and the whiskers extend to 1.5 times the interquartile range. Points outside this range are shown as outliers. Only 
data from sessions in which the mouse ran between 20-80% of the session were included. For sample sizes see 
Extended Data Figure 8.  (b) Box plots of categorial model prediction (Pearson correlation between predicted and
 measured activity) for all Cre lines and areas. For sample sizes see Extended Data Figure 3. (c) Box plots of the 
prediction of activity (Pearson correlation between the predicted and measured activity) based on the polynomial 
regression on running speed (see Methods) across all Cre lines and areas. For sample sizes see Extended 
Data Figure 3.



Supplementary Figure 8
Clustering of responsiveness to stimuli
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(a) Distribution of the optimal number of clusters determined through model comparison for each of the 
100 runs of the clustering analysis. (b) Distribution of the responsiveness threshold computed for each 
run of the clustering analysis. (c) The mean percent of cells belonging to each class for each transgenic 
Cre line within each visual area. (d) Percent of neurons belonging to each class predicted by the model, 
mean and st. dev. over 100 repeats, when clustering was performed on neurons imaged in all three 
sessions A, B, and C, n=20,024 neurons.



677051200: Ntsr1 in LM

588900990: Cux2 in V1

729433503: Ntsr1 in V1

673032589: Slc17a7 in V1

na
tu

ra
l

na
tu

ra
l

na
tu

ra
l

na
tu

ra
l

ar
tif

ic
ia

l
ar

tif
ic

ia
l

ar
tif

ic
ia

l
ar

tif
ic

ia
l

Example wavelets Temporal filters Distrubtion of weights Performance

Supplementary Figure 9
Example wavelet models
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Four example neurons showing wavelets, temporal filters, distributions of non-zero weights, and performance comparison 
for both natural and artificial stimuli. We chose exemplar neurons that 1) performed well on both natural and artificial 



stimuli, 2) performed well on the natural, but not the artificial, stimuli, 3) performed well on the artificial, but not natural, 
stimuli, 4) performed well on neither. The linear component of each model can be visualized directly. To visualize the 
quadratic component, the weighted quadratic basis functions must first be converted into an equivalent matrix of second 
order terms. This matrix is then analyzed by eigenvector decomposition, similar to STC. (far left) example filters showing 
spatial profiles over time. The top row for each example is the linear filter and the middle and bottom rows show two 
components of the quadratic part of the filter.  (second from left) The envelope of the temporal part of the filters for each 
wavelet. These are computed by convolving the Gaussian envelope of each wavelet with the temporal weights w(t) 
(51745 curves; see Methods). Color is a gradient from highest to lowest amplitude. (third from left) The distribution of 
weights for each wavelet (517450 weights; see Methods). (fourth from left) Examples of predictions compared with 
neural activity. For each neuron, the top row shows the model fit to natural stimuli and the bottom row shows the model 
fit to artificial stimuli. The r value is the Pearson’s correlation of the predicted response to the measured response.   



Supplementary Figure 10
Wavelet model
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(a) Density plot comparing model performance using only the linear component with the full model performance, 
including both linear and quadratic components where the r value is the Pearson’s correlation of the predicted 
response to the measured response While some neurons are better predicted with the inclusion of quadratic 
components, the bulk lies along unity. n=16,092. (b) Box plots of model performance across all areas for the 
natural stimuli. The box shows the quartiles of the data, and the whiskers extend to 1.5 times the interquartile 
range. Points outside this range are shown as outliers. For sample sizes see Extended Data Figure 9. (c) Box 
plots of the running weights across all areas. For sample sizes see Extended Data Figure 9. 



(d) Density plot comparing the model performance when the stimulus was corrected for pupil position with 
when it was uncorrected. Eye movements tend to be small and have a negligible effect of the model 
performance. n=2617. (e) Density plot comparing model performance including both running and pupil area 
as regressors compared to model performance with only running as a regressor. For a small number of 
neurons, the pupil area improves model performance, but the bulk of neurons lie close to unity. n=3001. 
(f) Density plot showing the relationship between the number of extracted events and model performance 
for natural stimuli. n=16,266.



Supplementary Figure 11
Weights for wavelet model

a b

(a) Distributions of weights for the wavelet basis functions for good models (top, r>0.5, where the r value is the 
Pearson’s correlation of the predicted response to the measured response; n=945) and bad models (bottom, r<0.5; 
n=15321). (b) Distribution of the non-zero weights for the for good models (top, r>0.5; n=945) and bad models 
(bottom, r<0.5; n=15321).
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Supplementary Figure 12
Quantification of cortical layer expression levels across all transgenic mice for mice implanted 
with cortical glass windows

1 mm
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(a) Side view projection (XZ) of a single cortical stack acquired using two photon imaging. All experimental sessions 
were associated with such a cortical stack. Red bar denotes imaging depth shown in (b). (c) Distribution of labelling 
intensity across all cortical stacks acquired in V1 for all imaged cre-lines. Red bars denote imaging depths used in 
each line. N=10 (Slc17a7), 18 (Emx1), 20 (Vip), 20 (Sst), 21 (Cux2), 17 (Nr5a1), 11 (Rorb), 9 (Scnn1a), 2 (Fezf2), 
7 (Tlx3), 18 (Rbp4), and 6 (Ntsr1). (d) Brain compression was quantified using DAPI staining (ThermoFisher, D1306) 
and confocal imaging of entire coronal sections. Cortical layers were annotated and their thickness measured for both 
the ipsi-lateral and contra-lateral side. (e) Distribution of cortical thickness ratio for all 6 cortical layers between the ipsi-
lateral and contra-lateral side. (n=4 measurements of 8 mice). (f) Example expression distribution of all cre-lines as 
shown on coronal sections imaged with serial two photon imaging.
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Supplementary Figure 13
Cross-platform registration for pipeline data collection
(a) All experimental hardware components were custom-designed and assembled in house so that we 
could register the underlying geometry to a common coordinate system. (b) A registration artifact (a 
headframe with reticle glued inside the well) defined the imaging coordinate system  and all experimental 
systems (including surgical photo-documentation, ISI, and 2P optical physiology microscopes) were 
calibrated so they produce data that is referenced within the imaging coordinate system. All imaging 
datasets were registered to this common coordinate system using shared reticles clamped throughout 
the data collection pipeline.  (c) Registration integrity was monitored by routine measurement of a 
registration artifact (6 months of data shown). If the registration parameters exceeded tight control limits 
the system was re-calibrated. We maintained this coordinate system by monitoring the stability of the 
reticles on a weekly basis across all steps of the data collection pipeline. Any excessive deviations were 
flagged for further inspection.
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Supplementary Figure 14
A standardized workflow for headframe and cranial window placement
(a) The cranial window surgery consisted of procedural and data collection steps. (b) The surgery was 
standardized across mice through precise placement of a registerable titanium headframe with objective 
well. Prior to implantation, a 3D printed acrylic photopolymer microscope well was glued to the titanium 
headframe with Loctite 406 using a jig to ensure uniform offset between the center of the well and the 
reference surfaces of the clamp. (c) The stereotax was zeroed on lambda using a custom headframe
 holder equipped with a stylus affixed to a clamp-plate. The stylus was then replaced with the headframe, 
which was lowered and affixed to the skull with Metabond. (d) Once dried, the mouse was placed in a 
custom clamp to position the skull at a rotated angle of 23 and pitch angle of 6, such that visual cortex 
was horizontal to facilitate the craniotomy. The craniotomy was centered at X = -2.8mm and Y = 1.3mm 



with respect to lambda. A circular piece of skull 5 mm in diameter was removed, and a durotomy was performed. A 
coverslip stack (two 5mm and one 7mm glass coverslip adhered together) was cemented in place with Vetbond
(Goldey, G. J. et al. Removable cranial windows for long-term imaging in awake mice. Nat. Protoc. 9, 2515–2538 (2014). 
Metabond cement was applied around the cranial window inside the well to secure the glass window. (e) Post-surgical 
brain health was documented using a custom photo-documentation system to acquire a spatially registered image of the 
cranial window. One, two, and seven days following surgery, animals were assessed for overall health, cranial window 
clarity, and brain health.
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Supplementary Figure 15
A standardized intrinsic imaging experimental workflow to map the visual cortex at scale
(a) The intrinsic imaging consists of procedural and data collection steps. Data is standardized using custom tools and 
data quality metrics and control procedure. (b) The brain surface was illuminated via custom LED rings positioned 
around the imaging objective (middle) and the fluctuation in light reflection was imaged using an imaging camera (top). 
Periodic stimuli were presented on the stimulation screen to create retinotopic maps for cortical visual areas. (bottom) A 
camera monitored eye position in anesthetized mice. 
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Supplementary Figure 16
A standardized 2-photon calcium imaging experimental workflow
(a) Two photon calcium imaging consists of procedural and data collection steps standardized using a formal 
experimental workflow. (b-top) Mice were head-fixed using custom behavioral hardware and monitored with behavior 
and eye tracking cameras. (b-bottom) Visual stimuli were presented on a stimulation screen positioned reliably from 
session to session. (b-middle) Visual stimulation timing is monitored using a photodiode positioned on top of the screen 
for every experiment. The experimental workflow integrated tightly controlled experimental procedures with QC metrics 
and any experiments that did not meet standardized criteria (see Supplemental Figure 8) were re-attempted. 
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QC evaluation Metric(s) Threshold(s) Notes

z-drift Z distance between start and end of physiological movie 10 um
Measured using cross-correlation 
between movie plane and a local z-stack

Animal stress
Presence of foam over the eye, 
general animal stress Foam covering pupil

Evaluated using eye tracking movie, 
body posture movie and general handling

Cell matching
Subjective evaluation of matched 
field of view between consecutive session ~ more than 50 % cells matching

Wheel rotation failure
Wheel rotation uncorrelated with behavior movie; 
Presence of discontinuous spikes in wheel data

Interictal events Width and size of whole field calcium events size larger than 30 % ΔF/F, width between 100 and 300 ms 

Laser damage
Number of discontinuous cellular compartments
 appearing between sessions >0

Bleaching and loss of signal Average fluorescence from start to end of session 20% drop in baseline intensity

Abnormal  gcamp expression Depth profile of gcamp Any abnormal pattern
Evaluated by comparing 
to reference z stack data

Calcium physiology syncing Number of dropped frames 1 for Nikon,60 for Scientifica
Eye tracking syncing Number of dropped frames 100 frames

Visual stimulus syncing Number of long frames 60 frames
Frame duration is plotted over time 
and number of abrnormal frames are tracked

Saturation Number of satured pixels 1000 pixels
Laser alignement stability Power at objective (mW) >10% change Trigger maintenance or evaluation of rig

e
100 μm

Supplementary Figure 17
2-photon quality control metrics used for Quality Control 
(a) Table of metrics used to validate experiment collected in two photon imaging. (b) Example images at the onset and 
end of a session showcasing excessive z-drift (>10 µm). Bottom panel in (b) shows the correlation score of all images 
in a local 60um z-stack with the onset and end image shown at the top. The peak was used as a measure of the actual 
z-position. (c) Example eye tracking data showing passing (green) and failing (red) signs of stress. (d) Distribution of 
z-drift across both passed and failed experiments. Green and red areas indicate failure threshold. (e) Distribution of all 
experimental failures for all individual sessions collected on the 2 photon imaging pipeline.   
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Supplementary Figure 18
Brain health assessment
(a) We observed brain abnormalities in approximately 27% of the mice that completed the experimental 
workflow. Abnormalities were identified during post-mortem histological analysis of the tissue (examples 
shown in (b)) and had no observable behavioral manifestation during the life of the mouse. Additionally, 
analysis of a random subset of datasets obtained from mice with abnormalities revealed no differences 
in physiological responses. In most cases the abnormalities either occurred in the contralateral 
hemisphere or did not result in observable disruption to the cortical laminar structure (Abnormal). In rarer 
cases, the abnormalities 1) occurred under or adjacent to the cranial window, 2) disrupted the cortical 
layers, or 3) resulted in necrosis. In these cases, experimental datasets from these mice were excluded
 from analysis (Fail). (b) Examples of Normal, Abnormal and Failed brains.
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Supplementary Figure 19
A standardized workflow for image processing.
In vivo 2-photon imaging data is processed using a standardized pipeline. Calcium movies were motion corrected and 
segmented using an automated segmentation algorithm. Within each session, the traces were extracted from the 
identified ROI, and overlapping ROIs demixed. Across all three imaging sessions in a single experiment, the segmented 
ROIs were matched across sessions. Following the matching step, ROIs were filtered to select only somatic masks, 
neuropil contamination was subtracted, and ∆F/F was computed within each session. These traces were aligned to the 
stimulus, running, and eye tracking data using the temporal sync that was recorded during the experiment. The eye
 tracking movie was processed (Supplemental Figure 24) and aligned to visual space.
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Supplementary Figure 20
Image processing pipeline
(a) Uncorrected movie. (b) Periodic average of 400-frame set. (c) Global average frame computed by registering the 
periodic averages together. (d) Motion corrected movie, aligned to the global average, used for downstream processing. 
(e) Periodic average frame from full motion corrected movie subtracted from (f) periodic maximum projection frame 
creates (g) normalized periodic frames. Periodic frames after (h) spatial filtering, (i) adaptive thresholding, and 
morphological operations (j, k). Features of each ROI mask identified in each period are computed (l). Heuristic decisions 
combine duplicate masks and label non-somatic masks for filtering (m), yielding the final ROI masks (n).
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Supplementary Figure 21
Targetting refinement for RL

(a) We confirmed the registration between the ISI map and the FOV in two steps: A vasculature overview micrograph, 
acquired with the bright field camera of the 2P microscope just before imaging, was registered to the ISI map 
(retinotopic center located within red boundary). (b)  A surface 2P image was registered to the vasculature overview 
micrograph.  Neurons with medians located on the somato-sensory side of the RL boundary were excluded from 
further analysis. Note how the density of ROIs (red) post registration refinement is consistent with shadowing effects 
from the surface vasculature. All registrations were performed by fitting similarity transforms to 10-20 operator-selected 
control points (using MATLAB’s cpselect function).

1 mm



Supplemental Figure 10
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Supplementary Figure 22
Neuropil subtraction and demixing
(a) Example of neuropil subtraction showing somatic fluorescence, neuropil fluorescence, and the corrected trace. r is the 
contamination ratio (see Methods). (b) Histogram of computed r-values for all cells in the dataset. (c) Distributions of 
r-values for each Cre line. The box shows the quartiles of the data, and the whiskers extend to 1.5 times the interquartile 
range. Points outside this range are shown as outliers. (d) Example of two overlapping ROIs (blue and green, with 
overlapping pixels in cyan). (e) Non-uniform distribution of fluorescence across a ROI, used for demixing. (f) Raw 
fluorescence traces from each ROI, centered on the time point in e. (g) Demixed traces for each ROI, centered on the 
time point in e. 
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Supplementary Figure 23
Evaluation of event detection

(a) Single-spike calcium response extracted from calcium imaging data acquired simultaneously with juxtacellular 
electrophysiology in vivo (15 cells in Emx1-Ai93 mice; error regions are 2x sem over 3 folds). (b) Single-spike calcium 
response extracted from calcium imaging data acquired simultaneously with juxtacellular electrophysiology in vivo (20 
cells in Cux2-Ai93 mice; error regions are 2x sem over 3 folds). (c) The red bar graphs indicate the expected probability 
of detecting an event via L0 event detection (y-axis) as a function of the number of action potentials juxtacellularly 
recorded (x-axis) in a given time window (subplot title) based on 15 cells in Emx1-Ai93 mice. The blue bar graphs indicate 
the expected event magnitude reported by the L0 event detection (y-axis) as a function of the number of action potentials
 juxtacellularly recorded (x-axis) in a given time window (subplot title) based on 15 cells in Emx1-Ai93 mice. (d) As in c but 
based on 20 cells in Cux2-Ai93 mice. The error bars in the graphs represent twice the standard error of the mean across
 cells. The false positive rate, as measured by the probability of detecting an event given no spike in the simultaneously 
recorded membrane potential in a window of given length, is generally low but increases with detection window length. 
Bursts within short time windows correspond to high instantaneous firing rates and result in detected events with high 
likelihood (e.g. >5 spikes within 100 ms result in events detected with > 80% chance). Bursts within longer windows can 
have lower instantaneous firing and, thus, for a given spike count, the average detection probability decreases with 
increasing detection window length. Expected event magnitudes tend to decrease for longer event detection windows. 
The size of the error bars decreases with increasing window length because, for longer windows, more instances of any 
given spike count were observed.
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Supplementary Figure 24
Eye tracking and characterization

Videos of the ipsilateral eye (relative to the monitor) were used to extract pupil location and size. Coordinates for eye 
position were extracted independently for each frame of the eye position movie. A variant of the star-burst algorithm was 
used (Li, Winfield and Parkhurst, 2005; Zoccolan, Graham and Cox, 2010). This algorithm fits an ellipse to the pupil or 
corneal reflection (CR) area. (a) The  initial seed points for the pupil and corneal reflection were were identified via a 
convolution with a black square (pupil) or a bright square against a black background (CR). (b) 18 rays were drawn 
starting at the seed point, spaced 20 degrees apart.  For each ray, the initial 10 pixels along that ray were averaged to 
define a_0. (c) We identify a candidate boundary point for the pupil by choosing the pixel along the ray that first exceeds 
the threshold F*a_0, where F is an input parameter to the algorithm (~1.5, varies by experiment). For the CR, we look for 
the first point below this threshold.  (d)A RANSAC algorithm is used to fit the ellipse from the candidate boundary points 
using linear regression with a conic section constraint. The fit parameters from the regression are converted into the five 
ellipse parameters: x,y location of the center, the major and minor axis sizes, and the angle of rotation with respect to the 
x-axis.  
The pupil and CR ellipse fit parameters are converted into coordinates for the location of the pupil in a coordinate system 
centered in the mouse eye, which is assumed spherical (an approximation) and thus acts as a spherical mirror. The 
location of the CR in the mouse eye coordinate system is thus a vector of length r_0/2 in the direction of the LED (where 
r_0 is the radius of the mouse eye). This is used along with the camera and monitor positions to reconstruct the pupil
position elevation and azimuth relative to the center of the monitor. 
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The pupil area is reported as the area of the ellipse fit to the pupil region:  pi*major_axis^2.  In some cases the 
algorithm did not find appropriate parameters for the ellipses describing the pupil or corneal reflection. In other cases, 
outlying values were detected (based on overall area or discontinuous jumps in the location, for example) that are 
clearly not physical values of the pupil or corneal reflection. In these cases, the pupil position is reported as NaN. 
(e) Eye position for the first monitor position. (f) Eye position for the second monitor position. (g) Histogram of pupil area. 
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