# Science Advances

advances.sciencemag.org/cgi/content/full/6/2/eaay0922/DC1

## Supplementary Materials for

#### DNA-dependent protein kinase promotes DNA end processing by MRN and CtIP

Rajashree A. Deshpande, Logan R. Myler, Michael M. Soniat, Nodar Makharashvili, Linda Lee, Susan P. Lees-Miller, Ilya J. Finkelstein, Tanya T. Paull\*

\*Corresponding author. Email: tpaull@utexas.edu

Published 8 January 2020, *Sci. Adv.* **6**, eaay0922 (2020) DOI: 10.1126/sciadv.aay0922

#### This PDF file includes:

Fig. S1. Purified recombinant proteins used in this study.

Fig. S2. Ku(5A) promotes MRN-dependent endonuclease activity.

Fig. S3. Interactions between CtIP, DNA-PKcs, Ku, and MRN do not depend on DNA or CtIP phosphorylation.

Fig. S4. Schematic diagram of GLASS-ChIP protocol.

Fig. S5. Quantification of DNA immunoprecipitated with anti–DNA-PKcs pS2056 using primers 300 bp away from AsiSI DSB.

Table S1. Primers used for qPCR in Fig. 5 and fig. S5.



**Fig. S1. Purified recombinant proteins used in this study.** Human recombinant Mre11/Rad50 (hMR) and Nbs1 and hMR(K42A) and hMR(D1231A) mutants (**A**), Ku70/80 wild-type and DNA-PKcs (**B**), Ku70(5A)/Ku80 (**C**), and CtIP proteins (**D**, **E**, **F**) were separated by SDS-PAGE and stained with Coomassie blue. All proteins shown here were purified from insect cells (See materials and methods for details) except DNA-PKcs which is native protein purified from human cells.



**Fig. S2. Ku(5A) promotes MRN-dependent endonuclease activity.** Nuclease assays were performed as in Fig. 1 in the presence of both magnesium and manganese with wild-type MRN, CtIP, DNA-PKcs, NU7441, and with either wild-type (WT) or 5A mutant (5A) versions of Ku as indicated. Red arrow indicates predominant DNA-PK-dependent MRN product.



Fig. S3. Interactions between CtIP, DNA-PKcs, Ku, and MRN do not depend on DNA or CtIP phosphorylation. (A) Ethidium bromide (5  $\mu$ g/ml) or Benzonase (1.25 kU) was added to the reactions as indicated. Recombinant proteins were incubated and CtIP isolated by immunoprecipitation as in Fig. 1D. Bound factors were monitored by western blot as indicated. (B) Binding reactions were performed with MRN, DNA-PKcs, Ku, and CtIP wild-type (WT) or mutant T847A/T859A (AA) or T847E/T859E (EE) proteins as in (A).



**Fig. S4. Schematic diagram of GLASS-ChIP protocol.** See Materials and Methods for detailed procedure. AsiSI DSBs created in U2OS cells are bound by DNA-PK. Small DNA fragments bound by DNA-PK are generated through endonucleolytic cleavage by MRN with stimulation by CtIP. These protein-bound fragments were stabilized by standard formaldehyde cross-linking but gentle cell lysis was used without excessive sonication in order to avoid fragmentation of genomic DNA. After removal of bulk chromatin, ChIP was performed using anti-DNA-PKcs-pS2056 antibody. After reversal of cross-links and size selection with Ampure XP beads, these DNA fragments were quantified using real-time PCR.



Fig. S5. Quantification of DNA immunoprecipitated with anti–DNA-PKcs pS2056 using primers 300 bp away from AsiSI DSB. Small dsDNA products resulting from nucleolytic cleavage of DNA-PK bound AsiSI-generated DNA ends (dashed line box in Figure 4E) were isolated from U2OS cells using the GLASS-ChIP protocol as described in Fig. S4 and quantified by qPCR using primers located ~300 nt from the AsiSI cut site. Primer set U2 (solid) is upstream whereas D2 (checkered) is downstream of the AsiSI cut sites. The DNA quantitated from U2OS cells in the presence or absence of 4OHT to induce AsiSI and DNA-PKcs inhibitor (NU7441) is shown for 4 AsiSI sites as described in main text. Results shown are from 3 independent biological replicates with student 2-tailed T test performed; \* indicates p < 0.05 in comparison to equivalent samples without 4OHT.

### Table S1. Primers used for qPCR in Fig. 5 and fig. S5.

|            |                     |        |                        |                       | Amplicon  |
|------------|---------------------|--------|------------------------|-----------------------|-----------|
| AsiSI site | Location as in hg18 | Primer | Forward                | Reverse               | size (bp) |
| DSB1       | chr18:7556705       | U1     | TCGGGGCCAGCGGCGTGTA    | CGCCAGCCCGCTCCC       | 52        |
|            |                     | D1     | CGCGGGGCTCGGCGC        | GGGAGATGGCGCGGGAGC    | 40        |
|            |                     | U2     | GTGCTGGCTCAATGTGCTTATT | ACGATTTTGGGTCTGAGTGAA | 132       |
|            |                     | D2     | CGCAGCCTCTTCCACAGTCA   | GCCACTACCGCCGCCGAA    | 139       |
| DSB2       | chr21: 32167382     | U1     | GGGAGCGGCCGCCCAG       | GCTCCTAGCCGTGCGCT     | 40        |
|            |                     | D1     | CGGGAGCCCGACCCAA       | CGCCGTCTGGCCCGCA      | 40        |
|            |                     | U2     | CGAAAGGTCCAGAAAACCCAA  | GAAGCCACCTGAGCGCCAGA  | 132       |
|            |                     | D2     | TTGTCTACGCGCCTCGCT     | CGGCTTCCCCGGCTTCT     | 119       |
| DSB3       | chr9:129732985      | U1     | GACTGCGGCTGCATCCAA     | CGCCAGCGCCTCCCGC      | 41        |
|            |                     | D1     | CGCCTGCGGGTCCCGC       | CTGAAGGATGCTGCAGCCGT  | 40        |
|            |                     | U2     | CCGCACTGGATGAGAGCTT    | CCTGGCGGATATCCCTCAA   | 112       |
|            |                     | D2     | GGACATCCATTCATTGAACACA | GATCACGCGGGCAGCTGA    | 113       |
| DSB4       | chr22:37194040      | U1     | CCCGGCCAAGAGTGCGT      | CGCACCCGCGCGCCG       | 40        |
|            |                     | D1     | CGCGGAGCTGTGAGGC       | GTCTCTAGGTGCCCCAGA    | 45        |
|            |                     | U2     | AAGATGAGGACAATAGCAGGAA | AAGCCCCAATCTCTGCCTCA  | 125       |
|            |                     | D2     | CAGGGCGCTCCAGGTGT      | GGGTCCTCCTCTCTGAT     | 118       |

DSB sites from Aymard et al, 2014