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Supplementary Materials and Methods

List of primary and secondary antibody used for western blot and PLA

Antigen Company

APE1 Novus, NB 100-116

SFPQ Abcam, ab38148

DHX9 Bethyl Laboratories, A300-854A
hnRNPK Abcam, ab70492

hnRNPA2B1 Thermo Fisher Scientific , PA5-3439
LSD1 Abcam, ab129195

Tubulin Sigma, T0198

NPM1 Abcam, ab15440

Anti-mouse 1gG IRDye 800 LI-COR

Anti-rabbit IgG IRDye 680 LI-COR

Preparation of cell extracts and co-immunoprecipitation

Immunoprecipitation studies were carried out with whole cell extracts, and nuclear or cytoplasmic
subfractions of HeLa cell clones®?. For whole cell extracts, HeLa cell clones were seeded in two 150-cm
plates at a density of 2 x 107 cells per plate. For nuclear and cytoplasmic fractions, HeLa cell clones were
seeded in three 150-cm plates at a density of 2 x 107 cells per plate. For whole cell extracts cell, were
lysed in lysis buffer containing 50 mM Tris-HCI pH7.4, 150 mM NaCl, 1mM EDTA and 1% Triton X-
100. For nuclear and cytoplasmic fractions, cells were centrifuged at 800 x g for 10 min at 4 °C and the
supernatant was removed. Pellet was re-suspended in a cold hypotonic solution containing 10 mM
HEPES pH 7.9, 10 mM KCI, 0.1 mM MgCl,, 0.1 mM EDTA pH 8.0 complemented with protease
inhibitors. After centrifugation at 800 x g for 10 min at 4 °C, cytosolic proteins were collected whereas
intact nuclei were pelleted. Pellet was washed to discard any contamination from cytosol and it was
subsequently re-suspended with a cold hypertonic solution 20 mM HEPES pH 7.9, 400 mM NacCl, 1.5
mM MgCl, 0.1 mM EDTA pH 8.0, 5% glycerol complemented with protease inhibitors and incubated on
ice for 30 min. At the end, the sample was centrifuged at 15,000 x g for 20 min at 4 °C and the
supernatant containing nuclear proteins was collected.

Whole cell extracts, nuclear and cytoplasmic fractions were co-immunoprecipitated with anti-FLAG

M2 affinity gel (Sigma-Aldrich) at 4 °C, with gentle rocking, for 3 h. After three washes with Tris-
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buffered saline (TBS), immunoprecipitates were eluted through incubation with FLAG peptide (0.15
mg/ml) in TBS, and further characterized (see below). In parallel, immunoprecipitation of cell extracts
from Hela cells expressing APE1 FLAG-tagged was also performed with a resin lacking the FLAG

antibody.

Immunofluorescence confocal and Proximity Ligation analyses

Immunofluorescence procedures and Proximity Ligation Assay (PLA) were carried out as described
earlier 3. To study the interaction between APE1 and three identified protein interactors in vivo, we used
the in situ Proximity Ligation Assay technology (Duolink, Sigma-Aldrich). After incubation with
monoclonal anti-APE1 (NB 100-116, Novus) (1:100) for 3 h, at 37 °C, cells were incubated with
polyclonal anti-SFPQ (ab38148, Abcam, Cambridge, MA) (1:200), anti-DHX9 (A300-854A, Bethyl
Laboratories, USA) (1:100), anti-hnRNPK (ab70492, Abcam) (1:200) and anti-hnRNPA2B1 (PA5-
34939, Thermo Fisher Scientific, USA) (1:500), overnight, at 4 °C. PLA was performed following the
manufacturer’s instructions. Technical controls, represented by Hela cell clones silenced for APEI
expression, resulted in the complete loss of PLA signal. Cells were visualized through a Leica TCS SP8

confocal system (Leica Microsystems GmbH, Germany).

Antibodies used and Western blotting analysis

For Western blotting analyses, cell lysates were resolved on 12% T SDS-PAGE, transferred onto
nitrocellulose membranes (Amersham™ Protran™, GE Healthcare) and probed with antibodies for APE1
(NB 100-116, Novus) (1:1000), FLAG (F1804, SIGMA) (1:5000), LSD1 (ab129195, Abcam) (1:10000),
B-tubulin (T0198, SIGMA) (1:2000) and NPM1 (ab15440, Abcam) (1:1000). The corresponding
secondary antibodies labeled with IR-Dye (anti-rabbit 1gG IRDye 680 and anti-mouse 1gG IRDye 800)
were used. Detection and quantification was performed with the Odyssey CLx Infrared imaging system
(LI-COR GmbH, Germany). The membranes were scanned in two different channels using an Odyssey IR

imager; protein bands were quantified using Odyssey software (Image Studio 5.0).
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Proteomic analysis

Protein digests of gel slices from immunoprecipitated material of whole, nuclear and cytoplasmic cell
extracts of HeLa cell clones expressing ectopic APEL FLAG-tagged protein or stably transfected with the
empty vector (SCR) were analyzed through Mass-Spectrometry. As a negative control, identical cell
extracts from Hela cells expressing APE1 FLAG-tagged were co-immunoprecipitated, in parallel, with a
resin lacking the FLAG antibody (res). Mass-Spectrometry analyses were performed with a nanoLC-ESI-
Q-Orbitrap-MS/MS platform consisting of an UltiMate 3000 HPLC RSLC nano system (Thermo Fisher
Scientific, USA) coupled to a Q-ExactivePlus mass spectrometer through a Nanoflex ion source (Thermo
Fisher Scientific). Peptides were loaded on an Acclaim PepMap™ RSLC C18 column (150 mm x 75 um
ID, 2 pm particles, 100 A pore size) (Thermo Fisher Scientific) and eluted with a gradient of solvent B
(19.92/80/0.08 v/v/v water/acetonitrile/formic acid) in solvent A (99.9/0.1 v/v water/formic acid), at a
flow rate of 300 nl/min. The gradient of solvent B started at 3%, increased to 40% over 40 min, raised to
80% over 5 min, remained at 80% for 4 min, and finally returned to 3% in 1 min, with a column
equilibrating step of 30 min before the subsequent chromatographic run. The mass spectrometer operated
in data-dependent mode using a full scan (m/z range 375-1,500, a nominal resolution of 70,000, an
automatic gain control target of 3,000,000, and a maximum ion target of 50 ms), followed by MS/MS
scans of the 10 most abundant ions. MS/MS spectra were acquired in a scan m/z range 200-2000, using a
normalized collision energy of 32%, an automatic gain control target of 100,000, a maximum ion target of
100 ms, and a resolution of 17,500. A dynamic exclusion value of 30s was also used. Duplicate analysis
of each sample was performed to increase the number of identified peptides/protein coverage.

MS and MS/MS raw data files per lane were merged for protein identification into the Proteome
Discoverer v. 2.1 software (Thermo Scientific), enabling the database search by the Mascot algorithm v.
2.4.2 (Matrix Science, UK) with the following parameters: UniProtKB human protein database (159,615
sequences) including the most common protein contaminants; carbamidomethylation of Cys as fixed

modification; oxidation of Met, deamidation of Asn and GIn, and pyroglutamate formation of GIn as
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variable modifications. Peptide mass tolerance and fragment mass tolerance were set to + 10 ppm and +
0.05 Da, respectively. Proteolytic enzyme and maximum number of missed cleavages were set to trypsin
and 2, respectively. Protein candidates assigned on the basis of at least two sequenced peptides and
Mascot score >30 were considered confidently identified. Definitive peptide assignment was always
associated with manual spectra visualization and verification. Results were filtered to 1% false discovery
rate. A comparison with results from the corresponding samples from control experiments (SCR and res)
allowed to identify contaminant proteins in each experiment that, despite their abundance, were removed

from the list of APE1-interacting partners (Supplementary Table S1 and S2).

Cell viability and proliferation

Cell viability was measured by using the
3-(4-5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium salt (MTS)
assay (Celltiter 96 Aqueous One solution cell proliferation assay, Promega) on cells grown in 96-well
plates and treated with Compound #3* and rotenone for 24 h. After treatment, the MTS solution was
added to each well and the plates were incubated for 2 h, at 37 °C. Absorbance was measured at 490 nm

by using a multi-well plate reader. The values were standardized to wells containing media alone.
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Supplementary Figures

Supplementary Figure S1.

A) Interaction experiments on the APE1-binding proteins identified in this study. The PLA technology
was used to evaluate in vivo the APE1-SFPQ, -DHX9 and -hnRNPK interaction. The PLA reaction was
performed following manufacturer's instructions. Different scan areas and zoomed cells are presented
relative to HeLa cell clones.

B) The PLA reaction was carried out using anti-APEL1 and anti-SFPQ antibodies in A549 cell lines
silenced for APE1 (siAPEL) or in relative control cell lines transfected with a scramble siRNA (SCR).

C) The PLA reaction was carried out using anti-APE1 and anti-hnRNPA2BL antibodies in JHH-6 cell
lines silenced for APEL1 (siAPE1) or in relative control cell lines transfected with a scramble siRNA

(SCR).

Supplementary Figure S2.

Interaction experiments on the APEL-binding proteins identified in this study. The PLA technology was
used to evaluate in vivo the APE1-SFPQ, -DHX9 and -hnRNPK interaction. The PLA reaction was
performed following manufacturer's instructions. HelLa cells clones silenced for the expression of APE1
were seeded on a glass coverslip and the PLA reaction was carried out using anti-APE1 and anti-SFPQ
(A), anti-DHX9 (B) and anti-hnRNPK (C) antibodies. Confocal microscopy analysis highlighted the
presence of distinct fluorescent red dots (PLA signals) indicating the occurrence of in vivo interaction
between APEL and its protein partners in HeLa cell clones expressing scramble siRNA (SCR). Few spots
were visible in HeLa cell clones silenced for APE1 protein (SIAPEL). DAPI staining was used as a
reference for the nuclei. Bars, 10 pM. D) APEL protein level evaluated in HeLa cells clones silenced for
10 days with doxycycline. SCR represents the control clone expressing the scramble shRNA; siRNA

represents the clones silenced for APEL. Actin was used as loading control.
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Supplementary Figure S3.

Venn diagram showing the common elements between the APE1-PPIs (n=531), the genes that were
differentially expressed upon siAPE1 (n=836) and the genes whose transcripts were bound by APEL in
the RIP-seq experiment (n=913). Globally, APEL regulates 95 unique genes at the transcriptional or post-

transcriptional level in HeLa cells.

Supplementary Figure S4.

A) Bad Prognosis network of the HNSC dataset formed by the interactors of APELl. Symbolism and
coloring of APEL, nodes and upstream regulators is identical to that shown in Fig 6.

B) Kaplan-Meier plot for the HNSC bad prognosis network.

C) Functional annotation of the HNSC bad prognosis network based on Gene Ontology - Biological
Process terms (p<0.05). In the pie chart, the percentage of the genes enriched in the pathways are given

next to the enriched terms.

Supplementary Figure S5.

A) Bad Prognosis network of the KIRC dataset formed by the interactors of APE1l. Symbolism and
coloring of APEL, nodes and upstream regulators is identical to that shown in Fig 6.

B) Kaplan-Meier plot for the KIRC bad prognosis network.

C) Functional annotation of the KIRC bad prognosis network based on Gene Ontology - Biological
Process terms (p<0.05). In the pie chart, the percentage of the genes enriched in the pathways are given

next to the enriched terms.

Supplementary Figure S6.
A) Bad Prognosis network of the UVM dataset formed by the interactors of APELl. Symbolism and
coloring of APEL, nodes and upstream regulators is identical to that shown in Fig 6.

B) Kaplan-Meier plot for the UVM bad prognosis network.
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C) Functional annotation of the UVM bad prognosis network based on Gene Ontology - Biological
Process terms (p<0.05). In the pie chart, the percentage of the genes enriched in the pathways are given

next to the enriched terms.

Supplementary Figure S7.

A) Bad Prognosis network of the LGG dataset formed by the interactors of APE1l. Symbolism and
coloring of APEL, nodes and upstream regulators is identical to that shown in Fig 6.

B) Kaplan-Meier plot for the LGG bad prognosis network.

C) Functional annotation of the LGG bad prognosis network based on Gene Ontology - Biological
Process terms (p<0.05). In the pie chart, the percentage of the genes enriched in the pathways are given

next to the enriched terms.

Supplementary Figure S8.

A) Bad Prognosis network of the SKCM dataset formed by the interactors of APELl. Symbolism and
coloring of APE1, nodes and upstream regulators is identical to that shown in Fig 6.

B) Kaplan-Meier plot for the SKCM bad prognosis network.

C) Functional annotation of the SKCM bad prognosis network based on Gene Ontology - Biological
Process terms (p<0.05). In the pie chart, the percentage of the genes enriched in the pathways are given

next to the enriched terms.

Supplementary Figure S9.
A) Bad Prognosis network of the KIRP dataset formed by the interactors of APELl. Symbolism and
coloring of APEL, nodes and upstream regulators is identical to that shown in Fig 6.

B) Kaplan-Meier plot for the KIRP bad prognosis network.
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C) Functional annotation of the KIRP bad prognosis network based on Gene Ontology - Biological
Process terms (p<0.05). In the pie chart, the percentage of the genes enriched in the pathways are given

next to the enriched terms.

Supplementary Figure S10.

A) Bad Prognosis network of the BRCA dataset formed by the interactors of APE1l. Symbolism and
coloring of APEL, nodes and upstream regulators is identical to that shown in Fig 6.

B) Kaplan-Meier plot for the BRCA bad prognosis network.

C) Functional annotation of the BRCA bad prognosis network based on Gene Ontology - Biological
Process terms (p<0.05). In the pie chart, the percentage of the genes enriched in the pathways are given

next to the enriched terms.

Supplementary Figure S11.

A) Bad Prognosis network of the BLCA dataset formed by the interactors of APE1. Symbolism and
coloring of APE1, nodes and upstream regulators is identical to that shown in Fig 6.

B) Kaplan-Meier plot for the BLCA bad prognosis network.

C) Functional annotation of the BLCA bad prognosis network based on Gene Ontology - Biological
Process terms (p<0.05). In the pie chart, the percentage of the genes enriched in the pathways are given

next to the enriched terms.

Supplementary Figure S12.

Dose-response plots of HelLa cells treated with Compound #3 and rotenone. HelLa cells were treated with
increasing doses of these compounds. The MTS assay was used to quantify the relative levels of
metabolic activity (A) and the Apo-ONE assay was used to quantify the relative levels of apoptosis (B).

Data were normalized on untreated cells and represent the means + SD of three independent experiments.
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Asterisks represent a significant difference with respect to untreated cells. Data were evaluated

statistically by two-tails Student t-test.

Supplementary Figure S13.

A) Uncropped blots for Figure 2.

B) Uncropped blots for Supplementary Figure S2C.
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Supplementary Tables

Supplementary Table S1.

APE1-interacting proteins identified in this study. Reported are the rough identification results from co-
immunoprecipitation experiments on whole cell lysate (WCE), and nuclear (NCE) or cytoplasmic (CCE)
fractions of Hela cell clones expressing the APE1 FLAG-tagged protein. Results were subtracted of
identification data from the corresponding control experiments obtained with cell clones stably
transfected with the empty vector (SCR) (also shown) or with HelLa cell clones expressing the APE1
FLAG-tagged protein treated with a resin lacking the FLAG antibody (RES) (also shown). The
information on fraction (WCE, NCE or CCE), source sample (APE, SCR or RES), protein accession,
description, gene, exp. g-value, sum PEP score, sequence coverage (%), number of identified peptides,
PSMs, number of identified unique peptides, number of amino acids, molecular mass, pl, modification(s),
identification confidence and Mascot identification score values is provided. Results are presented in
different datasheets, showing in parallel the specific data for whole cell lysate (WCE), nuclear (NCE) or
cytoplasmic (CCE) fractions, as well as the cumulative data from the combination of the three
(Proteinldentification_ALL). In each datasheet, results are grouped to show proteins uniquely present in
the APE, SCR or RES samples, as well as those present in APE+SCR, APE+RES, SCR+RES or
APE+SCR+RES; in each datasheet, these groups are indicated with a dedicated legend and are
highlighted with different colors. Only proteins exclusively present in the APE group from whole cell
lysate (WCE), nuclear (NCE) or cytoplasmic (CCE) fractions were used to define the APE1-PPI network
(final n=455). This collection was then expanded with 80 additional components from previous
interactomic investigations on this endonuclease ® to generate the final list of proteins (n=535) used in the

bioinformatic analysis.

Supplementary Table S2.
Identification details of the APE1-interacting proteins shown in Supplementary Table S1. Reported are

the identified proteins (blue cells) and peptides (pink cells), as well as the corresponding identification
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parameters. We show the information on fraction (WCE, NCE or CCE), protein false discovery rate
(FDR) confidence, protein accession, description, gene, exp. g-value, sum PEP score, sequence coverage
(%), number of identified peptides, PSMs, number of identified unique peptides, protein groups, number
of amino acids, molecular mass, pl, Found in sample, modification(s), emPAIl and Mascot identification
score values. Specific information on the identified peptides for each protein are also provided, including
identification confidence, sequence, modification, Quality PEP, Quality g-value, protein groups, proteins,
PSMs, master protein, position, missed cleavage, theor. MH*, Found in sample, ion score, Mascot

confidence, Percolator PEP and Percolator g-values Mascot.

Supplementary Table S3.

The literature evidences for the APE1-interacting partners described in this study.

Supplementary Table S4.

Functional annotation terms of the global APEL1-PPI network, APE1-PPI hubs network, and LUAD,
LIHC and PAAD bad prognosis networks based on Gene Ontology - Biological Process terms (p<0.05) in
sheet number 1, 2, 3, 4 and 5, respectively. Representative enrichment terms (lowest p-value) of each
group that were later used in pie charts for the aforementioned datasets (See Figure 3 C & D and Figure 6

C, F &I) are highlighted. For abbreviations, see Supplementary Table S6.

Supplementary Table S5.

Identification of enriched transcription factor binding sites (TFBS) in the APEL interactome gene
promoters (-2500, -1nt from the TSS) using the LASAGNA-Search 2.0 tool. Worksheet “LASAGNA.-
Search-results_APE1_PPI” contains the raw results of the motif discovery analysis, showing for each
promoter (n=531) the list of significantly enriched TFBS, sorted by increasing position within the FASTA
formatted genomic sequence, as well as the matching sequence, strand, score, p-value and e-value. The

worksheet “LASAGNA-APE1 PPI Topl0O pval” contains, for each promoter, the topl0 most
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informative hits, sorted by descending score and p-value (col. A-G). A list of unique transcription factors
(TFs) binding these sites is shown in col. I, as well as a summary table indicating the overall number of

promoters associated with every enriched TFBS, sorted by descending number of promoters (col. M-N).

Supplementary Table S6.

Abbreviations used for TCGA datasets.

Supplementary Table S7.

APE1-PPI bad prognostic signatures top regulators analysis. GeneXplain identification of the Top 3
putative master regulators of bad prognostic genes in the 11 selected TCGA cancer datasets (ranked by
ascending Ranks sum). Bibliographic references are given for the association with the proliferation,
apoptosis and resistance functional terms, indicating the involvement of top upstream regulators in these

pathways (x indicates that no reference was found).

Supplementary Table S8.

GeneXplain identification of the ToplO putative master regulators of the APE1-PPI global network

(ranked by ascending Ranks sum).
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Supplementary Figure S3
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Supplementary Figure S4
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