Mesenchymal stromal cells-derived exosomes ameliorate peripheral neuropathy in a mouse model of diabetes

Baoyan Fan¹, Chao Li¹, Alexandra Szalad¹, Lei Wang¹, Michael Chopp^{1, 2}, Wanlong Pan¹, Ruilan Zhang¹, Zheng Gang Zhang¹, Xian Shuang Liu¹

Electronic Supplementary Material ESM Fig. 1

ESM Fig. 1 MSC-exosomes characterized by Nanosight.

ESM Fig. 2

ESM Fig. 2 Treatment of non-diabetic db/m mice with MSC-exosomes did not significantly affect the neurological function measured by radial heat plate test (a), Von Frey test (b), MCV (c), and SCV (d). n=8/group. Data are analyzed with a one-way ANOVA with Tukey post hoc test.

ESM Fig.3

ESM Fig.3 Effects of MSC-exosomes on insulin signaling. (a) Pancreatic insulin content at week 8 (28-week-old) of all groups was evaluated. n=8/group. Western blot analysis (b) and quantitative data (c) of relative expression levels of phosphorylated forms of insulin-signaling molecules, IRS, AKT, and GSK-3 β . n=3/group. Data are analyzed with a one-way ANOVA with Tukey post hoc test. $\dagger p < 0.01$, vs db/m.