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EXPERIMENTAL DETAILS 

The experimental data was previously published (2) and analyzed in detail (1). Because the 
details are relevant for this work, here we duplicate the description from the Supporting Material 
of Ref. (1), updating it to include the 0.1 µM cytosolic Ca2+ data and omitting references to specific 
figures and the 100 µM luminal Ca2+ data not used in the present work. 

Studies were undertaken with approval by the Animal Care and Use Committee of Rush 
University Medical Center.  

Sarcoplasmic reticulum (SR) microsomes were generated from rat ventricular muscle. 
Microsomes were isolated as previously described (3) and stored at –80 C. Lipid bilayers (diameter 
100 µm) were comprised of a 5:4:1 mixture (50 mg/ml in decane) of phosphatidylethanolamine, 
phosphatidylserine, and phosphatidylcholine. Solution on one side of the bilayer (cis) was virtually 
grounded. The cis solution initially contained a HEPES-Tris solution (250 mM HEPES and 120 
mM Tris, pH 7.4). The solution on the other side of the bilayer was initially a HEPES-Ca2+ solution 
(50 mM HEPES and 10 mM Ca(OH)2, pH 7.4). The SR microsomes (5–15 µg) were added to the 
cis solution along with 500 mM CsCl and 2 mM CaCl2 to promote microsome fusion. Fusion of 
RyR2-containing microsome results in the RyR2’s cytosolic side facing the cis compartment and 
its luminal domains in the other compartment (4). 

After single-RyR2 activity was observed, the cytosolic solution was immediately replaced 
to establish the various test recording conditions. The luminal solution was changed 10 minutes 
later. Specifically, the cytosolic recording solution contained 0.1–1000 µM of free Ca2+, 0.5 mM 
EGTA, 1 mM of free Mg2+, 5 mM of total ATP, 114 mM Tris, and 250 mM HEPES (pH 7.4). (All 
solutions were designed using the MAXC program at maxchelator.stanford.edu). The luminal 
recording solution contained 1000 µM free Ca2+ and 200 mM Cs+-HEPES (pH 7.4). Final 
recording solutions are listed in Table S1. 

The 10 minute interval before changing the luminal solution means the RyR2 was exposed 
to 10 mM Ca2+, sufficiently long to promote calsequestrin (CASQ) dissociation (if any CASQ was 
associated with the RyR2). This CASQ stripping process is analogous to that applied by others (5-
7). CSQ was stripped from the RyRs so that the RyR2 tested were not subject to CASQ-based 
luminal regulation and so that a homogenous population of RyRs was studied, as not all channels 
in this preparation are associated with CSQ (5). 

All recordings were done at room temperature with current sampled at 50 µs/point (20 kHz) 
and filtered at 1 kHz. No correction for missing events was made. Representative current traces 
may be found in Ref. (2) where some of the data was previously published. The applied potential 
was 20, 30, or 40 mV to produce luminal-to-cytosolic cation flux. Individual recordings were 
performed with one applied potential, and most ionic conditions had recordings with at least two 
voltages. The potential did not affect Po , as shown in Fig. 1B of Ref. (1). 

 
 Cs+ Tris+ Ca2+ (free) Mg2+ (free) ATP (total) 

cytosolic 0 114 mM 0.1, 1, 10, 50, 200, 1000 µM 1 mM 5 mM 
luminal 200 mM 0 1000 µM 0 0 

Table S1. Details of the recording solutions. 
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Single-channel analysis was done using pCLAMP9 software (Molecular Devices). The 
deadtime of the filter was ~0.185 ms. Table S2 shows details of the recordings. 

 

cyto [Ca2+]  
(μM) 

lum [Ca2+]  
(μM) 

# of  
channels 

total recorded 
open time  

(min) 

total recorded 
closed time  

(min) 

# of  
openings 

0.1 1000 9 0.0583 14.059 2,017 
1 1000 16 4.201 55.946 26,749 
10 1000 13 35.689 40.965 165,662 
50 1000 13 42.773 11.403 129,124 
200 1000 14 18.437 8.157 331,197 
1000 1000 8 10.661 3.025 160,985 

Table S2. Details of the single-channel recordings: cytosolic [Ca2+] (column 1), luminal [Ca2+] 
(column 2), number of channels (column 3), total number of minutes in the open and closed states 
across all recordings (columns 4 and 5). Column 6 lists the total number of openings across all 
recordings, which is equal to the number of closings ±1. 

FITTING EXPONENTIALS TO OT AND CT DISTRIBUTIONS 
For each cytosolic [Ca2+] (Table S1), open time (OT) and closed time (CT) distributions 

were fit (independently of each other) by first converting them to logarithmic times and fitting the 
log-converted hyperexponential probability density function (pdf), as suggested by Sigworth and 
Sine (8). Specifically, open (subscript o) and closed (subscript c) time hyperexponential pdfs were 

 /( ) iti
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where x o  or c, and the log-transformed pdfs were 
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i
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where ln( )i i   and ln( )x t . 

Eq. (3) was fit to the log-dwell times using Mathematica 11.3 (Wolfram Research, 
Champaign, IL, USA) subject to the constraint that MXT (i.e., MOT or MCT) be preserved: 

 MXT.i i
i

a    (4) 

The largest time constant was determined prior to this by fitting a line to the last few points of the 
log-count of the log-dwell time histogram. This produced more reliable long-time fits. 

The entire OT or CT data set were used (for a given cytosolic [Ca2+]) without excluding 
any events. For the two-state gating scheme, the time constant is the MXT and a is 1. For the 
uncorrelated multi-τ gating scheme, the data histograms used for fitting used 0.1-wide bin on the 
ln-time scale. 

For the correlated multi-τ gating scheme, all consecutive pairs of closures and openings 
were grouped into small log-time CT bins and then these bins were combined so that there were 
at least 1000 openings in each bin to ensure a sufficient number of events for proper fitting. The 
OTs from each CT bin when then fit using the same method described for the uncorrelated multi-
τ scheme. A similar procedure was done for pairs of consecutive openings and closures. 
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All fits were checked for quality by visual inspection and metrics like 2R  values. 
Representative fits of the correlated multi-τ gating scheme are shown in Fig, S1. They also show 
why correlated OTs and CTs may give different results; the pdfs are different for short CTs 
preceding the opening (Fig. S1A) and long previous closures (Fig. S1B). 

Our goal was solely to fit and reproduce the data as best as possible, not to determine the 
optimal number of exponentials that define Markov gating scheme (e.g., using maximum 
likelihood fitting algorithms). In fact, we do not construct any Markov schemes, and therefore it 
should noted that in this paper the terms “open state” and “closed state” are used exclusively to 
mean the conducting and nonconducting states when the current is on or off, respectively, and not 
the multiple “open” and “closed” states used in Markov gating models. 

Two-state model and missed events 
One possible reason the two-state model may fail to more faithfully reproduce the multi-τ 

gating schemes’ results is that our experimental data was not corrected for missed events that were 
too short to resolve. Then the two-state Markov model may potentially generate many short events 
and thereby may influence (re)triggerability. We applied the two-state model correction of Roux 
and Sauvé (9) to test this, but only small quantitative differences (and no qualitative differences) 
were found between the missing-events-corrected two-state model and the uncorrected one (data 
not shown). 

Specifically, we set the minimum time interval resolution ( m ) to be twice the deadtime of 

the filter and determined new open and closed time constants ( o  and c , respectively) based on 

the fact that, for a two-state model, the time constant is the MXT (i.e., MOT or MCT). o  and c  

are the “real” MXT (i.e., missing event corrected). Knowing the measured mean open and closed 
times (denoted meas

oT  and meas
cT , respectively), these are related by (9) 

 0/ /
meas meas; m c mo c

o cT e T e        (5) 

which may be solved numerically for the new time constants. These are substantially different only 
when meas

oT  or meas
cT  are small (e.g., MOT at low cytosolic [Ca2+]), but overall made not impact on 

RyR group dynamics. 
 

 

Fig. S1. Fitted pdfs (lines) and histograms (bars) of OTs for 1 µM cytosolic [Ca2+] for CT 
(A) between 0 and 0.531 ms and (B) greater than 530.9 ms. 
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SIMULATION DETAILS 
All simulations were performed using Mathematica 11.3 (Wolfram Research, Champaign, 

IL, USA) with custom-written code. 

Flow chart 
At the beginning of each timestep each RyR in the array has associated with it 4 pieces of 

data: 1) its current state s (open s o  or closed s c ); 2) nowT , the amount of time it has been in 

that state (i.e., since it last flipped states); 3) prevT , the duration of the previous state (e.g., if 

currently open, the length of the previous closure); 4) C, a cytosolic [Ca2+]. If the channel is closed, 
then C is the [Ca2+] at the center of the channel at the end of the last timestep. If, however, the 
channel is open, then the channel does not react to Ca2+ (1). Therefore, we define C as the [Ca2+] 
of the closed channel in the timestep before it opened. 

When the simulation starts, all channels are closed and C is the background cytosolic 
[Ca2+]. For each channel, nowT  is a random time chosen from the pdf of all experimental closed 

times (either the one fit with one exponential when using the two-state gating scheme or the one 
fit with multiple exponentials when using either multi-τ gating scheme). prevT  is randomly chosen 

similarly from the pdf of open times. 
During the nth timestep of length t , the following steps evolve the state of the channels, 

with each step described in detail below: 
1. The radial [Ca2+] profile 1( , )nc r t   of each RyR is calculated using Eqs. (14) and (8). Each 

profile includes not only the flux of the channel if it is currently open, but also the diffusion of 
Ca2+ from any previous openings; after a channel closes, its Ca2+ continues to diffuse. 

2. The cytosolic [Ca2+] on the face of each RyR is computed as the sum of all these [Ca2+] profiles 
at the centers of each RyR in the array. 

3. For each channel in the array we compute C. If a channel is closed, then its C becomes the 
[Ca2+] computed in step #2. If it is open, then C is unchanged. Thereby, the channel only reacts 
to cytosolic [Ca2+] when it is closed and the open state is defined by the [Ca2+] of the previous 
closed state (1). 

4. Based on this C, the appropriate ( )sf t  is defined by interpolating between experimental [Ca2+] 

using Eq. (18). For the correlated gating scheme, the appropriate experimental ( )sf t  were 

chosen based on prevT . For example, if prev 0.3T   ms, s o , and 1C   µM , then the ( )of t  in 

Fig. S1A is used. If, however, prev 600T   ms, then the one in Fig. S1B is used. 

5. The new state and associated data of each channel in the array is computed as follows: 
a. The ( )sf t  from step 4 is used in Eq. (17) with nowT T  to compute the probability p 

that the channel will not change states. 
b. A uniformly-distributed random number r between 0 and 1 is chosen. 
c. If 1r p  , then the channel state flips (i.e., s goes from o to c or from c to o). If not, 

then s remains unchanged. 
d. If the state remained unchanged, then nowT  is updated to nowT t   and prevT  is 

unchanged. If the state changed, then nowT  is set to 0 and prevT  is set to nowT t  . 

The cycle is repeated until the end of the total simulation time, usually 100 seconds. 
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Computing Ca2+ flux 
The flux from each RyR is computed as a flux from a point source diffusing radially into 

infinite half-space. This has the advantage of having an analytic solution (10) that, for a constant 
current that turns off intermittently, is fast to compute. Here, we briefly summarize the result. 

The spherically-symmetric diffusion equation from a point source is 

 2
2

( ) ( )
2

c D c j
r t r

t r r r r
 


        

  (6) 

where ( , )c r t  is the radial (r) concentration profile in time (t) with flux j. ( )t  is 0 when the 
channel is closed and 1 when open. ( )r  is the Dirac delta-function and D is the diffusion 
coefficient. Note that we use 2  in the denominator of the source term instead of 4  because all 
the flux diffuses into half-space only, instead of in all radial directions; this requires doubling the 
current from the full radial case. 

Discretizing time by kt k t  , we nondimensionalize by defining 
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where erf is the error function and k  is 0 when the channel is closed during the time interval 

1[ , )k kt t   and 1 when it is open. For the first term with 0m  , we use the relation erf( ) 1  . 

Next we take advantage of the fact that channels are open for consecutive timesteps; that 
is, 1k   for a large number of k. If the channel is open from Kt  to 1Lt  , then at 1nt   we have 

 1
0 0

( ) ( , )
n n L

n n m m k n k n k n
m k k K

R F e F e F e F K L      
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 ( , ) erf erf .
1

n

R R
K L

n L n K
             

  (13) 

This formula is easily generalized to multiple openings (separated by a closure), indexed by  , 
when the channel is open from Kt 

 to 1Lt  
: 

 1( ) ( , ).n n
a

R F K L       (14) 

Once enough time has passed between the current time ( 1nt  ) and a long-ago closure ( 1Lt  
), the 

diffused [Ca2+] becomes negligible and the oldest ( , )n K L   maybe discarded (e.g., when it is 

0.1% of the background [Ca2+]). Mathematically, ( , ) 0n K L   as n  . 
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[Ca2+] at channels 
The cytosolic [Ca2+] at each RyR in the array is the sum of currents from all channels. To 

avoid infinities, the [Ca2+] for a channel’s own flux is measured 7.5 nm away from the center while 
that from other channels is measured at the channel center. However, since RyRs do not respond 
to their own flux Ca2+ (they only respond to Ca2+ in the closed state) and Ca2+ diffuses quickly 
away from the channel when it closes, these differences in measurement location made no 
difference in the results. 

One advantage of having a constant flux (i.e., no SR [Ca2+] decrease) is that when n 
channels are open during a release event, the [Ca2+] felt by the closed channels in the array has the 
same distribution no matter how many RyRs are in the array and no matter the gating scheme (data 
not shown). It does, of course, depend on the number of open channels n and the unitary RyR flux. 
Therefore, any differences found with the same number of open channels at one flux is not a result 
of different [Ca2+] experienced by the closed channels. The distributions are shown in Fig. S2. 

 

Fig. S2. The distribution of cytosolic [Ca2+] felt by the closed channels in a 5×5 when n RyRs 
are open. n is shown at the top of each panel. The flux is 25,000 s–1. 



7 

Stochastic state flipping 

Computing probabilities 
Suppose that a channel has been open for time T. The probability that it will close during 

the next timestep t  is the conditional probability that it will close between T and T t   given 
that it has already been open for time T (11). Using the shorthand notation of @o t  and @c t  to 
denote open at time t and closed at time t, respectively, this conditional probability is 
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  (15) 

Numerically it is somewhat faster to compute the probability of staying in the same state: 
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For ( )of t  given by Eq. (1), this becomes 
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The formula for a closed channel to open is similar. 
One important consequence of Eq. (17) is that it shows that the two-state case (with only a 

single exponential to fit the data) is qualitatively different from having multiple exponentials: the 
probability of flipping states is independent of T, the length of time the channel was already open; 
Eq. (17) gives that the two-state flipping probability is always /1 te  . 

Dwell time distributions at non-experimental cytosolic [Ca2+] 
The experiments were performed the six cytosolic [Ca2+] listed in Table S1. Therefore, we 

have the ( )sf t  of Eq. (1) only for these [Ca2+] while the simulations will produce a continuum of 

[Ca2+]. To interpolate the ( )sf t  for a specific [Ca2+] (i.e., the [Ca2+] at the center of a channel 

produced from neighboring open RyRs) we linearly the interpolate between the logarithm of the 
experimental concentrations that bracket the needed [Ca2+]. For example, if the needed [Ca2+] is c 
and the bracketing experimental concentrations are c1 and c2 and if 10log ( )c  is fraction   between 

10 1log ( )c  and 10 2log ( )c , then we use 

 1 2( ) (1 ) ( ) ( ).c c
s s sf t f t f t      (18) 

Because the individual ( )ic
sf t  are pdfs, so is the new ( )sf t . 
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RyR array geometry 
The RyR2s were arranged in a square arrays with center-to-center distance of 28 nm, 

consistent with recent experimental findings (12). The main focus was on arrays of size 5×5 and 
7×7, but simulations for 3×3, 10×10, and 14×14 were also performed. 

Parameters 
For all simulations we used 100t   µs, 0.1 µM background cytosolic [Ca2+] for multi-

channel simulations (the stated background [Ca2+] for single-RyR simulations), and a Ca2+ 
diffusion coefficient of 101.58 10  m2/s. This diffusion coefficient is 20% of the experimental 
value to mimic the slow diffusion in the subsarcolemmal space and is similar to the value of 

101.4 10  m2/s used by Cannell et al. (13). 

Correlated single-RyR simulations 
The correlated multi-τ gating scheme reproduces the OT/CT correlations (1), as shown in 

Fig. S3. The two-state and uncorrelated multi-τ gating schemes produce flat lines  (data not shown). 
Experimentally, these correlations are found consistently in the presence and absence of 

calsequestrin and in species other than rat (unpublished data from Michael Fill, Rush University). 
While the origin of the correlations is unknown, they are not due to modal gating. This is shown 
in the data by the narrow confidence bands in the Fig. S3, meaning the open time of an event is 
very close to the mean open time of similar events; modal gating would produce a wider intervals 
due to the changing of modes between short and long openings. Moreover, the simulations show 
this by reproducing the experimental correlations without having modal gating in them; the gating 
scheme uses the experimental data as a whole, and thus does not include or produce modal gating. 

 

 

Fig. S3. (A) Correlations between CT and the previous events’ mean OT. (B) Correlations 
between OT and the previous events’ mean CT. In both panels, the experimental data and 95% 
confidence intervals are in the dark shades and the single-channel simulation results using the 
correlated multi-τ gating scheme in the light shades. Confidence intervals were computed as 
described in Ref. (1) by bootstrap resampling of entire experimental and simulated records. The 
cytosolic [Ca2+] is shown for each curve. All the experimental curves except the purple 0.1 µM 
one are the same as in Ref. (1) except that confidence intervals are slightly different because 
the bootstrapping, a random resampling process, was redone here. 
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RESULTS FOR DIFFERENT CLUSTER SIZES 
The rate at which Ca2+ release events happen (i.e., their frequency) is shown in detail in 

Fig. S4A–C. Specifically, the frequency of release events with a maximum of 1 (left column), 2 
(middle column), and 3 or more (right column) open RyRs is shown. The frequency of these latter 
events decreases sharply at a threshold flux because above that threshold the release events never 
terminate and so, in the extreme, there is only one very long event per 100-sec-long simulation. 
Consequently, the smaller release event frequency also drops off. 

 

 

 

Fig. S4. The frequency of various types of Ca2+ release events versus unitary RyR Ca2+ flux for 
arrays of size (A) 5×5, (B) 7×7, and (C) 10×10. Left column: only 1 RyR open during the event. 
Middle column: up to 2 RyRs were open. Right column: 3 or more RyRs were open. The line 
connects the mean of 25 separate simulations and the error bars are the 25th and 75th percentiles 
of the event frequency across those 25 simulations. Black lines: two-state gating scheme. Red 
lines: uncorrelated multi-τ scheme. Blue lines: correlated multi-τ scheme. 
Panels D and E are the same as Fig. 2B and C, respectively, but for the 10×10 array. 
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The results shown in Fig. 3 in the main text for the 5×5 array are shown in Fig. S5 for the 
7×7 and 10×10 arrays. 

 

 
 

 

Fig. S5. Same as Fig. 3 in the main text, but for (A) 7×7 and (B) 10×10 arrays. 
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