SUPPLEMENTAL MATERIAL

Data S1. Sample STATA dose-response code - SSBs intake and incident hypertension.

version 15 import excel "[usedataset]", sheet("forStata") firstrow case(lower) sort id quintile list rr lci uci case id doseinml quintile tab id capture drop lnrr capture drop lnse gen type=2 gen lnrr=log(rr) gen lnuci=log(uci) gen lnlci=log(lci) gen lnse =((lnuci-lnlci)/(2*invnorm(0.975))) gen dose=doseinml * scale check sum dose, d * linear DR drmeta lnrr dose, data(py case) id(id) type(type) se(lnse) eform reml lincom dose*355, eform //per 355 ml score return list global b0=r(estimate) global b1: display %4.2f r(estimate) global lci1: display %04.2f r(lb) global uci1: display %04.2f r(ub) global p1: display %04.3f r(p) if \$p1<0.0001 { global p1="<0.0001" else { global p1="= \$p1" } global captionlinear= "RR{sub:per 355 ml/per-serving} \$b1 [95% CI \$lci1, \$uci1] {&bull} P{sub:linear} = \$p1" drmeta_gof //goodness of fit for linear - Deviance=59.5 [lower better], R2=0.66 [higher better] drmeta lnrr dose, data(py case) id(id) type(type) se(lnse) eform reml lincom dose*1, //per 1 score global eb1=r(estimate) display \$eb1 * non-linear using splines capture drop doses1 capture drop doses2 sum dose, d mkspline doses = dose, nk(3) cubic displayknots mat knots = r(knots) *departure from linearity drmeta lnrr doses1 doses2 , data(py case) id(id) type(type) se(lnse) reml testparm doses2 //wald test test global pdep0 r(p) global pdep1: display %5.3f \$pdep0 display \$pdep1 // global pnl ="P-value{sub:non-linearity}s = \$pdep1"

* dose estimate non-linearity

clear

global dl=355 //dose to show RR for 355 ml
drmeta lnrr doses1 doses2 , data(py case) id(id) type(type) se(lnse) reml
drmeta_graph, dose(\$dl) ref(0) matk(knots) eform list nodraw
matrix r=r(E)
global b\$dl: display %4.2f r["r1","_xb"]
global lci\$dl: display %04.2f r["r1","_lb"]
global uci\$dl: display %04.2f r["r1","_ub"]
global rr\$dl= "RR{sub:\$dl g} \${b\$dl} [\${lci\$dl}, \${uci\$dl}]"
display "\${rr\$dl}"

global captionnl="\$pnl {&bull} {it:\${rr\$dl}}"

tabstat rr dose, stat(min max)

global xtitle="xtitle(Consumption (g/day))"
global doserange= "dose(0(5)1400)"
global ytitle="ytitle(Relative Risk)"
global yscale="yscale(range(0.9 1.4)) ylabel(0.9 1 1.2 1.4, format(%5.2g))"
global yline="yline(1, lcol(red) lw(thick) lp(.))"
global title="t1title(Sugar-sweetened beverages)"

* non-linear with linear line with bubbles

drmeta lnrr doses1 doses2 , data(py case) id(id) type(type) se(lnse) eform reml drmeta_graph, ref(0) matk(knots) eform addplot(\$eb1*d) \$xtitle \$doserange \$ytitle \$yscale \$yline \$title graph addplot scatter rr dose if quintile==1, mfcolor(gs13) mlcolor(gs10) below jitter(2) \$yscale graph addplot scatter rr dose[w=1/lnse^2] if quintile!=1, mcolor(gs15) ms(circle) below \$yscale note("\$captionlinear" " " "\$captionnl", size(vsmall) color(gs1) box) graph export "ssb-spline-1a.pdf", replace

* non-linear with linear line without bubbles

drmeta lnrr doses1 doses2 , data(py case) id(id) type(type) se(lnse) reml drmeta_graph , ref(0) matk(knots) eform addplot(\$eb1*d) note("\$captionlinear" " " \$captionnl", size(vsmall) color(gs1) box) \$xtitle \$doserange \$ytitle \$yscale \$yline \$title graph export "ssb-spline-1b.pdf", replace

Data S2. Dose-response raw data.

Study - Cohort	Dietary Assessment	Exposure (median)	Relative Risk (95% CI)
SSBs			
Barrio-Lopez et al., 2013 – SUN ¹	Validated FFQ	0 ml/d	1.00 (Reference)
		165 ml/d	1.30 (1.10, 1.80)
		330 ml/d	1.60 (1.30, 2.10)
Cohen et al., $2012 - \text{NHS}^2$	Validated FFQ	12 ml/d	1.00 (Reference)
		29 ml/d	1.02 (0.99, 1.04)
		203 ml/d	1.04 (1.01, 1.07)
		355 ml/d	1.12 (1.08, 1.17)
Cohen et al., 2012 – NHSII ²		12 ml/d	1.00 (Reference)
		29 ml/d	1.00 (0.96, 1.04)
		203 ml/d	1.07 (1.03, 1.11)
		355 ml/d	1.17 (1.11, 1.23)
Cohen et al., 2012 – HPFS ²		12 ml/d	1.00 (Reference)
		29 ml/d	0.97 (0.93, 1.02)
		203 ml/d	1.04 (1.00, 1.10)
		355 ml/d	1.06 (0.99, 1.14)
Dhingra et al., $2007 - FOC^{3}$	Validated FFQ	0 ml/d	1.00 (Reference)
		355 ml/d	1.12 (0.94, 1.34)
		533 ml/d	1.14 (0.97, 1.32)
		710 ml/d	1.15 (0.92, 1.42)
Duffey et al., 2010 – CARDIA ⁴	Validated SFFQ	0 ml/d	1.00 (Reference)
		337 ml/d	1.06 (0.97, 1.16)
Kang et al., 2017 – KoGES ⁵	Validated SFFQ	0 ml/d	1.00 (Reference)
		36 ml/d	0.93 (0.83, 1.04)
		71 ml/d	1.28 (1.12, 1.48)
		143 ml/d	1.55 (1.18, 2.03)
Kwak et al., 2018 – KoGES ⁶	Validated SFFQ	0 ml/d	1.00 (Reference)
		58 ml/d	1.04 (0.87, 1.24)
		208 ml/d	1.12 (0.95, 1.33)
		875 ml/d	1.21 (1.02, 1.45)
Mirmiran et al. 2015 – TLGS ⁷	Validated SFFQ	1 ml/d	1.00 (Reference)
		9 ml/d	0.80 (0.27, 2.33)
		33 ml/d	1.35 (0.50, 3.51)
		100 ml/d	2.59 (1.05, 5.97)
Sayon-Orea et al., 2015 – SUN ⁸	Validated SFFQ	0 ml/d	1.00 (Reference)
5		99 ml/d	1.07 (0.94, 1.22)
		198 ml/d	1.34 (1.09, 1.65)
Weng et al., 2013 – ARIC ⁹	Validated FFQ	0 ml/d	1.00 (Reference)
6 ,		178 ml/d	1.11 (1.01, 1.23)
		355 ml/d	1.02 (0.90, 1.16)
Winkelmayer et al., 2005 – NHS ¹⁰	Validated FFQ	0 ml/d	1.00 (Reference)
		355 ml/d	1.09 (0.98, 1.22)
		888 ml/d	1.11 (0.95, 1.30)
		1420 ml/d	1.44 (0.98, 2.11)
Winkelmayer et al., 2005 – NHSII ¹⁰		0 ml/d	1.00 (Reference)
J,		355 ml/d	1.13 (1.03, 1.24)
		888 ml/d	1.24 (1.11, 1.38)
		1420 ml/d	1.28 (1.01, 1.62)
Fruit	1		
Auerbach et al., 2017 – WHI ¹¹	Validated SFFQ	26 g/d	1.00 (Reference)
1		61 g/d	1.00 (0.99, 1.04)

		70 -/1	1 01 (0 09 1 04)
		79 g/d	1.01 (0.98, 1.04)
		140 g/d	1.00 (0.97, 1.03)
D 1 1 2016 NHG 12		210 g/d	1.02 (0.98, 1.04)
Borgi et al., 2016 – NHS ¹²	Validated FFQ	50 g/d	1.00 (Reference)
		69 g/d	0.97 (0.93, 1.01)
		88 g/d	0.95 (0.92, 0.99)
		219 g/d	0.94 (0.91, 0.98)
		350 g/d	0.96 (0.88, 1.03)
Borgi et al., 2016 – NHSII ¹²		50 g/d	1.00 (Reference)
		69 g/d	1.03 (0.99, 1.07)
		88 g/d	0.97 (0.94, 1.07)
		219 g/d	0.91 (0.87, 0.95)
10	_	350 g/d	0.91 (0.81, 1.02)
Borgi et al., 2016 – HPFS ¹²		50 g/d	1.00 (Reference)
		69 g/d	0.95 (0.89, 1.00)
		88 g/d	0.92 (0.88, 0.97)
		219 g/d	0.92 (0.87, 0.97)
		350 g/d	0.88 (0.81, 0.97)
Kim et al. J Acad Nutr, 2017 – KoGES ¹³	Validated SFFQ	0 g/d	1.00 (Reference)
(men)		150 g/d	0.58 (0.45, 0.75)
		300 g/d	0.44 (0.34, 0.57)
		400 g/d	0.44 (0.32, 0.60)
Kim et al. J Acad Nutr, 2017 – KoGES ¹³		0 g/d	1.00 (Reference)
(women)		150 g/d	0.71 (0.54, 0.95)
		300 g/d	0.44 (0.33, 0.58)
		400 g/d	0.33 (0.24, 0.45)
Koochakpoor et al., 2018 – TLGS ¹⁴	Validated SFFQ	0 g/d	1.00 (Reference)
		80 g/d	0.83 (0.68, 1.40)
		200 g/d	0.97 (0.58, 1.77)
		320 g/d	0.89 (0.63, 1.30)
Nunez-Cordoba et al., 2009 – SUN ¹⁵	Validated SFFQ	160 g/d	1.00 (Reference)
		248 g/d	0.86 (0.66, 1.13)
		408 g/d	0.94 (0.70, 1.27)
		568 g/d	1.02 (0.72, 1.27)
		640 g/d	0.85 (0.59, 1.22)
Psaltopoulou et al., 2004 – EPIC ¹⁶	Validated SFFQ	106 g/d	1.00 (Reference)
		318 g/d	0.61 (0.45, 0.83)
Steffen et al., 2005 – CARDIA ¹⁷	Validated SFFQ	2 g/d	1.00 (Reference)
		31 g/d	0.88 (0.72, 1.06)
		61 g/d	0.83 (0.68, 1.01)
		105 g/d	0.85 (0.69, 1.04)
		131 g/d	0.75 (0.60, 0.94)
Tsubota-Utsugi et al., 2011 – Ohasama ¹⁸	Validated FFQ	38 g/d	1.00 (Reference)
		51 g/d	0.73 (0.46, 1.09)
		82 g/d	0.78 (0.50, 1.16)
		100 g/d	0.51 (0.29, 0.81)
Wang et al., 2012 – WHS ¹⁹	Validated FFQ	44 g/d	1.00 (Reference)
		88 g/d	0.99 (0.92, 1.06)
		153 g/d	0.98 (0.90, 1.06)
		219 g/d	0.98 (0.91, 1.06)
		263 g/d	0.95 (0.88, 1.04)
Weng et al., 2013 – ARIC ⁹	Validated FFQ	89 g/d	1.00 (Reference)
·····		123 g/d	1.06 (0.94, 1.19)
		153 g/d	0.98 (0.87, 1.10)
		181 g/d	1.08 (0.96, 1.22)
	1	101 5/4	1.00 (0.20, 1.22)

		225 g/d	1.06 (0.93, 1.20)
Yogurt			
Alonso et al., 2009 – ARIC ²⁰	Validated FFQ	2 g/d	1.00 (Reference)
		74 g/d	1.01 (0.89, 1.14)
		319 g/d	1.11 (0.86, 1.41)
Buendia et al., 2018 – NHS ²¹	Validated SFFQ	7 g/d	1.00 (Reference)
		22 g/d	1.00 (0.97, 1.02)
		53 g/d	0.99 (0.96, 1.01)
		123 g/d	0.95 (0.92, 0.98)
		175 g/d	0.87 (0.81, 0.94)
Buendia et al., 2018 – NHSII ²¹		7 g/d	1.00 (Reference)
		22 g/d	0.96 (0.93, 1.00)
		53 g/d	0.95 (0.92, 0.98)
		123 g/d	0.93 (0.90, 0.97)
		175 g/d	0.89 (0.82, 0.96)
Buendia et al., 2018 – HPFS ²¹		7 g/d	1.00 (Reference)
		22 g/d	0.98 (0.93, 1.02)
		53 g/d	0.94 (0.89, 0.99)
		123 g/d	0.95 (0.89, 1.01)
		175 g/d	1.01 (0.89, 1.15)
Engberink et al., 2009 – MORGEN ²²	Validated SFFQ	12 g/d	1.00 (Reference)
		29 g/d	0.91 (0.74, 1.09)
		70 g/d	0.86 (0.71, 1.05)
		122 g/d	0.91 (0.74, 1.09)
Kim et al., Brit J Nutr, 2017 – KoGES ²³	Validated SFFQ	0 g/d	1.00 (Reference)
		20 g/d	0.67 (0.58, 0.76)
		49 g/d	0.71 (0.62, 0.81)
		78 g/d	0.71 (0.59, 0.85)
Steffen et al., 2005 – CARDIA ²⁴	Validated SFFQ	4 g/d	1.00 (Reference)
		11 g/d	1.00 (0.83, 1.20)
		18 g/d	0.88 (0.75, 1.04)
Wang et al., 2008 – WHS ¹⁷	Validated SFFQ	8 g/d	1.00 (Reference)
		16 g/d	0.95 (0.90, 1.01)
		88 g/d	0.95 (0.89, 1.01)
		193 g/d	0.93 (0.81, 1.07)
Wang et al., 2015 – FHS ²⁵	Validated FFQ	0 g/d	1.00 (Reference)
		227 g/d	0.95 (0.90, 0.99)
Dairy Desserts			
Alonso et al., 2009 – ARIC ¹⁷	Validated FFQ	14 ml/d	1.00 (Reference)
		273 ml/d	0.91 (0.83, 0.99)
		533 ml/d	0.88 (0.74, 1.04)
Steffen et al., 2005 – CARDIA ²⁰	Validated SFFQ	4 ml/d	1.00 (Reference)
		21 ml/d	0.81 (0.67, 0.98)
		40 ml/d	0.87 (0.71, 1.05)
		72 ml/d	0.79 (0.65, 0.97)
		93 ml/d	0.74 (0.60, 0.92)
Wang et al., 2008 – WHS ²²	Validated SFFQ	8 ml/d	1.00 (Reference)
		17 ml/d	1.08 (1.02, 1.14)
		89 ml/d	1.04 (0.97, 1.10)
		196 ml/d	1.13 (0.98, 1.31)
		250 ml/d	0.90 (0.76, 1.07)
100% Fruit Juice			
Auerbach et al., 2017 – WHI ⁴	Validated SFFQ	0 ml/d	1.00 (Reference)
		30 ml/d	0.98 (0.94, 1.01)
		77 ml/d	0.97 (0.94, 1.01)

		145 ml/d	0.98 (0.94, 1.01)
		231 ml/d	1.01 (0.97, 1.04)
Duffey et al., 2010 – CARDIA ¹³	Validated SFFQ	0 ml/d	1.00 (Reference)
		114 ml/d	0.89 (0.82, 0.97)
Fruit Drinks			
Mirmiran et al. 2015 – TLGS ⁷	Validated SFFQ	1 ml/d	1.00 (Reference)
		8 ml/d	2.00 (0.71, 5.66)
		20 ml/d	1.91 (0.65, 5.60)
		67 ml/d	1.28 (0.04, 3.94)
Sweet Snacks			
Asghari et al., 2016 – TLGS ²⁶	Validated SFFQ	7 g/d	1.00 (Reference)
		19 g/d	1.17 (0.45, 3.93)
		35 g/d	2.49 (0.82, 7.59)
		73 g/d	2.18 (0.70, 6.81)

Table S1. Search terms.

	MEDLINE		EMBASE		Cochrane
1	sugar*.mp.	1	sugar*.mp.	1	sugar*.mp.
2	exp fructose/	2	exp sugar/	2	exp fructose/
3	fructose.mp.	3	exp fructose/	3	fructose.mp.
4	HFCS.mp.	4	fructose.mp.	4	HFCS.mp.
5	exp High Fructose Corn Syrup/	5	HFCS.mp.	5	exp Nutritive Sweeteners/
6	sucrose.mp.	6	exp high fructose corn syrup/	6	sucrose.mp.
7	exp Dietary Sucrose/	7	sucrose.mp.	7	exp dietary sucrose/
8	sugar sweetened beverage*.mp.	8	exp dietary sucrose/	8	sugar sweetened beverage*.mp.
9	SSB.mp.	9	sugar sweetened beverage*.mp.	9	ssb.mp.
10	soda.mp.	10	SSB.mp.	10	soda.mp.
11	soft drink*.mp.	11	soda.mp.	11	soft drink*.mp.
12	exp Carbonated Beverages/	12	soft drink*.mp.	12	exp carbonated beverages/
13	carbonated beverages.mp.	13	exp soft drink/	13	non alcoholic beverage*.mp.
14	non alcoholic beverage*.mp.	14	exp Carbonated Beverages/	14	nonalcoholic beverage*.mp.
15	nonalcoholic beverage*.mp.	15	carbonated beverages.mp.	15	exp energy drinks/
16	exp Energy Drinks/	16	non alcoholic beverage*.mp.	16	energy drink*.mp.
17	energy drink*.mp.	17	nonalcoholic beverage*.mp.	17	smoothie*.mp.
18	smoothie*.mp.	18	exp energy drink/	18	((fruit or vegetable) and juice*).mp.
19	exp "Fruit and Vegetable Juices"/	19	energy drink*.mp.	19	fruit.mp.
20	fruit.mp.	20	smoothie*.mp.	20	exp fruit/
21	exp Fruit/	21	exp "fruit and vegetable juice"/	21	exp honey/
22	exp Honey/	22	fruit.mp.	22	y*g*rt.mp.
23	y*g*rt.mp.	23	exp fruit/	23	exp yogurt/
24	exp Yogurt/	24	exp honey/	24	ice cream*.mp.
25	ice cream*.mp.	25	y*g*rt.mp.	25	icecream*.mp.
26	icecream*.mp.	26	exp yoghurt/	26	exp ice cream/
27	exp Ice Cream/	27	exp ice cream/	27	cereal*.mp.
28	cereal*.mp.	28	ice cream*.mp.	28	dessert*.mp.
29	exp edible grain/	29	icecream*.mp.	29	sweets.mp.
30	dessert*.mp.	30	cereal*.mp.	30	confection*.mp.
31	sweets.mp.	31	dessert*.mp.	31	pastries.mp.
32	confection*.mp.	32	sweets.mp.	32	biscuit*.mp.
33	pastries.mp.	33	confection*.mp.	33	cookie*.mp.
34	biscuit*.mp.	34	exp bakery product/	34	cake*.mp.
35	cookie*.mp.	35	pastries.mp.	35	candy.mp.
36	cake*.mp.	36	biscuit*.mp.	36	candies.mp.
37	candy.mp.	37	cookie*.mp.	37	exp candy/

Table S1. Search terms (Continued)

	MEDLINE		EMBASE		Cochrane
38	candies.mp.	38	cake*.mp.	38	(chocolate adj2 milk).mp.
39	exp Candy/	39	candy.mp.	39	chocolate.mp
40	(chocolate adj2 milk).mp.	40	candies.mp.	40	exp cacao/
41	exp chocolate/	41	(chocolate adj2 milk).mp.	41	cacao.mp
42	chocolate.mp	42	exp chocolate/	42	or/1-41
43	exp cacao/	43	chocolate.mp	43	cohort.mp.
44	cacao.mp	44	exp cacao/	44	exp Prospective Studies/
45	or/1-44	45	cacao.mp	45	(prospective adj2 (cohort or study)).mp.
46	cohort.mp.	46	or/1-45	46	exp follow-up studies/
47	exp prospective study/	47	cohort.mp.	47	exp multivariate analysis/
	(prospective adj2 (cohort or				
48	study)).mp.	48	exp prospective study/	48	exp proportional hazards models/
49	exp Follow-Up Studies/	49	(prospective adj2 (cohort or study)).mp.	49	follow up study.mp.
50	exp Multivariate Analysis/	50	exp multivariate analysis/	50	(longitudinal adj2 study).mp.
51	exp Proportional Hazards Models/	51	exp proportional hazards model/	51	or/43-50
52	follow up study.mp.	52	follow up study.mp.	52	hypertensive*.mp.
53	(longitudinal adj2 study).mp.	53	(longitudinal adj2 study).mp.	53	exp Hypertension/
54	or/46-53	54	or/47-53	54	hypertension*.mp.
55	hypertensive*.mp.	55	hypertensive*.mp.	55	HTN.mp.
56	exp Hypertension/	56	exp Hypertension/	56	blood pressure.mp.
57	hypertension*.mp.	57	hypertension*.mp.	57	exp Blood Pressure/
58	HTN.mp.	58	HTN.mp.	58	systolic blood pressure.mp.
59	blood pressure.mp.	59	blood pressure.mp.	59	SBP.mp.
60	exp Blood Pressure/	60	exp Blood Pressure/	60	diastolic blood pressure.mp.
61	systolic blood pressure.mp.	61	systolic blood pressure.mp.	61	DBP.mp.
62	SBP.mp.	62	SBP.mp.	62	or/52-61
63	diastolic blood pressure.mp.	63	diastolic blood pressure.mp.	63	and/42,51,62
64	DBP.mp.	64	DBP.mp.		
65	or/55-64	65	or/55-64		
66	and/45,54,65	66	and/46,54,65		

Database	Total
MEDLINE: December week 2 2018	1,063
EMBASE: December week 2 2018	2,428
Cochrane: December week 2 2018	173
Manual search	5
Total	3,669

The original search was conducted November week 1 2016. The search was updated twice, to December week 2 2018.

Table S2. Definitions of food categories.

Super supersonal houseness (CCDs)	
Sugar-sweetened beverages (SSBs)	
Barrio-Lopez et al., 2013 – SUN ¹	Sugar-sweetened carbonated colas; fruit-flavoured carbonated sugar soft drinks
Cohen et al., 2012 – NHS, NHSII, HPFS ²	Sugar-sweetened cola; sugar-sweetened caffeine-free cola; sugar-sweetened non-cola; and fruit punch or other sugar-sweetened fruit drink
Dhingra et al., 2007 – FOC ³	Soft drinks (Coke, Pepsi, Sprite, or other carbonated soft drinks) – caffeinated or non-caffeinated
Duffey et al., 2010 – CARDIA ⁴	Sugar-sweetened soda; fruit drinks
Kang et al., 2017 – KoGES ⁵	Soft drinks (carbonated beverages, e.g., Cola and Sprite)
Kwak et al., 2018 – KoGES ⁶	Soft drinks (coke or sprite) and other sweetened drinks (sweetened rice drink and sweetened citrus tea)
Mirmiran et al., 2015 – TLGS ⁷	Sugar-sweetened carbonated soft drinks
Sayon-Orea et al., 2015 – SUN 8	Sugar-sweetened carbonated colas; fruit-flavored carbonated sugar soft drinks
Weng et al., 2013 – ARIC ⁹	Not specified
Winkelmayer et al., 2005 – NHS, NHSII 10	Regular cola (Coke, Pepsi, or other cola beverages with sugar)
Fruit	
Borgi et al., 2016 – NHS, NHSII, HPFS ¹¹	Whole fruits: raisins/grapes; fresh apples/pears; bananas; strawberries; blueberries; prunes; avocado; cantaloupe; oranges; peaches/apricots/plums
Kim et al., J Acad Nutr Diet, 2017 – KoGES ¹²	Tangerines, oranges, persimmon or dried persimmon, watermelon, strawberry, grape, pear, oriental melon/melon, peach or prune, apple, banana, and tomato
Auerbach et al., 2017 – WHI 13	Not specified
Koochakpoor et al., 2018 – TLGS ¹⁴	
Nunez-Cordoba et al., 2009 – SUN ¹⁵	
Psaltopoulou et al., 2004 – EPIC ¹⁶	
Steffen et al., 2005 – CARDIA 17	7
Tsubota-Utsugi et al., 2011 – Ohasama 18	
Wang et al., 2012 – WHS ¹⁹	7
Weng et al., 2013 – ARIC ⁹	7
Yogurt	
Wang et al., 2008 – WHS ²⁰	Low-fat yogurt
Buendia et al., 2018 – NHS, NHSII, HPFS ²¹	Yogurt (all types)
Alonso et al., 2009 – ARIC ²²	Not specified
Engberink et al., 2009 – MORGEN ²³	
Kim et al., Brit J Nutr, 2017 – KoGES ²⁴	7
Steffen et al., 2005 – CARDIA 17	7
Wang et al., 2015 – FHS ²⁵	
Dairy desserts	
Steffen et al., 2005 – CARDIA 17	Dairy desserts (not specified)
Wang et al., 2008 – WHS ²⁰	Low-fat sherbet
Alonso et al., 2009 – ARIC 22	Ice cream
100% Fruit juice	
Duffey et al., 2010 – CARDIA ⁴	Fruit juice (non-sweetened)
Auerbach et al., 2017 – WHI ¹³	100% fruit juice
Fruit drinks	
Mirmiran et al., 2015 – TLGS ⁷	Fruit juice – sugar-sweetened drinks and non-sweetened
Sweet snacks	
Asghari et al., 2016 – TLGS ²⁶	Candies, chocolates, cookies, cakes, biscuits, confectionery, caramels, and traditional Iranian confectioneries, such as gaz, sohan, noghl, halva, Yazdi cakes

dijusted model 14 17 14 11 12 15 17 16 21 22 22 11 12 16 8 15 11 12 10 22 10 12 16 17 10 9 8 9 unber of multivariable models resented 1 2 1 1 1 2 2 2 1 1 3 2 2 3 1 3 3 1 1 12 10 9 8 9 umber of multivariable models resented 1 2 1 1 1 2 2 2 1 1 3 2 2 3 1 3 3 1 1 2 2 4 3 3 1 3 3 1 3 3 1 3 3 1 3 3 1 3 3 1 3 3 1 3 3 1 3 3 1 3 3 1 3 3 3																															
	Alon so et al., 2009	al., 2016 – TLG	et al., 2017 – WHI	al., 2018 – HPF S, NHS, NHSI	Lope z et al., 2013 -	2016 - HPF	2016 - NHSI	2016 - NHS	al., 2012 – HPF	al., 2012 – NHSI	al., 2012 -	et al., 2007 -	al., 2010 – CAR	et al., 2009 – MOR GEN	2017 – KoG	Brit J Nutr, 2017 – KoG	J Acad Nutr Diet, 2017 – KoG	oor et al., 2018 – TLG	2018 - KoG	et. al., 2015 – TLG	Cord oba et al., 2009 –	lou et al., 2004 – EPIC	Orea et al., 2015 –	al., 2005 – CAR DIA	Utsu gi et al., 2011 - Ohas	g et al., 2008 – WHS ₂₀	g et al., 2012 –	g et al., 2015 – FHS	g e al., 2013 – ARIC	elma yer et al., 2005 – NHS	elma yer et al., 2005 – NHSI
Number of variables in fully adjusted model	14	7	14	11	12	15	17	16	21	22	22	11	12	13	13	12	16	8	15	11	12	10	22	10	12	16	17	10	9	8	9
Number of multivariable models presented	1	2	1	2	1	1	1	1	2	2	2	1	1	3	2	2	3	1	3	3	1	1	2	1	2	2	4	3	3	1	1
Timing of measurement of confounding variables	BL	BL	BL	Every 2y	BL	BL*	BL*	BL*	BL*	BL*	BL*	BL	BL	BL	BL†	BL†	BL†	BL	Every 2y	BL	BL	BL	BL	BL	BL	BL	BL		BL	Every 2y	Every 2y
Pre-specified primary confounding variable																															
Age	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Pre-specified secondary confounding variables																															
Smoking	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Markers of overweight/obesity (body mass index, weight, waist circumference, waist to hip ratio)	√§	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	√§	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark
Energy intake	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark		
Physical activity	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Sex	\checkmark	\checkmark	F	F / M#	\checkmark	M#	F	F	M#	F	F	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	F	F	\checkmark	\checkmark	F	F
Diabetes			\checkmark												\checkmark				\checkmark						\checkmark	\checkmark	\checkmark				
Alcohol consumption	\checkmark				\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark		\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark
Sodium intake	\checkmark		\checkmark																\checkmark		\checkmark		\checkmark		\checkmark				\checkmark		
Other confounding variables																															
Family history of HTN				\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark										\checkmark		\checkmark							\checkmark	\checkmark
Attempting to lose weight									\checkmark	\checkmark	\checkmark																				
Baseline blood pressure												\checkmark													\checkmark						
Baseline soft drink intake																															
Change in weight						\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark																				
Diet:																															
DASH style diet									\checkmark	\checkmark	\checkmark																				

Table S3. Confounding variables among the 26 articles on food sources of fructose-containing sugars and incident

Cohort Study	al.,	al.,	et al.,	Buen dia et al., 2018 – HPF S, NHS, NHS, NHSI I ²¹	Lope	2016	Borgi et al., 2016 – NHSI I ¹¹	2016	al.,	al., 2012 –	al.,	et al.	al., 2010 –	et al.,	2017	et al., Brit J Nutr, 2017 –	J Acad	hakp oor et al., 2018 –	ES 6	iran et. al	z- Cord oba et al., 2009	opou Iou	n- Orea et al., 2015 –	en et al., 2005 – CAR	ota- Utsu gi et al.,	g et al., 2008 – WHS 20	Wan g et al., 2012 – WHS ¹⁹	g et al., 2015 –	g e al., 2013 –	yer et al., 2005 –	elma yer et al.,
Modified Dietary Guidelines Adherence Index (DGAI) score																												\checkmark			
Mediterranean					\checkmark																									 	
diet adherence					V										-														µ!		
Healthy Eating Index (HEI) score			\checkmark																												
Energy from other beverages:																															
ASBs						\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark																			\checkmark	\checkmark
Caffeinated tea, coffee														\checkmark						\checkmark										\checkmark	\checkmark
Caffeinated coffee																												\checkmark			
Fruit juice													$\sqrt{**}$																		
Low fat milk													\checkmark																	 	
SSBs						\checkmark	\checkmark	\checkmark					\checkmark^{**}																		
Whole fat milk													\checkmark																		
Bread														\checkmark																 	
Calcium									\checkmark	\checkmark	\checkmark					\checkmark															
Carbohydrates									\checkmark	\checkmark	\checkmark																			 	
Glycemic index												\checkmark																		 	
Total fructose									\checkmark	\checkmark	\checkmark																			 	
Cereals																							\checkmark								
Fast food					\checkmark																										
Fat															\checkmark										\checkmark						
Saturated fat												\checkmark																		 	
Trans fat									\checkmark	\checkmark	\checkmark	\checkmark																		 	
Fiber		\checkmark							\checkmark	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark				\checkmark											
French fries					\checkmark																								ļļ	 	
Fruit	\checkmark			\checkmark										\checkmark						\checkmark			\checkmark			\checkmark			ļļ	 	
Legumes																	\checkmark						\checkmark								
Low fat dairy																					\checkmark		\checkmark				\checkmark		Ţ	7	
Whole fat dairy																			\checkmark				\checkmark								
Total Dairy																	\checkmark		\checkmark												

Cohort Study	so et al.,	ari et al., 2016 –	bach et al.,	dia et al.,	0- Lope z et al., 2013 – SUN	et al., 2016 – HPF	Borgi et al., 2016 – NHSI I ¹¹	et al.,	n et al.,	n et al., 2012 –	n et al.,	gra et al., 2007 -	y et al., 2010 –	erink et al.,	et al., 2017 – KoG	et al., Brit J Nutr, 2017 –	et al., J Acad Nutr Diet.	hakp oor	et al., 2018 -	iran et. al.,	Cord oba	opou	n- Orea et al., 2015 –	en et al., 2005 – CAR	ota- Utsu	2008	-	-	Wen g e al., 2013 – ARIC 9	yer et al., 2005 –	elma yer et al., 2005 –
				I ²¹													ES 12								18						
Magnesium Meat/meat									\checkmark	\checkmark	\checkmark	\checkmark																	┝───┤		<u> </u>
products/animal flesh					\checkmark	\checkmark	\checkmark	\checkmark						\checkmark			\checkmark														
Fish														\checkmark							\checkmark		\checkmark								
Red meat					\checkmark															\checkmark			\checkmark			\checkmark	\checkmark				
Nuts																											\checkmark				
Olive oil																							\checkmark								
Potassium	\checkmark																\checkmark		\checkmark				\checkmark								
Protein intake				\checkmark																											
Vegetables	\checkmark			\checkmark		\checkmark	\checkmark	\checkmark						\checkmark						\checkmark			\checkmark			\checkmark	\checkmark				
Vitamin D									\checkmark	\checkmark	\checkmark																				
Whole grains						\checkmark	\checkmark	\checkmark									\checkmark		\checkmark		\checkmark					\checkmark	\checkmark				
Vitamin use																								\checkmark		\checkmark	\checkmark				
Medical history																															
CVD															\checkmark	\checkmark	\checkmark		\checkmark						\checkmark						
Family History of Diabetes		\checkmark																		\checkmark											
Hypercholesterolemia																									\checkmark	\checkmark	\checkmark		1		
Menopausal status			\checkmark				\checkmark	\checkmark																		\checkmark	\checkmark			I	
Non-narcotic analgesics use						\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark																			I	
Oral contraceptive use							\checkmark			\checkmark	\checkmark																			I	\checkmark
Post-menopausal hormone use			\checkmark																								\checkmark				
Socio-economic status														\checkmark		\checkmark		\checkmark													
Education			\checkmark												\checkmark		\checkmark		\checkmark			\checkmark	\checkmark	\checkmark					\checkmark		
Income															\checkmark		\checkmark		\checkmark												
Ethno-cultural/geographical factors																															
Ethnicity			\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark											\checkmark		\checkmark	\checkmark		\checkmark		
Exam center	\checkmark												\checkmark											\checkmark					\checkmark		
Study visit	\checkmark																														
Residence (urban vs. rural)																\checkmark	\checkmark					\checkmark									
Others																															
(Alcohol) ²																							\checkmark								

Cohort Study	so et al., 2009 -	ari et al., 2016 –	bach et al., 2017 – WHI ¹³	dia et	o- Lope z et al., 2013 –	et al., 2016 – HPF	et al.,	et al., 2016 - NHS	n et al., 2012 –	n et al., 2012 –	n et al., 2012 –	gra et al., 2007 - FOC	y et al., 2010 –	erink et al., 2009 – MOR	et al., 2017 – KoG ES ⁵	et al., Brit J Nutr, 2017 – KoG ES ²⁴	et al., J Acad Nutr Diet,	hakp oor et al., 2018	et al., 2018 – KoG ES ⁶	iran et. al., 2015 – TLG	z- Cord oba et al., 2009	opou lou et al., 2004 –	n- Orea et al., 2015	en et al., 2005 – CAR DIA	ota- Utsu gi et al., 2011	g et al., 2008 – WHS ²⁰	g et al., 2012 –	g et al., 2015 –	g e al., 2013 – ARIC	et al., 2005	elma yer et al., 2005 –
(BMI) ²									\checkmark	\checkmark	\checkmark																				
Interactions btwn: (age and residence), (age and sex), (sex and residence)																						\checkmark									
Interactions between: (follow- up time and physical activity), (follow-up time and age)																												\checkmark			
Randomized treatment			\checkmark																							\checkmark	\checkmark				
SNP for cyclin D2 polymorphism																		\checkmark													

BL = Confounders measured only at baseline year

* Baseline for all confounders except for [change in weight], which was per food frequency questionnaire cycle

† Baseline for all confounders except for dietary confounders, which was assessed at baseline and follow-up ‡ Exams were (1991-1995), (1995-1998), (1998-2001), (2005-2008)

§ Both BMI and waist-to-hip ratio were controlled for

Indicates the study includes only female subjects

Indicates the study includes only male subjects
 ** Fruit juice analysis controlled for SSB intake, whereas SSB analysis controlled for fruit juice intake

 \checkmark Means variable adjusted for in the most adjusted model.

Study	Selection*	Outcome [†]	Comparability [‡]	Total §
Alonso et al., 2009 ²²	4	3	2	9
Asghari et al., 2016 ²⁶	4	3	1	8
Auberbach et al., 2017 ¹³	3	1	2	6
Barrio-Lopez et al., 2013 ¹	3	3	2	7
Borgi et al., 2016 ¹¹	3	2	2	6
Buenda et al., 2018 ²¹	2	2	1	5
Cohen et al., 2012 ²	3	2	2	6
Dhingra et al., 2007 ³	4	2	1	6
Duffey et al., 2010 ⁴	4	1	2	7
Engberink et al., 2009 ²³	3	2	1	6
Kang et al., 2017 ⁵	4	2	2	8
Kim et al., Br J Nutr, 2017 ²⁴	4	2	2	8
Kim et al., J Acad Nutr Diet, 2017 ¹²	4	2	2	8
Koochakpoor et al., 2018 ¹⁴	4	3	1	8
Kwak et al., 2018 ⁶	4	2	2	8
Mirmiran et al., 2015 ⁷	4	3	1	8
Nun [~] ez-Cordoba et al., 2009 ¹⁵	3	3	2	7
Psaltopoulou et al., 2004 ¹⁶	3	2	1	6
Sayon-Orea et al., 2015 ⁸	3	2	2	6
Steffen et al., 2005 ¹⁷	4	2	1	7
Tsubota-Utsugi et al., 2011 ¹⁸	4	2	2	7
Wang et al., 2008 ²⁰	3	2	2	6
Wang et al., 2012 ¹⁹	3	1	2	5
Wang et al., 2015 ⁹	3	2	1	6
Weng et al., 2013 ⁹	4	3	1	8
Winkelmayer et al., 2005 ¹⁰	3	3	1	6

Table S4. Newcastle-Ottawa Scale (NOS) for Assessing the Quality of Cohort Studies.

* Maximum 4 points awarded for cohort representativeness, selection of non-exposed cohort, exposure assessment and demonstration outcome not present at baseline.

[†]Maximum 3 points awarded for follow-up length, adequacy of follow-up and outcome assessment.

[‡] Maximum 2 points awarding for controlling for the pre-specified primary confounding variable (age) and ≥ 6 of the secondary confounding variables (sex, any marker of adiposity, smoking, energy intake, physical activity, diabetes/dysglycemia, alcohol intake, sodium intake).

§ A maximum of 9 points could be awarded.

Table S5.	Sensitivity	analysis	with s	vstematic	removal	of each	study.
				,			

Removal of:	Participants	Cases	Risk Ra	atio for Incident H	lypertension	Hete	erogeneity
Removal of:	N	Ν	RR	95% CI	p-value	²	p-value
SSBs							
All included:	427,630	120,553	1.17	[1.11, 1.23]	< 0.00001	66%	0.0004
Barrio-Lopez, Brit J Nutr, 2013 - SUN	8157	1464	1.14	[1.09, 1.20]	<0.00001	58%	0.006
Cohen, J Gen Intern Med, 2012 - HPFS	37360	13439	1.19	[1.12, 1.26]	<0.00001	66%	0.0006
Cohen, J Gen Intern Med, 2012 - NHS	88540	42022	1.19	[1.11, 1.28]	< 0.00001	66%	0.0002
Cohen, J Gen Intern Med, 2012 - NHSII	97991	21873	1.18	[1.10, 1.25]	<0.00001	67%	0.0005
Dhingra, Circulation, 2007 - FOC	2803	1377	1.17	[1.11, 1.24]	< 0.00001	69%	0.0002
Duffrey, Am J Clin Nutr, 2010 - CARDIA	2639	609	1.19	[1.12, 1.27]	<0.00001	63%	0.002
Kang, Brit J Nutr, 2017 - KoGES	4591	1309	1.15	[1.09, 1.21]	<0.00001	64%	0.001
Kwak, Eur J Nutr, 2018 - KoGES	5775	1175	1.17	[1.10, 1.24]	< 0.00001	69%	0.0003
Mirmiran, Nutr Metab, 2015 - TLGS	424	47	1.16	[1.10, 1.22]	< 0.00001	65%	0.0008
Sayon-Orea, Clin Nutr, 2015 - SUN	13843	1308	1.16	[1.10, 1.22]	< 0.00001	67%	0.0005
Weng, Nutrients, 2013 - ARIC	9913	2853	1.18	[1.12, 1.25]	<0.00001	67%	0.0004
Winkelmayer, JAMA, 2005 - NHS	61091	19541	1.16	[1.10, 1.23]	< 0.00001	68%	0.0003
Winkelmayer, JAMA, 2005 - NHSII	94503	13536	1.16	[1.10, 1.23]	< 0.00001	68%	0.0003
Fruit				·	•		
All included:	281,120	148,928	0.81	[0.73, 0.89]	< 0.0001	88%	<0.00001
Auerbach, Prev med, 2017 - WHI	80539	46202	0.77	[0.68, 0.87]	< 0.0001	87%	<0.00001
Borgi, Hypertension, 2016 - HPFS	20010	16752	0.79	[0.70, 0.89]	<0.0001	89%	<0.00001
Borgi, Hypertension, 2016 - NHS	39164	35375	0.78	[0.69, 0.88]	< 0.0001	89%	<0.00001
Borgi, Hypertension, 2016 - NHS II	63885	25246	0.79	[0.71, 0.88]	<0.0001	89%	<0.00001
Kim, J Acad Nutr Diet, 2017 - KoGES (men)	2085	606	0.84	[0.77, 0.93]	0.0005	86%	< 0.00001
Kim, J Acad Nutr Diet, 2017 - KoGES (women)	2172	552	0.87	[0.80, 0.94]	0.0009	80%	<0.00001
Koochakpoor, Nutr Res, 2018 - TLGS	1284	640	0.80	[0.72, 0.89]	<0.0001	89%	<0.00001
Nun [~] ez-Cordoba, Eur J Clin Nutr, 2009 - SUN	8594	426	0.80	[0.72, 0.89]	< 0.0001	89%	<0.00001
Psaltopoulou, Am J Clin Nutr, 2004 - EPIC	20343	5424	0.82	[0.74, 0.91]	0.0002	88%	<0.00001
Steffen, Am J Clin Nutr, 2005 - CARDIA	4304	997	0.81	[0.73, 0.90]	0.0001	88%	< 0.00001
Tsubota-Utsugi, J Hum Hypertens, 2011 - Ohasama	745	222	0.82	[0.74, 0.91]	0.0001	88%	<0.00001
Wang, Am J Hypertens, 2012 - WHS	28082	13633	0.78	[0.69, 0.88]	< 0.0001	89%	< 0.00001
Weng, Nutrients, 2013 - ARIC	9913	2853	0.78	[0.70, 0.87]	< 0.00001	89%	< 0.00001
Yogurt							
All included:	235705	97783	0.96	[0.86, 0.96]	0.0007	54%	0.03
Alonso, Eur J Clin Nutr, 2009 - ARIC	8208	2399	0.90	[0.85, 0.95]	0.0002	54%	0.03
Buendia, J Hypertens, 2018 - HPFS	30512	14166	0.90	[0.85, 0.95]	0.0002	53%	0.04
Buendia, J Hypertens, 2018 - NHS	69298	41934	0.92	[0.86, 0.98]	0.007	53%	0.04
Buendia, J Hypertens, 2018 - NHSII	84368	26282	0.91	[0.85, 0.97]	0.006	59%	0.02
Engberink, J Nutr, 2009 - MORGEN	3454	713	0.91	[0.86, 0.97]	0.002	58%	0.02
Kim, Brit J Nutr, 2017 - KoGES	4335	1556	0.92	[0.88, 0.96]	0.0003	30%	0.19
Steffen, Am J Clin Nutr, 2005 - CARDIA	4304	997	0.91	[0.86, 0.97]	0.002	60%	0.02
Wang, Brit J Nutr, 2015 - FHS	28886	8710	0.90	[0.84, 0.96]	0.002	53%	0.04
Wang, Hypertension, 2008 - WHS	2340	1026	0.90	[0.85, 0.96]	0.0008	58%	0.02

Each study was removed independently and the pooled estimate recalculated. The red and blue lines represent the original pooled risk estimate with all studies included. Inter-study heterogeneity was tested using the Cochran Q statistic (Chi^2) at a significance level of p<0.10, and quantified by the I² statistic. An I² value \geq 50% is considered to indicate substantial heterogeneity. All results are presented as Relative Risks (RR) with 95% Confidence Intervals.

Table S6. GRADE assessment.

			Qualit	y assessment					Effect	Quality
No. of comparisons	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Publication bias	Other considerations	Study event rates (%)	Relative Risk [95% CI]	Importance
SSBs intake on ir	cident hyperter	nsion (follo	ow-up median 1	0.0 years)						
13 24, 26-29, 32, 38, 44-46	Observational studies	No serious	Serious*	No serious	No serious	Detected†	Dose-response gradient‡	28%	RR 1.17 [1.11, 1.23]	⊕⊕⊝⊖ Low *,†, ‡
Fruit intake on in		sion (follo	w-up median 9.	0 years)						
13 ^{25, 30, 31, 33, 34, 36, 40,} 46, 48, 49	Observational studies	No serious	Serious§	No serious	No serious	Detected	Dose-response gradient#	53%	RR 0.81 [0.73, 0.89]	$ \bigoplus \bigoplus \ominus \ominus \\ \text{Low } \$, \parallel, \# $
Yogurt intake on	incident hypert	ension (fol	llow-up median	14.6 years)						
9 33, 35, 37, 41-43, 47	Observational studies	No serious	Serious**	No serious	Serious††	Not detected ##	Dose-response gradient§§	41%	RR 0.91 [0.86, 0.96]	⊕⊕⊝⊖ Low **,††,‡‡,§§
Dairy desserts int	ake on incident	hypertens	sion (follow-up i	median 10.0 yea	urs)					
3 33, 35, 42	Observational studies	No serious	No serious	No serious	Serious††	Not detected ##	None	29%	RR 0.85 [0.76, 0.95]	⊕⊖⊖⊖ Very low ††,‡‡
100% Fruit juice	intake on incide	ent hyperte	ension (follow-u	p median 13.9 y	years)					
2 28, 40	Observational studies	No serious	Serious	No serious	No serious##	Not detected ##	Dose-response gradient***	56%	RR 0.95 [0.85, 1.07]	⊕⊕⊝⊖ Low ‡‡, ,##,***
Fruit drinks intak	e on incident hy	pertension	n (follow-up 3.6	years)						
1 29	Observational study	No serious	No serious	Serious†††,‡‡‡	Serious§§§	Not detected ##	None	11%	RR 1.27 [0.43, 3.75]	⊕⊖⊖⊖ Very low ‡‡,†††,‡‡‡,§§§
Sweet snacks inta	ke on incident	hypertensi	on (follow-up 3	.6 years)						
1 39	Observational study	No serious	No serious	Serious†††,‡‡‡	Serious	Not detected ‡‡	None	11%	RR 2.00 [0.84, 4.76]	⊕⊖⊖⊖ Very low <u>‡‡</u> ,***,†††,

* Downgrade for serious inconsistency, as there was evidence of substantial inter-study heterogeneity (I²=66%, p=0.0004)

[†] There was evidence of funnel plot asymmetry via visual inspection and both the Egger (p=0.02) and Begg test were significant (p=0.04). Adjustment for funnel plot asymmetry by the recalculation of the pooled estimate by inputting missing studies using the Duvall and Tweedie trim and fill method did not alter the significance of the relationship, with only limited attenuation of the summary estimate (RR=1.12 [95% CI, 1.05-1.19]).

‡ Upgrade for dose-response gradient, as there was a significant harmful dose-response relationship between SSBs intake and hypertension with evidence for non-linearity (p=0.02).

\$ Downgrade for serious inconsistency, as there was evidence of substantial inter-study heterogeneity (I²=88%, p<0.00001).

|| There was evidence of funnel plot asymmetry as the Begg test was significant (p=0.09), although the Egger test was not significant (p=0.70). The Duvall and Tweedie trim and fill method did not perform any trimming and the pooled estimate did not change.

Upgrade for dose-response gradient, as there was a significant protective and linear dose-response relationship between fruit intake and hypertension.

** Downgrade for serious inconsistency, as there was evidence of substantial inter-study heterogeneity ($I^2=54\%$, p=0.03)

†† Downgrade for serious imprecision, as the upper CI bound crosses the clinically important protection threshold of RR=0.9.

‡‡ Bias cannot be excluded since we were unable to test for funnel plot asymmetry due to lack of power (<10 cohorts included in the analysis).

§§ Upgrade for dose-response gradient, as there was a significant protective dose-response relationship between yogurt intake and hypertension with evidence for non-linearity (p=0.02).

 $\parallel\parallel\parallel$ Downgrade for serious inconsistency, as there was evidence of substantial inter-study heterogeneity (I²=85%, p=0.01).

Although pairwise meta-analysis showed serious imprecision, this imprecision was explained by non-linear dose-response analysis.

*** Upgrade for dose-response gradient, as there was a significant U-shaped dose-response relationship between 100% fruit juice intake and hypertension (P-value for non-linearity=0.001).

††† Downgrade for serious indirectness due to limited number of cohort comparisons in specific groups which may not be generalizable to the general population.

the provided provided the provided and t

\$\$\$ Downgrade as the sample sizes were very small (n=424) and the 95% CI were very large (0.43, 3.75) containing evidence of both clinically important protection (RR<0.9) and harm (RR>1.1).

Downgrade as the sample size was very small (n=439) and the 95% CI were very large (0.84, 4.76) containing evidence of both clinically important protection (RR<0.9) and harm (RR>1.1)

Figure S1. Forest plot – Pairwise meta-analysis of SSBs intake and incident hypertension.

Author, year - Cohort	N, Participants	N, Cases Weight	Risk Ratio [95% C	I] for Incident Hypertension, Random
Barrio-Lopez, Brit J Nutr, 2013 - SUN	8157	1464 5.4%	1.53 [1.25, 1.85]	
Cohen, J Gen Intern Med, 2012 - HPFS	37360	13439 13.6%	1.06 [0.99, 1.14]	•-
Cohen, J Gen Intern Med, 2012 - NHS	88540	42022 16.0%	1.12 [1.08, 1.17]	+
Cohen, J Gen Intern Med, 2012 - NHSII	97991	21873 15.1%	1.17 [1.11, 1.23]	+
Dhingra, Circulation, 2007 - FOC	2803	1377 4.6%	1.14 [0.92, 1.42]	+
Duffrey, Am J Clin Nutr, 2010 - CARDIA	2639	609 15.1%	1.06 [1.01, 1.12]	+
Kang, Brit J Nutr, 2017 - KoGES	4591	1309 3.3%	1.55 [1.18, 2.04]	│
Kwak, Eur J Nutr, 2018 - KoGES	5775	1175 6.3%	1.21 [1.02, 1.45]	_
Mirmiran, Nutr Metab, 2015 - TLGS	424	47 0.8%	2.02 [1.13, 3.60]	
Sayon-Orea, Clin Nutr, 2015 - SUN	13843	1308 5.0%	1.34 [1.09, 1.65]	→
Weng, Nutrients, 2013 - ARIC	9913	2853 8.8%	1.03 [0.90, 1.17]	+-
Winkelmayer, JAMA, 2005 - NHS	61091	19541 1.8%	1.44 [0.98, 2.11]	
Winkelmayer, JAMA, 2005 - NHSII	94503	13536 4.1%	1.28 [1.01, 1.62]	
Total (95% CI)	427630	120553 100.0%	1.17 [1.11, 1.23]	◆
Heterogeneity; Tau ² = 0.00; Chi ² = 35.66, df = 12 (P = 0.0004); l ² = 66%	5		+	
Test for overall effect: Z = 5.55 (P < 0.00001)			0.2	0.5 1 2 5
			Pr	otective Association Harmful Association

The black diamond represents the pooled risk estimate. Inter-study heterogeneity was tested using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by the I² statistic. An I² value \geq 50% is considered to indicate substantial heterogeneity. All results are presented as Relative Risks (RR) with 95% Confidence Intervals

Figure S2. Forest plot – Pairwise meta-analysis of fruit intake and incident hypertension.

Author, year - Cohort	N, Participant	s N, Cas	es Weight	Risk F	atio [95% CI] for Incident Hypertension, Random
Auerbach, Prev med, 2017 - WHI	80539	46202	11.4%	1.00 [0.97, 1.04]	+
Borgi, Hypertension, 2016 - HPFS	20010	16752	10.6%	0.89 [0.81, 0.97]	-
Borgi, Hypertension, 2016 - NHS	39164	35375	10.8%	0.95 [0.88, 1.03]	-
Borgi, Hypertension, 2016 - NHS II	63885	25246	10.0%	0.91 [0.81, 1.02]	
Kim, J Acad Nutr Diet, 2017 - KoGES (men)	2085	606	5.4%	0.44 [0.32, 0.61]	
Kim, J Acad Nutr Diet, 2017 - KoGES (women)	2172	552	5.4%	0.33 [0.24, 0.45]	
Koochakpoor, Nutr Res, 2018 - TLGS	1284	640	5.0%	0.89 [0.63, 1.26]	
Nun″ez-Cordoba, Eur J Clin Nutr, 2009 - SUN	8594	426	4.7%	0.85 [0.59, 1.22]	
Psaltopoulou, Am J Clin Nutr, 2004 - EPIC	20343	5424	5.7%	0.61 [0.45, 0.83]	
Steffen, Am J Clin Nutr, 2005 - CARDIA	4304	997	7.4%	0.75 [0.60, 0.94]	_
Tsubota-Utsugi, J Hum Hypertens, 2011 - Ohasama	745	222	2.9%	0.49 [0.29, 0.81]	
Wang, Am J Hypertens, 2012 - WHS	28082	13633	10.8%	0.95 [0.88, 1.03]	-
Weng, Nutrients, 2013 - ARIC	9913	2853	9.7%	1.06 [0.93, 1.21]	+
Total (95% CI)	281120	148928	100.0%	0.81 [0.73, 0.89]	◆
Heterogeneity: Tau ² = 0.02; Chi ² = 99.26, df = 12 (P < 0.00001); I ² = 88%					
Test for overall effect: Z = 4.15 (P < 0.0001)					0.2 0.5 1 2 5 Protective Association Harmful Association
					FIDECLIVE ASSOCIATION FIGHTING ASSOCIATION

The black diamond represents the pooled risk estimate. Inter-study heterogeneity was tested using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by the I² statistic. An I² value \geq 50% is considered to indicate substantial heterogeneity. All results are presented as Relative Risks (RR) with 95% Confidence Intervals. Mirmiran et al. only reported cases of metabolic syndrome.

Figure S3. Forest plot – Pairwise meta-analysis of yogurt intake and incident hypertension.

Author, year - Cohort	N, Participants	N, Cases Weig	ht Risk Ratio	o [95% CI] for Incident Hypertension, Random
Alonso, Eur J Clin Nutr, 2009 - ARIC	8208	2399 4.0	1.11 [0.86, 1.43]	
Buendia, J Hypertens, 2018 - HPFS	30512	14166 10.8	% 1.01 [0.89, 1.15]	_
Buendia, J Hypertens, 2018 - NHS	69298	41934 17.3	% 0.87 [0.81, 0.93]	
Buendia, J Hypertens, 2018 - NHSII	84368	26282 15.9	0.89 [0.82, 0.97]	
Engberink, J Nutr, 2009 - MORGEN	3454	713 6.9	0.84 [0.71, 1.01]	
Kim, Brit J Nutr, 2017 - KoGES	4335	1556 6.6	% 0.71 [0.59, 0.85]	
Steffen, Am J Clin Nutr, 2005 - CARDIA	4304	997 7.8	% 0.88 [0.75, 1.04]	
Wang, Brit J Nutr, 2015 - FHS	28886	8710 20.5	i% 0.94 [0.90, 0.99]	
Wang, Hypertension, 2008 - WHS	2340	1026 10.2	.% 0.97 [0.85, 1.11]	
Total (95% CI)	235705	97783 100.0	0.91 [0.86, 0.96]	•
Heterogeneity: Tau ² = 0.00; Chi ² = 17.49, df = 8 (P = 0.03); I ² = 54%				0.5 0.7 1 1.5 2
Test for overall effect: Z = 3.39 (P = 0.0007)				0.5 0.7 1 1.5 2 Protective Association Harmful Association

The black diamond represents the pooled risk estimate. Inter-study heterogeneity was tested using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by the I² statistic. An I² value \geq 50% is considered to indicate substantial heterogeneity. All results are presented as Relative Risks (RR) with 95% Confidence Intervals.

Figure S4. Forest plot – Pairwise meta-analysis of dairy desserts intake and incident hypertension.

Author, year - Cohort	N, Participants	N, Cases Weight	Risk Ratio [95% CI] for Incident Hypertension, Random
Alonso, Eur J Clin Nutr, 2009 - ARIC	8208	2399 36.8%	0.88 [0.74, 1.05]
Steffen, Am J Clin Nutr, 2005 - CARDIA	4304	997 24.7%	0.74 [0.60, 0.92]
Wang, Hypertension, 2008 - WHS	28886	8710 38.5%	0.90 [0.76, 1.07]
Total (95% CI)	41398	12106 100.0%	0.85 [0.76, 0.95]
Heterogeneity: Tau ² = 0.00; Chi ² = 2.11, df = 2 (P = 0.35); i ² = 5% Test for overall effect: Z = 2.91 (P = 0.004)			0.5 0.7 1 1.5 2 Protective Association Harmful Association

The black diamond represents the pooled risk estimate. Inter-study heterogeneity was tested using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by the I² statistic. An I² value \geq 50% is considered to indicate substantial heterogeneity. All results are presented as Relative Risks (RR) with 95% Confidence Intervals.

Figure S5. Forest plot – Pairwise meta-analysis of 100% fruit juice intake and incident hypertension.

Author, year - Cohort	N, Participants I	N, Cases	Weight	Risk Ratio [95	5% Cl] for Incident Hypertension, Random	
Auerbach, Prev med, 2017 - WHI Duffrey, Am J Clin Nutr, 2010 - CARDIA	80539 2639	46202 609	55.4% 44.6%	1.00 [0.97, 1.04] 0.89 [0.82, 0.97]		
Total (95% Cl) Heterogeneity: Tau² = 0.01; Chi² = 6.55, df = 1 (P = 0.01); I² = 85% Test for overall effect: Z = 0.82 (P = 0.41)	83178	46811	100.0%	0.95 [0.85, 1.07] -+ 0.5	5 0.7 i 1.5 Protective Association Harmful Association	<u> </u> 2

The black diamond represents the pooled risk estimate. Inter-study heterogeneity was tested using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by the I² statistic. An I² value \geq 50% is considered to indicate substantial heterogeneity. All results are presented as Relative Risks (RR) with 95% Confidence Intervals.

Figure S6. Forest plot – Pairwise meta-analysis of fruit drinks intake and incident hypertension.

Author, year - Cohort	N, Participants N, Cases Weigh	nt Risk Ratio [95% Cl] for Incident Hypertension, Random
Mirmiran, Nutr Metab, 2015 - TLGS	424 47 100.0	0% 1.27 [0.43, 3.75]
Total (95% CI) Heterogeneity: Not applicable	424 47 100.	0% 1.27 [0.43, 3.75]
Test for overall effect: Z = 0.43 (P = 0.67)		Protective Association Harmful Association

The black diamond represents the pooled risk estimate. Inter-study heterogeneity was tested using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by the I² statistic. An I² value \geq 50% is considered to indicate substantial heterogeneity. All results are presented as Relative Risks (RR) with 95% Confidence Intervals. *Study only reported cases of metabolic syndrome.

Figure S7. Forest plot – Pairwise meta-analysis of sweet Snacks intake and incident hypertension.

Author, year – Cohort	N, Participants N, Ca	ses Weight	Risk Ratio [9	5% Cl] for Incident Hyper	tension, Random	
Asghari, Pediatr Res, 2016 - TLGS	439	45 100.0%	2.00 [0.84, 4.76]	_	-	
Total (95% CI) Heterogeneity: Not applicable Test for overall effect: Z = 1.57 (P = 0.12)	439	45 100.0%	2.00 [0.84, 4.76]	0.5 Protective Association	1 2 Harmful Association	5

The black diamond represents the pooled risk estimate. Inter-study heterogeneity was tested using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by the I² statistic. An I² value \geq 50% is considered to indicate substantial heterogeneity. All results are presented as Relative Risks (RR) with 95% Confidence Intervals. *Study only reported cases of metabolic syndrome.

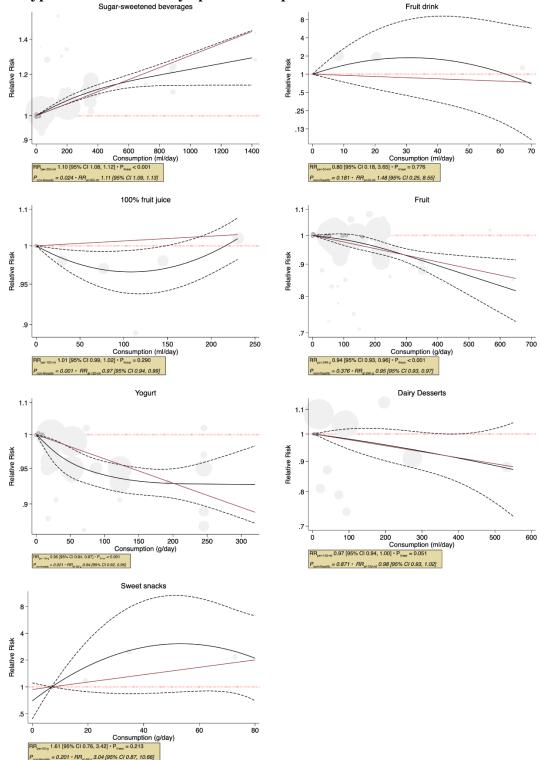
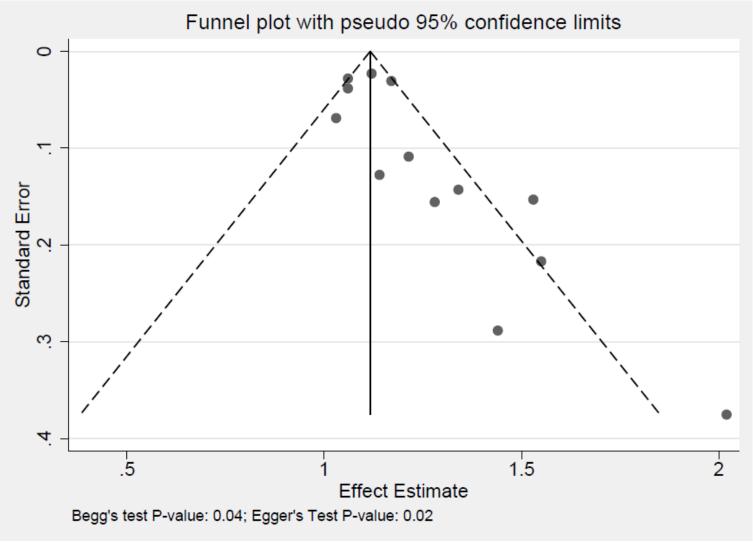


Figure S8. Dose-response relation between sources of fructose-containing sugars and incident hypertension with study-specific data points.

Dose-response relationship between intake of SSBs, fruit, 100% fruit juice, yogurt, fruit drink, dairy desserts, and sweet snacks with risk of hypertension. Red line represents the linear and black lines represent the non-linear models, respectively. Dotted lines represent 95% confidence intervals of the non-linear model. The light gray circles represent the relative risk-point estimates for the different doses from each study; the size of the circle is related to inverse of the variance. The smaller gray circles with dark gray outline represent the baseline dose category for each separate study; random-noise has been added in the graphic display for these baseline circles to show them separately.

					Relative Risk [95% CI] on incident Hy	pertension		
Subgroup	Level	Cohort Comparisons	Subjects				Residual I ²	P-Interaction
				Within subgroups		Between subgroups		
Total	-	13	427,630	1.19 [1.09, 1.30]		-	66%	-
Sex	Females (1)	4	342,125	1.16 [0.97, 1.40]		1 vs. 2: 0.99 [0.71, 1.40], p=0.96	70%	0.281
	Males (2)	1		1.17 [0.85, 1.60]		1 vs. 3: 0.94 [0.75, 1.17], p=0.52		
	Both (3)	8	48,145	1.23 [1.07, 1.42]		2 vs.3: 1.06 [0.77, 1.46], p=0.70		
Follow-up	<10 years ≥10 years	6 7		1.24 [1.06, 1.44] 1.17 [1.03, 1.32]		1.07 [0.90, 1.29], p=0.40	66%	0.07
NOS	<6	0						
	≥6	13	427,630	1.19 [1.09, 1.31]		-	66%	-
Age	<36.4 years (median) ≥36.4 years (median)	6 7		1.19 [1.03, 1.37] 1.21 [1.05, 1.39]		0.97 [0.81, 1.17], p=0.74	64%	0.03
Funding	Agency Industry	13 0	427,630	1.19 [1.09, 1.30]		-	66%	-
	Both	0						
					0.80 1.00 1.20 1.40 1.60			
				De	creased risk Increased risk			

Figure S9. Subgroup analyses of SSBs intake and incident hypertension.


RR, relative risk; NOS, Newcastle-Ottawa Scale. Point estimates for each subgroup level (diamonds) are the pooled effect estimates. The dashed line represents the pooled effect estimate for the overall (total) analysis. The residual I^2 value indicates the inter-study heterogeneity unexplained by the subgroup.

				Relative Risk [95% CI] on incident Hypertension				
Subgroup	Level	Cohort Comparisons	Subjects	Within subgroups		Between subgroups	Residual I ²	P-Interaction
Total	-	13	281,120	0.76 [0.62, 0.94]		-	88%	-
Sex	Females (1)	5	213,842	0.80 [0.79, 1.14]	_	1 vs. 2: 1.21 [0.60, 2.45], p=0.56	89%	<0.001
	Males (2)	2	22,095	0.65 [0.36, 1.19]	_	1 vs. 3: 1.02 [0.61, 1.71], p=0.93		
	Both (3)	6	45,183	0.77 [0.54, 1.10]		2 vs. 3: 1.18 [0.59, 2.38], p=0.60		
Follow-up	<10 years	7	124,391	0.66 [0.49, 0.87]		0.74 [0.49, 1.10], p=0.12	89%	<0.001
	≥10 years	6	156,729	0.89 [0.67, 1.18]	•			
NOS	<6	1	28,082	0.95 [0.45, 2.03]		1.27 [0.58, 2.81], p=0.52	91%	0.10
	≥6	12	253,038	0.75 [0.59, 0.94]				
Age	<53 years (median)	6	117,976	0.81 [0.58, 1.13]		1.12 [0.71, 1.75], p=0.60	88%	<0.001
	≥53 years (median)	7	163,144	0.72 [0.54, 0.98]				
Funding	Agency	12	253,038	0.75 [0.59, 0.94]	_	1 vs. 3: 0.79 [0.36, 1.73], p=0.52	91%	0.10
	Industry	0						
	Both	1	28,082	0.95 [0.45, 2.03]				
					0.30 0.50 0.70 0.90 1.10 1.30 1.50			
					Decreased risk Increased risk			

Figure S10. Subgroup analyses of fruit intake and incident hypertension.

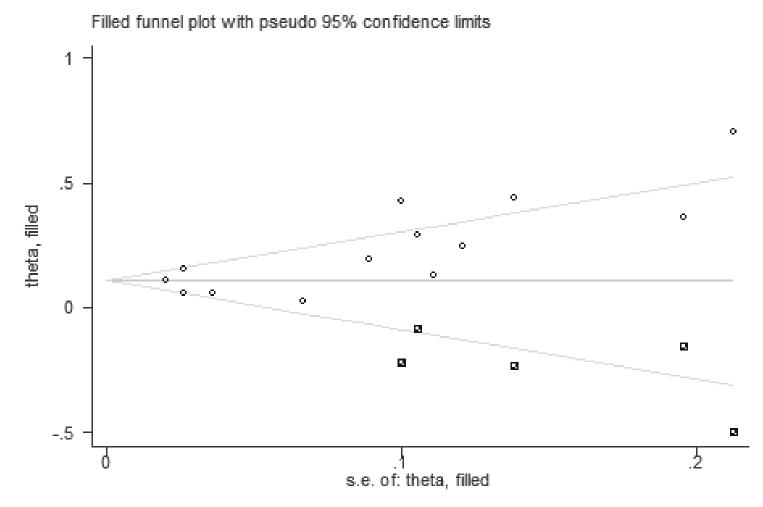
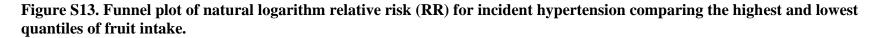

RR, relative risk; NOS, Newcastle-Ottawa Scale. Point estimates for each subgroup level (diamonds) are the pooled effect estimates. The dashed line represents the pooled effect estimate for the overall (total) analysis. The residual I^2 value indicates the inter-study heterogeneity unexplained by the subgroup.

Figure S11. Funnel plot of natural logarithm relative risk (RR) for incident hypertension comparing the highest and lowest quantiles of SSBs intake.



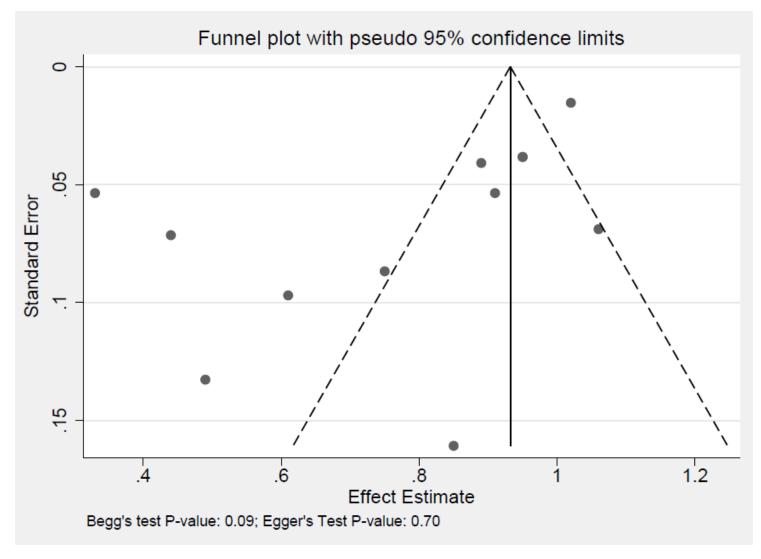

The vertical line represents the pooled effect estimate expressed as natural logarithm RR. Dashed lines represent pseudo-95% confidence intervals (CI). The circles represent risk effects for each cohort, and the horizontal lines represent standard errors of the effect estimate.

Figure S12. Trim and fill funnel plot of natural logarithm relative risk (RR) for incident hypertension comparing the highest and lowest quantiles of SSBs intake.

The horizontal line represents the pooled effect estimate expressed as natural logarithm RR. Diagonal lines represent pseudo-95% confidence intervals (CI). The circles represent risk effects for each cohort, and the squares represent filled data points. The horizontal axis represents standard errors of the effect estimate. Adjustment for funnel plot asymmetry by the recalculation of the pooled estimate by inputting missing cohort studies using the Duvall and Tweedie trim and fill method did not alter the significance of the relationship with only limited attenuation of the summary estimate (RR=1.12 [95% CI, 1.05, 1.19] versus original RR=1.17 [95% CI, 1.11, 1.23]).

The vertical line represents the pooled effect estimate expressed as natural logarithm RR. Dashed lines represent pseudo-95% confidence intervals (CI). The circles represent risk effects for each cohort, and the horizontal lines represent standard errors of the effect estimate.

Supplemental References:

- 1. Barrio-Lopez MT, Martinez-Gonzalez MA, Fernandez-Montero A, Beunza JJ, Zazpe I, Bes-Rastrollo M. Prospective study of changes in sugar-sweetened beverage consumption and the incidence of the metabolic syndrome and its components: The sun cohort. *British Journal of Nutrition*. 2013;110:1722-1731.
- 2. Cohen LC, G. Forman, J. Association of sweetened beverage intake with incident hypertension. *Journal of General Internal Medicine*. 2012;27:1127-1134.
- 3. Dhingra R, Sullivan L, Jacques PF, Wang TJ, Fox CS, Meigs JB, D'Agostino RB, Gaziano JM, Vasan RS. Soft drink consumption and risk of developing cardiometabolic risk factors and the metabolic syndrome in middle-aged adults in the community.[erratum appears in circulation. 2007 dec 4;116(23):E557]. *Circulation*. 2007;116:480-488.
- 4. Duffey KJG-L, P. Steffen, L. M. Jacobs Jr, D. R. Popkin, B. M. Drinking caloric beverages increases the risk of adverse cardiometabolic outcomes in the coronary artery risk development in young adults (cardia) study. *American Journal of Clinical Nutrition*. 2010;92:954-959.
- 5. Kang Y, Kim J. Soft drink consumption is associated with increased incidence of the metabolic syndrome only in women. *British Journal of Nutrition*. 2017;117:315-324.
- 6. Kwak JH, Jo G, Chung HK, Shin MJ. Association between sugar-sweetened beverage consumption and incident hypertension in korean adults: A prospective study. *European Journal of Nutrition*. 2018;25:25.
- 7. Mirmiran PY, E. Asghari, G. Hosseinpour-Niazi, S. Azizi, F. Consumption of sugar sweetened beverage is associated with incidence of metabolic syndrome in tehranian children and adolescents. *Nutrition and Metabolism.* 2015;12.
- 8. Sayon-Orea C, Martinez-Gonzalez MA, Gea A, Alonso A, Pimenta AM, Bes-Rastrollo M. Baseline consumption and changes in sugar-sweetened beverage consumption and the incidence of hypertension: The sun project. *Clinical Nutrition*. 2015;34:1133-1140.
- 9. Weng L-C, Steffen LM, Szklo M, Nettleton J, Chambless L, Folsom AR. A diet pattern with more dairy and nuts, but less meat is related to lower risk of developing hypertension in middle-aged adults: The atherosclerosis risk in communities (aric) study. *Nutrients*. 2013;5:1719-1733.
- 10. Winkelmayer WC, Stampfer MJ, Willett WC, Curhan GC. Habitual caffeine intake and the risk of hypertension in women. *Jama*. 2005;294:2330-2335.
- 11. Borgi L, Muraki I, Satija A, Willett WC, Rimm EB, Forman JP. Fruit and vegetable consumption and the incidence of hypertension in three prospective cohort studies. *Hypertension*. 2016;67:288-293.
- 12. Kim J, Kim J. Association between fruit and vegetable consumption and risk of hypertension in middle-aged and older korean adults. *J Acad Nutr Diet*. 2017;04:04.
- 13. Auerbach BJ, Littman AJ, Tinker L, Larson J, Krieger J, Young B, Neuhouser M. Associations of 100% fruit juice versus whole fruit with hypertension and diabetes risk in postmenopausal women: Results from the women's health initiative. *Preventive medicine*. 2017;105:212-218.
- 14. Koochakpoor GM, P. Daneshpour, M. S. Hosseini-Esfahani, F. Sedaghati-Khayat, B. Hosseini, S. A. Azizi, F. Dietary factors influence the association of cyclin d2 polymorphism rs11063069 with the risk of metabolic syndrome. *Nutrition Research*. 2018;52:48-56.

- 15. Nunez-Cordoba JM, Alonso A, Beunza JJ, Palma S, Gomez-Gracia E, Martinez-Gonzalez MA. Role of vegetables and fruits in mediterranean diets to prevent hypertension. *European Journal of Clinical Nutrition*. 2009;63:605-612.
- Psaltopoulou T, Naska A, Orfanos P, Trichopoulos D, Mountokalakis T, Trichopoulou A. Olive oil, the mediterranean diet, and arterial blood pressure: The greek european prospective investigation into cancer and nutrition (epic) study.[erratum appears in am j clin nutr. 2005 may;81(5):1181]. *American Journal of Clinical Nutrition*. 2004;80:1012-1018.
- 17. Steffen LMK, C. H. Yu, X. Pereira, M. A. Slattery, M. L. Van Horn, L. Gross, M. D. Jacobs Jr, D. R. Associations of plant food, dairy product, and meat intakes with 15-y incidence of elevated blood pressure in young black and white adults: The coronary artery risk development in young adults (cardia) study. *The American journal of clinical nutrition*. 2005;82:1169-1177; quiz 1363-1364.
- 18. Tsubota-Utsugi MO, T. Kikuya, M. Metoki, H. Kurimoto, A. Suzuki, K. Fukushima, N. Hara, A. Asayama, K. Satoh, H. Tsubono, Y. Imai, Y. High fruit intake is associated with a lower risk of future hypertension determined by home blood pressure measurement: The ohasama study. *Journal of Human Hypertension*. 2011;25:164-171.
- 19. Wang LM, J. E. Gaziano, J. M. Buring, J. E. Sesso, H. D. Fruit and vegetable intake and the risk of hypertension in middle-aged and older women. *American Journal of Hypertension*. 2012;25:180-189.
- 20. Wang L, Manson JE, Buring JE, Lee I-M, Sesso HD. Dietary intake of dairy products, calcium, and vitamin d and the risk of hypertension in middle-aged and older women. *Hypertension*. 2008;51:1073-1079.
- 21. Buendia JR, Li Y, Hu FB, Cabral HJ, Bradlee ML, Quatromoni PA, Singer MR, Curhan GC, Moore LL. Long-term yogurt consumption and risk of incident hypertension in adults. *Journal of Hypertension*. 2018;36:1671-1679.
- 22. Alonso A, Steffen LM, Folsom AR. Dairy intake and changes in blood pressure over 9 years: The aric study. *European journal of clinical nutrition*. 2009;63:1272.
- 23. Engberink MF, Geleijnse JM, de Jong N, Smit HA, Kok FJ, Verschuren WM. Dairy intake, blood pressure, and incident hypertension in a general dutch population. *The Journal of nutrition*. 2009;139:582-587.
- 24. Kim DK, J. Dairy consumption is associated with a lower incidence of the metabolic syndrome in middle-aged and older korean adults: The korean genome and epidemiology study (koges). *British Journal of Nutrition*. 2017;117:148-160.
- 25. Wang H, Fox CS, Troy LM, McKeown NM, Jacques PF. Longitudinal association of dairy consumption with the changes in blood pressure and the risk of incident hypertension: The framingham heart study. *British Journal of Nutrition*. 2015;114:1887-1899.
- 26. Asghari G, Yuzbashian E, Mirmiran P, Bahadoran Z, Azizi F. Prediction of metabolic syndrome by a high intake of energy-dense nutrient-poor snacks in iranian children and adolescents. *Pediatric research*. 2016;79:697.