YMTHE, Volume 28

Supplemental Information

Timeless-Stimulated miR-5188-FOXO1/β-Catenin-

c-Jun Feedback Loop Promotes Stemness via

Ubiquitination of β-Catenin in Breast Cancer

Yujiao Zou, Xian Lin, Junguo Bu, Zelong Lin, Yanjuan Chen, Yunhui Qiu, Haiyue Mo, Yao Tang, Weiyi Fang, and Ziqing Wu

Supplemental Figures

Figure S1. miR-5188 knockdown suppresses breast cancer stemness, metastasis, proliferation, and chemoresistance. (A) qRT-PCR analysis of miR-5188 expression in MCF-7, SKBR-3, T47D, MDA-MB-468, MDA-MB-231, MDA-MB-453, and MCF-10A cells. (B) miR-5188 expression in breast cancer cells treated with lentivirus particles carrying has-miR-5188 precursor (miR-5188), miR-5188 shRNA (sh-miR-5188) or their control (NC). (C) Flow cytometry, (D) wound healing assays, (E) EdU incorporation assays (Scale bar: 100 μ m), (F) MTT assays, and (G) drug sensitivity tests of miR-5188-silenced T47D and MDA-MB-231 cells, and their control cells. *p < 0.05; **p < 0.01; ***p < 0.001.

Figure S2. miR-5188 accelerates β -catenin-mediated breast cancer stemness, metastasis, proliferation, and chemoresistance. (A) Immunofluorescence analysis (Scale bar: 10 µm), (B) wound healing assays, (C) EdU incorporation assays (Scale bar: 100 µm), and (D) drug sensitivity tests of miR-5188-overexpressed breast cancer cells, miR-5188-overexpressed breast cancer cells with β -catenin knockdown, miR-5188overexpressed breast cancer cells with miR-5188 knockdown, and their control cells. *p < 0.05; **p < 0.01; ***p < 0.001.

Figure S3. miR-5188 regulates FOXO1-mediated breast cancer stemness, metastasis, proliferation, chemoresistance and Wnt/β-catenin/c-Jun signaling. (A) TOP/FOP luciferase reporter assays of Wnt/βcatenin signaling activity in FOXO1-overexpressed MCF-7 cells, miR-5188-overexpressed MCF-7 cells, miR-5188-overexpressed MCF-7 cells with FOXO1 overexpression, FOXO1-silenced MDA-MB-231 cells, miR-5188-silenced MDA-MB-231 cells, miR-5188-silenced MDA-MB-231 cells with FOXO1 knockdown, and their control cells. (B) Mammosphere formation analysis (Scale bar: 40 μm), (C) transwell assays (Scale bar: 40 μm), (D) EdU incorporation assays (Scale bar: 100 μm), and (E) drug sensitivity tests of FOXO1overexpressed MCF-7 cells, miR-5188-overexpressed MCF-7 cells, with FOXO1 overexpression, FOXO1-silenced MDA-MB-231 cells, miR-5188-silenced MDA-MB-231 with FOXO1 overexpression, FOXO1-silenced MDA-MB-231 cells, miR-5188-silenced MDA-MB-231

cells, miR-5188-silenced MDA-MB-231 cells with FOXO1 knockdown, and their control cells. **p < 0.01;

***p < 0.001.

Figure S4. c-Jun knockdown impaired miR-5188-mediated breast cancer stemness, metastasis, proliferation, and chemoresistance. (A) Mammosphere formation assays (Scale bar: 40 μ m), (B) transwell assays (Scale bar: 40 μ m), (C) EdU incorporation assays (Scale bar: 100 μ m) and (D) drug sensitivity tests of c-Jun-silenced MCF-7 and MDA-MB-231 cells, miR-5188-overexpressed MCF-7 and MDA-MB-231 cells, c-Jun-silenced MCF-7 and MDA-MB-231 cells with miR-5188 overexpression, and their control cells. *p < 0.05; **p < 0.01; ***p < 0.001.

Figure S5. Timeless facilitates miR-5188-mediated breast cancer stemness, metastasis, proliferation, chemoresistance, and Wnt/β-catenin/c-Jun signaling. (A) qRT-PCR analysis of pre-miR-5188 and mature miR-5188 expression in Timeless-depleted MCF-7 and MDA-MB-231 cells, Timeless-depleted MCF-7 and MDA-MB-231 cells with c-Jun overexpression, and their control cells. (B) Exogenous and endogenous co-immunoprecipitation analysis of the interaction between Timeless and Sp1, and Timeless and c-Jun. (C) Immunofluorescence co-staining of Timeless and Sp1, and Timeless and c-Jun were performed to detect their colocalization. The fluorescence intensities along the dark arrow crossing the cytoplasm were calculated to show the colocalization of Timeless and Sp1, and Timeless and c-Jun. (D) Co-immunoprecipitation analysis of the interaction between Timeless and c-Jun. (D) Co-immunoprecipitation analysis of the effect of Sp1 on the interaction between Timeless and c-Jun. (E) Chromatin immunoprecipitation analysis of c-Jun binding to miR-5188 promoter in Timeless-overexpressed MCF-7 and MDA-MB-231 cells, Timeless-overexpressed MCF-7 and MDA-MB-231 cells with Sp1 knockdown, and their control cells. (F) TOP/FOP luciferase reporter assays of Wnt/β-catenin signaling activity in Timeless-overexpressed MCF-7, with miR-5188 knockdown, Timeless-silenced MDA-MB-231 cells,

Timeless-silenced MDA-MB-231 cells with miR-5188 overexpression, and their control cells. (G) Chromatin immunoprecipitation analysis of c-Jun binding to miR-5188 promoter in Timeless-overexpressed MCF-7 cells, Timeless-overexpressed MCF-7 cells with β -catenin knockdown, Timeless-silenced MDA-MB-231 cells, Timeless-silenced MDA-MB-231 cells with β -catenin overexpression, and their control cells. ***p < 0.001.

and chemoresistance. (A) Mammosphere formation assays (Scale bar: 40 μ m), (B) transwell assays (Scale bar: 40 μ m), (C) EdU incorporation assays (Scale bar: 100 μ m) and (D) drug sensitivity tests of Timeless-overexpressed MCF-7 cells, Timeless-overexpressed MCF-7 cells with miR-5188 knockdown, Timeless-silenced MDA-MB-231 cells, Timeless-silenced MDA-MB-231 cells with miR-5188 overexpression, and their control cells. (E) Western blot analysis of stemness, metastasis, proliferation, chemoresistance, and Wnt/ β -catenin signaling-associated proteins expression in Timeless-overexpressed MCF-7 cells, Timeless-overexpression in Timeless-overexpressed MCF-7 cells, Timel

Figure S7. The bioinformatics analysis, immunohistochemical and *in situ* hybridization analysis of miR-5188, FOXO1, c-Jun, and β -catenin expression were performed in breast cancer. (A-B) Comparison of Timeless and FOXO1 expression between breast cancer and para-carcinoma tissues. (C) The relationships between Timeless and miR-5188 expression (Spearman's rank correlation test). (D) Comparison of FOXO1, c-Jun, and β -catenin expression between breast cancer tissues and para-carcinoma tissues. (E) Correlations among FOXO1, c-Jun and miR-5188 expression in breast cancer tissues (Spearman's rank correlation test). The lines indicate median values, and the whiskers indicate minimum and maximum values (A-B), Wilcoxon rank sum test. Scale bar: 40 µm.

Table S1. Relationships between miR-5188, FOXO1, β-catenin, and c-Jun expression, and
clinicopathological features of breast cancer patients

1. miR-5	188 expression in bro	east cancer and pa	ra-carcino	ma	
Group	Cases (n)	miR-5188	expression		P value
		Low	High	1	
Breast cancer	140	53 (37.9%)	87 (62.1	%)	0.002
Para-carcinoma	77	46 (59.7%)	31 (40.3%)		0.002
2. Correlation I	between miR-5188 an	nd FOXO1 expres	sion in brea	st cancer	
miR5188 expression	FOXO1 expression		Total	Kappa	<i>P</i> value
	Low	High			
Low	26 (49.1%)	27 (50.9%)	53	0.244	0.001
High	67 (77.0%)	20 (23.0%)	87	-0.244	0.001
Total	93	47	140		
		15 5100			
3. Correlation	between c-Jun and miR-5188 e	miR-5188 expressi expression	on in breas Total	t cancer <i>Kanna</i>	Р
	Low	Iliah		77	value
Law	LOW 29 (49 20/)	Hign	50		
LOW	28 (48.3%) 25 (20.5%)	30 (51.7%) 57 (60.5%)	58 82	0.180	0.033
Hign	23 (30.3%) 52	37 (09.3%) 97	82 140		
10(21	33	87	140		
4. Correlation betw	een FOXO1 and nuc	clear β-catenin exp	pression in	breast ca	ncer
FOXOI expression	Nuclear β-catenin expression		Total	Карра	P value
Law	Negative	Positive	02	0.120	0.057
LOW II:ab	/0(81./%)	1/(18.3%)	93 17	-0.139	0.05/
Hign	44 (93.6%)	3 (0.4%) 20	4/		
lotal	120	20	140		
5. Correlation b	etween miR-5188 an	d β-catenin expres	ssion in bre	ast cance	r
niR-5188 expression	β-catenin ex	pression	Total	Карра	P value
	Low	High			
Low	35 (66.0%)	18 (34.0%)	53	0.152	0.055
High	43 (49.4%)	44 (50.6%)	87		
Total	78	62	140		

		Table	S2. The sequences used in this study.
	1	Sense	5' GGCACAGCUUAAACAGAAA dTdT 3'
c-Jun 2	1	Antisense	3' dTdT CCGUGUCGAAUUUGUCUUU 5'
	2	Sense	5' CGCAGCAGUUGCAAACAUU dTdT 3'
	Z	Antisense	3' dTdT GCGUCGUCAACGUUUGUAA 5'
1 FOXO1 2	1	Sense	5'CUGCAUCCAUGGACAACAA dTdT 3'
	1	Antisense	3' dTdTGACGUAGGUACCUGUUGUU 5'
	2	Sense	5' CCAGAUGCCUAUACAAACA dTdT 3'
	2	Antisense	3' dTdT GGUCUACGGAUAUGUUUGU 5'
	1	Sense	5' GAUGGUGUCUGCUAUUGUA dTdT 3'
1	1	Antisense	3' dTdT CUACCACAGACGAUAACAU 5'
p-catenin	2	Sense	5' GGACAAGGAAGCUGCAGAA dTdT 3'
	2	Antisense	3' dTdT CCUGUUCCUUCGACGUCUU 5'
miR-5188		Sense	5'AAUCGGACCCAUUUAAACCGGAG 3'
mimics	Antisense	3'UUAGCCUGGGUAAAUUUGGCCUC 5'	
Negative		Sense	5' UUUGUACUACACAAAAGUACUG 3'
control	Antisense	3' AAACAUGAUGUGUUUUCAUGAC 5'	
miR-5188 inhibitor		inhibitor	5' CUCCGGUUUAAAUGGGUCCGAUU 3'
Inhibitor negative control		tive control	5' CAGUACUUUUGUGUAGUACAAA 3'
miR-5188 precursor		precursor	5'GGGAGGCAUGGAAAUUUCUCUGGUUUCAAUGGGUA CGAUUAUUGUAAGCAGGAUCCAUUCAAUAAUCGGACC CAUUUAAACCGGAGAUUUUAAAAGACAGGAAUAGAA UCCCA 3'

Table S3: The primers used in this study.					
Primers name		Sequence (5'-3')			
. I	Forward	TCAGACAGTGCCCGAGATG			
c-Jun	Reverse	CTGCTGCGTTAGCATGAGTT			
FOX01	Forward	TGAACCGCCTGACCCAA			
	Reverse	CAATGAACATGCCATCCAAG			
β-catenin	Forward	GGCCCAGAATGCAGTTCGCCTT			
	Reverse	AATGGCACCCTGCTCACGCA			
β-actin	Forward	CTCGCTGTCCACCTTCCA			
	Reverse	ACCTTCACCGTTCCAGTTTT			
miR-5188		AATCGGACCCATTTAAACCGGAG			
ЦĆ	Forward	CTCGCTTCGGCAGCACA			
06	Reverse	AACGCTTCACGAATTTGCGT			
Pre-miR-5188	Forward	TCTGGTTTCAATGGGTACG			
	Reverse	TCTCCGGTTTAAATGGGTC			
promoter of miR- 5188-A	Forward	TGCGACGGAGAAAAGCC			
	Reverse	GGGACCCTGACGTGAAGTT			
promoter of miR-	Forward	GAGTCACCCAAGTCCCGTCCTA			
5188-B	Reverse	AGCGAGCGTCCTGATCCTTC			
promoter of miR-	Forward	TGCGAGATGGACGGGTCTT			
5188-C	Reverse	AGGCTCAGGGAGGTTGAAGG			

Antibodies name	Cat. No	Company	Species	Dilution
Flag	F7425	Sigma	Rabbit	1:1000 (WB); 1:20 (Co-IP)
Ki67	ab16667	Abcam	Rabbit	1:100 (IHC)
Ago2	03-110	Millipore	Mouse	1:20 (RIP)
c-Jun	9165	CST	Rabbit	1:1000 (WB); 1:50 (ChIP); 1:15 (EMSA); 1:20 (Co-IP); 1:300 (IHC)
β-catenin	8480	CST	Rabbit	1:1000 (WB); 1:100 (ICC); 1:100 (IHC)
β-catenin	2677	CST	Mouse	1:200 (ICC)
CD44	3570	CST	Mouse	1:1000 (WB)
ABCG2	42078	CST	Rabbit	1:1000 (WB)
FOXO1	2880	CST	Rabbit	1:1000 (WB); 1:20 (Co-IP); 1:100 (ICC) 1:100 (IHC)
Slug	9585	CST	Rabbit	1:1000 (WB)
Ubiquitin	3933	CST	Rabbit	1:1000 (WB)
PCNA	13110	CST	Rabbit	1:1000 (IHC)
c-Myc	10828-1-AP	Proteintech	Rabbit	1:1000 (WB)
CCND1	60186-1-Ig	Proteintech	Mouse	1:1000 (WB)
SOX2	20118-1-AP	Proteintech	Rabbit	1:1000 (WB); 1:100 (IHC)
OCT4	11263-1-AP	Proteintech	Rabbit	1:1000 (WB); 1:100 (IHC)
Nanog	14295-1-AP	Proteintech	Rabbit	1:1000 (WB); 1:100 (IHC)
ABCB1	22336-1-AP	Proteintech	Rabbit	1:1000 (WB)
E-cadherin	60335-1-Ig	Proteintech	Mouse	1:1000 (WB); 1:100 (IHC)
N-cadherin	66219-1-Ig	Proteintech	Mouse	1:1000 (WB); 1:100 (IHC)
Vimentin	10366-1-AP	Proteintech	Rabbit	1:1000 (WB); 1:1000 (IHC)
CD133	18470-1-AP	Proteintech	Rabbit	1:1000 (WB)
β-actin	6008-1-Ig	Proteintech	Mouse	1:5000 (WB)
Histone	17168-1-AP	Proteintech	Rabbit	1:1000 (WB)

	Table S5. The sequences used in Electrophoretic mobility shift assay.				
miR-5188	probes	5' ACGGGTGACGTCACGACAGCCCTAGAGTCACCCAAAT TTTTGGGTCACATTT 3'			
	competitors	wild type	5' ACGGGTGACGTCACGACAGCCCTAGAGTCACCCAAAT TTTTGGGTCACATTT 3'		
		site 1 mutant	5' ACGGGCTGTTCTTCGACAGCCCTAGAGTCACCCAAAT TTTTGGGTCACATTT 3'		
		site 2 mutant	5' ACGGGTGACGTCACGACAGCCCTCATTCTTCCCAAATT TTTGGGTCACATTT 3'		
		site 3 mutant	5'ACGGGTGACGTCACGACAGCCCTAGAGTCACCCAAA TTTTCAATGTTCATTT 3'		
			all site mutan	all sites mutant	5' ACGGGCTGTTCTTCGACAGCCCTCATTCTTCCCAAATT TTCAATGTTCATTT 3'