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Overview

This Appendix supports the example decision model presented in Fig 2 of the manuscript “Case
study: Antiviral decision model for pandemic influenza in the Australian context”.

The purpose of this case study is to show that outputs from situational and intervention
analyses, when combined using a statistical decision model (specifically a Bayesian decision
network), can provide recommendations on response options (including uncertainty). For the
intervention analysis, we used our previously published intervention model of targeted antiviral
distribution strategies [1]. This model and its findings form the basis for Australia’s current
response plan [2]. The model allows for: the use of antivirals for treatment of cases and post-
exposure prophylaxis of contacts; differential risks of severe disease outcomes and differential
benefits of treatment across population subgroups; and health system capacity constraints. The
most recent version of this model is described by Moss and colleagues [1] and it builds on a
larger body of work, conducted over a 15-year period, which has focused on developing pandemic
antiviral policy for the Australian context [1, 3, 4, 5, 6, 7, 8].

We considered three different antiviral strategies (decision options): treatment of all identi-
fied cases and post-exposure prophylaxis of all identified contacts (Rx all/PEP all); treatment
of all identified cases (Rx all); and treatment of at-risk and hospitalised cases (Rx AR, hosp).
Decision model outcomes were compared for two hypothetical pandemics with distinct pandemic
characteristics: one of severe impact (Pandemic A) and another of milder impact (Pandemic B)
(see Section 2). The decision options for Pandemics A and B, given the evidence, were assessed
using a Bayesian decision network.

It is important to note that the decision model presented in this case study is for demon-
strative purposes only. The main text of the manuscript describes what is required to scale this
example decision model for use in a fully operational decision support system.

S1 Appendix begins with a background section on Bayesian networks, and then steps through
each section of Manuscript Fig 2.

1 Background on Bayesian networks

Bayesian networks are a powerful tool for reasoning under uncertainty. They provide a graphical
(and thus intuitive, visual and explicit) representation of relationships between components of
complex systems, can manage incomplete domain knowledge, and are able to incorporate inputs
from multiple scales and formats, including expert opinion [9, 10]. Bayesian networks have
been widely applied in many disciplines, and have previously been used to support clinical and
public health decision-making including by assisting in disease diagnosis [11, 12], forecasting of
epidemic spread [13], and detecting outbreaks of rare pathogens [14].

1



A Bayesian network is represented by a graph, composed of a set of nodes connected by
arrows, known as a directed acyclic graph. Nodes represent random variables and arrows indicate
probabilistic relationships among nodes. Arrows terminate at ‘child’ nodes, denoted X, and
originate at parent nodes, denoted Pt(X). A parent node can also be a ‘root’ node. Each
node/variable (X) can take a value, and has an associated conditional probability table (for
discrete variables), or distribution (for continuous variables) – we denote these as CPT or CPD
respectively. The CPT or CPD contains the probability of the child node taking any particular
value, given the value of its’ parents (i.e., P (X | Pt(X))). For root nodes – i.e., nodes without
any parents (i.e., Pt(X) = ∅) – the CPT or CPD contains the prior probability for the node.

The full joint probability distribution is given by the product of all the probability distri-
butions (prior and conditional) in the network, as shown in Equation 1 below.

P (X1, ..., Xn) =
n∏

i=1

P (Xi|Pt(Xi)) (1)

Thus, a Bayesian network is a compact factorisation of the joint probability distribution
P over random variables X1, ..., Xn. From the joint distribution we can compute a number of
probabilities of interest. The structure and parameters (prior and conditional probabilities) of
a Bayesian network can be either manually elicited from expert opinion or estimated from data
[10, 9].

Standard Bayesian networks can be extended for decision-making by adding decision and
utility variables that explicitly represent possible decisions and the utilities of possible outcomes
[9].

In the context of providing decision-support for pandemic influenza, a Bayesian decision
network can probabilistically combine information from situational and intervention analyses
to provide guidance to decision-makers on whether or not to implement a given control option.

2 Situational analysis (Section 1 of Manuscript Fig 2)

In our proposed decision support system (see Manuscript Fig 1), the key determinants of pan-
demic impact (i.e., transmissibility and severity) are assessed using situational awareness tools
[15, 16]. For this case study, both characteristics are considered using a ‘Low’, ‘Moderate’, ‘High’
scale, resulting in nine possible pandemic scenarios (i.e., levels of impact), which is consistent
with the scenarios defined within Australia’s current pandemic influenza response plan.

For our example decision analysis, we used test FF100 and forecasting analysis outputs
for Pandemics A and B. These outputs were designed to provide strong evidence of a high
severity, low transmissibility scenario for Pandemic A, and strong evidence of a low severity,
high transmissibility scenario for Pandemic B (Figure 1).
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Figure 1: Situational evidence for Pandemics A and B from FF100 and forecasting analysis
outputs.

3 Intervention analysis (Section 2 of Manuscript Fig 2)

The outcome of a decision depends on both the pandemic scenario and the action taken (i.e.
which antiviral strategy is deployed).

We used our previously published intervention model of targeted antiviral distribution [1]
to simulate epidemics and calculate the total number of cases for each scenario and decision
option pair.

3.1 Intervention model for targeted antiviral distribution (Section 2.1 of
Manuscript Fig 2)

A full description of the intervention model and each of the targeted antiviral distribution
strategies can be found in [1]. Briefly, the model is based on a modified susceptible-exposed-
infectious-recovered (SEIR) compartmental model. At pandemic onset, the population is fully
susceptible S to infection upon contact with an infectious individual. Individuals then enter
an exposed class (infected but not yet infectious) where they can receive prophylaxis (Ep) or
not (Enp). Infectious individuals can either present for healthcare (I) or not (A), and those
who present can either receive treatment (Inp,t) or not (Inp,nt). Once recovered from infection
(RInp, RAnp, RIp, RAp), individuals are assumed to be fully resistant to reinfection. The model
also incorporates a dynamic “contact” label, applied to a fixed number of individuals drawn
from the whole population each time a new infectious case appears. This allows simulation of
targeted post-exposure antiviral prophylaxis (PEP). The Australian population was stratified
into five distinct risk groups (young children, elderly, high-risk, health care workers, and the
general adult population), to allow for differential risks of severe outcomes, differential benefits
conferred by antiviral treatment, and targeted treatment and prophylaxis strategies. It was
assumed that these groups mixed homogeneously. All simulations were performed as described
by Moss and colleagues [1]. A schematic of the model structure is displayed in Figure 2.
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3.2 Calculating the number of cases

For each of the nine pandemic scenarios and four antiviral distribution strategies (including
no distribution), we performed 10,000 intervention model simulations, using Latin hypercude
sampling (LHS) to account for model uncertainties (e.g., epidemic time-course, effectiveness
of antivirals). See Moss and colleagues [1] for further details on the LHS approach. We then
calculated the mean number of cases (number of infectious individuals who present for health
care) for each scenario and antiviral/decision option pair (see Table 4).
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Figure 2: Schematic of the modified SEIR intervention model for targeted antiviral distribution.
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4 Decision analysis (Section 3 of Manuscript Fig 2)

The decision options for Pandemics A and B, given the situational evidence, were assessed using
a Bayesian decision network.

4.1 Bayesian decision network (Section 3.1 of Manuscript Fig 2)

The decision network described in 3.1 of Manuscript Fig 2 is shown in Figure 3. This network
contains a single root node, Scenario, which is also the query node, representing the ‘true’
pandemic scenario. The Scenario node has nine possible states, representing nine possible
pandemic scenarios categorised as either low, medium/moderate or high for both transmissibility
and severity (e.g., high severity, high transmissibility; high severity, medium transmissibility;
high severity, low transmissibility etc.) [6]. Scenario is connected to two evidence nodes:
FF100, representing an estimate of the pandemic scenario by the FF100 estimation algorithm
(this node has the same nine states as Scenario), and Forecast, representing a forecasting
model estimate of transmissibility (this node has three states: low, medium and high).

The network also contains a decision node AVstrategies, representing each of the different
antiviral strategies (including inaction), and a function IntModel that calculates the number
of cases. The arrows from Scenario and AVstrategies to IntModel indicate that the number
of cases will depend on both the pandemic scenario (i.e., transmissibility and severity) and the
action taken (i.e., which antiviral strategy is employed). IntModel is equivalent to the utility
or value function described in the decision network literature, but for this example we chose to
use the number of cases averted (compared to inaction) to evaluate the impact of each antiviral
strategy. A description of each decision network node and their possible states can be found in
Table 1.

IntModel
AV

strategies

Forecast 

Scenario

FF100

variable nodes decision node function (intervention model)

Figure 3: Schematic of the Bayesian decision network for pandemic influenza decision support.
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Table 1: Description of decision network nodes, their type and their possible states.
*The IntModel function calculates the number of cases C for each scenario (of transmissi-
bility i ∈ {low ,medium, high} and severity j ∈ {low ,moderate, high}) and decision option
d ∈ {Rxall/PEPall ,Rxall ,RxARhosp, Inaction} pair.

Node Type States Description

Scenario variable low transmissibility, high severity ‘True’ pandemic scenario
(query) medium transmissibility, high severity

high transmissibility, high severity
low transmissibility, moderate severity
medium transmissibility, moderate severity
high transmissibility, moderate severity
low transmissibility, low severity
medium transmissibility, low severity
high transmissibility, low severity

FF100 variable low transmissibility, high severity Estimated pandemic
(evidence) medium transmissibility, high severity scenario

high transmissibility, high severity
low transmissibility, moderate severity
medium transmissibility, moderate severity
high transmissibility, moderate severity
low transmissibility, low severity
medium transmissibility, low severity
high transmissibility, low severity

Forecast variable low Estimated transmissibility
(evidence) medium

high

IntModel function *C(i, j, d) Calculates the number of cases

AVstrategies decision Rx all/PEP all Antiviral strategies
Rx all
Rx AR, hosp

4.2 Network conditional and prior probability tables

The CPTs for this network establish how much weight is given to estimates of the ‘true’ pan-
demic scenario arising from the different inputs, in this case the FF100 and forecasting analyses.
We do not expect that either the FF100 or forecasting analyses will perfectly estimate the ‘true’
pandemic scenario, and this is reflected in the values that we assigned for the CPTs (see Tables
2 and 3). For example, even if 100% of the posterior samples for severity and transmissibility
parameters from the FF100 model fall into the high severity, low transmissibility region, we
nonetheless assigned the probability of Scenario being in the high severity, low transmissibility
state to be 0.9, rather than 1. The prior probabilities of Scenario, which is a root node, were
set to be uniform.

The values of the SEIR model parameters for each combination of the states of Scenario

and AVstrategy nodes, as well as the calculated number of cases can be found in Table 4.

Table 2: Conditional probability table for Forecast, which has one parent, Scenario. t =
transmissibility. s = severity. mod = moderate. med = medium.

Scenario

Forecast high s
low t

high s
med t

high s
high t

mod s
low t

mod s
med t

mod s
high t

low s low
t

low s
med t

low s
high t

high t 0.03 0.05 0.90 0.03 0.05 0.90 0.03 0.05 0.90
med t 0.07 0.90 0.07 0.07 0.90 0.07 0.07 0.90 0.07
low t 0.90 0.05 0.03 0.90 0.05 0.03 0.90 0.05 0.03
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Table 3: Conditional probability table for FF100, which has one parent, Scenario. t = trans-
missibility. s = severity. mod = moderate. med = medium.

Scenario

FF100 high s
low t

high s
med t

high s
high t

mod s
low t

mod s
med t

mod s
high t

low s low
t

low s
med t

low s
high t

high s, low t 0.9000 0.0125 0.0125 0.0125 0.0125 0.0125 0.0125 0.0125 0.0125
high s, med t 0.0125 0.9000 0.0125 0.0125 0.0125 0.0125 0.0125 0.0125 0.0125
high s, high t 0.0125 0.0125 0.9000 0.0125 0.0125 0.0125 0.0125 0.0125 0.0125
mod s, low t 0.0125 0.0125 0.0125 0.9000 0.0125 0.0125 0.0125 0.0125 0.0125
mod s, med t 0.0125 0.0125 0.0125 0.0125 0.9000 0.0125 0.0125 0.0125 0.0125
mod s, high t 0.0125 0.0125 0.0125 0.0125 0.0125 0.9000 0.0125 0.0125 0.0125
low s, low t 0.0125 0.0125 0.0125 0.0125 0.0125 0.0125 0.9000 0.0125 0.0125
low s, med t 0.0125 0.0125 0.0125 0.0125 0.0125 0.0125 0.0125 0.9000 0.0125
low s, high t 0.0125 0.0125 0.0125 0.0125 0.0125 0.0125 0.0125 0.0125 0.9000

4.3 Decision network evaluation

4.3.1 Evidence propagation

To evaluate the decision network, we first add any available evidence to the network, and
then calculate the posterior probability of the query node. In our example, the query node is
Scenario (since it is the only parent node of IntModel, aside from the decision node). This
requires propagating evidence through the network, also known as belief updating, using a
standard Bayesian network inference algorithm [9].

For our example model, situational evidence for Pandemics A and B (Figure 1) were in
turn supplied to the FF100 and Forecast nodes of the decision network. The posterior of the
Scenario node, Belief, was then computed for Pandemics A and B using Kim and Pearl’s
‘message passing’ algorithm in which messages, λ and π, are passed to the query node query

from its child and parent nodes, respectively [17]:

Belief(i, j) = αλ(i, j)π(i, j), (2)

where α is a normalising constant rendering
∑

i,j Belief(i, j) = 1. λ(i, j) is the message arriving
at query from its children which is based on messages λc from each child c:

λquery(i, j) =
∏

c∈children

∑
k∈Kc

λc(k)Pc(k|i, j), (3)

where Pc is from a fixed CPT relating child c to query, and children is the set of all child
nodes and for each child c we define Kc to be the set states for child c. The equation for π(i, j),
which represents the message from parent nodes, is not described here since Scenario has no
parent nodes.

In our example model, π(i, j) is the prior distribution of Scenario and since we assume no
prior knowledge of the pandemic scenario, π(i, j) = 1/9 for all i, j.

Further, in our example model we have children ∈ (FF100, Forecast) and for each child,
KFF100 ∈ ((1, 1), (1, 2), ..., (3, 3)) andKForecast ∈ (1, 2, 3). The message λScenario to the Scenario
node combines information that has come from each child c, via messages λc, and the fixed
CPT relating child c to Scenario (Tables 2 and 3). Messages λc are the evidence added at
child node c, where λFF100(m,n) = DFF100[m,n] and λForecast(m) = DForecast[m] are evidence.
For Pandemic A, the evidence is as follows (as per Figure 1):

DFF100[m,n] =

0.9000 0.0125 0.0125
0.0125 0.0125 0.0125
0.0125 0.0125 0.0125

 ,
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Table 4: Intervention model outcomes table. The following information is displayed: 1) Lower
and upper values of transmissibility and severity used for intervention model simulations for
each of the nine pandemic scenarios, which correspond to the nine states of the Scenario

node. These values are taken from those shown in Table 2 of Moss and colleagues [1], R0 for
transmissibility and η for severity (the proportion of infections that, in the absence of early
treatment, will require hospitalisation). 2) Each decision option/antiviral strategy. 3) The
number of cases for each scenario and decision option pair, calculated as the mean of 10,000
intervention model simulations.

Transmissibility R0

lower
R0

upper
Severity η

lower
η
upper

AVstrategy Cases

low 1.05 1.20 high 10−2 10−1 Rx all/PEP all 3.7× 105

medium 1.20 1.40 high 10−2 10−1 Rx all/PEP all 1.9× 106

high 1.40 1.70 high 10−2 10−1 Rx all/PEP all 3.3× 106

low 1.05 1.20 moderate 10−3 10−2 Rx all/PEP all 3.4× 105

medium 1.20 1.40 moderate 10−3 10−2 Rx all/PEP all 9.1× 105

high 1.40 1.70 moderate 10−3 10−2 Rx all/PEP all 1.4× 106

low 1.05 1.20 low 10−4 10−3 Rx all/PEP all 3.1× 105

medium 1.20 1.40 low 10−4 10−3 Rx all/PEP all 7.8× 105

high 1.40 1.70 low 10−4 10−3 Rx all/PEP all 1.2× 106

low 1.05 1.20 high 10−2 10−1 Rx all 4.9× 105

medium 1.20 1.40 high 10−2 10−1 Rx all 2.0× 106

high 1.40 1.70 high 10−2 10−1 Rx all 3.3× 106

low 1.05 1.20 moderate 10−3 10−2 Rx all 3.7× 105

medium 1.20 1.40 moderate 10−3 10−2 Rx all 9.2× 105

high 1.40 1.70 moderate 10−3 10−2 Rx all 1.4× 106

low 1.05 1.20 low 10−4 10−3 Rx all 3.3× 105

medium 1.20 1.40 low 10−4 10−3 Rx all 7.9× 105

high 1.40 1.70 low 10−4 10−3 Rx all 1.2× 106

low 1.05 1.20 high 10−2 10−1 Rx AR, hosp 7.6× 105

medium 1.20 1.40 high 10−2 10−1 Rx AR, hosp 2.2× 106

high 1.40 1.70 high 10−2 10−1 Rx AR, hosp 3.4× 106

low 1.05 1.20 moderate 10−3 10−2 Rx AR, hosp 4.3× 105

medium 1.20 1.40 moderate 10−3 10−2 Rx AR, hosp 9.5× 105

high 1.40 1.70 moderate 10−3 10−2 Rx AR, hosp 1.4× 106

low 1.05 1.20 low 10−4 10−3 Rx AR, hosp 3.8× 105

medium 1.20 1.40 low 10−4 10−3 Rx AR, hosp 8.1× 105

high 1.40 1.70 low 10−4 10−3 Rx AR, hosp 1.2× 106

low 1.05 1.20 high 10−2 10−1 Inaction 1.2× 106

medium 1.20 1.40 high 10−2 10−1 Inaction 2.4× 106

high 1.40 1.70 high 10−2 10−1 Inaction 3.5× 106

low 1.05 1.20 moderate 10−3 10−2 Inaction 4.7× 105

medium 1.20 1.40 moderate 10−3 10−2 Inaction 9.8× 105

high 1.40 1.70 moderate 10−3 10−2 Inaction 1.4× 106

low 1.05 1.20 low 10−4 10−3 Inaction 4.0× 105

medium 1.20 1.40 low 10−4 10−3 Inaction 8.2× 105

high 1.40 1.70 low 10−4 10−3 Inaction 1.2× 106

and

DForecast[m] = [0.99, 0.01, 0].
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And for Pandemic B:

DFF100[m,n] =

0.0125 0.0125 0.0125
0.0125 0.0125 0.0125
0.0125 0.0125 0.9000

 ,
and

DForecast[m] = [0, 0.01, 0.99].

4.3.2 Identifying the optimal decision

For this decision problem, we chose to calculate the number of cases averted, Ĉ, under deploy-
ment of each antiviral strategy d ∈ {Rxall/PEPall ,Rxall ,RxARhosp}, compared to Inaction.
Once we have the posterior probability of Scenario, we use it along with the intervention
model to calculate the expected number of cases averted Ĉ under deployment of each antiviral
strategy, given the evidence e:

E[Ĉ, d|e] =
∑
i,j

Ĉ(i, j, d)P (i, j|e), (4)

where

Ĉ(i, j, d) = C(i, j, Inaction)− C(i, j, d). (5)

We also calculate the standard deviation σ for cases averted:

σ(Ĉ(i, j, d)) =

√√√√√∑
i,j

Ĉ(i, j, d)2P (i, j|e)−

∑
i,j

Ĉ(i, j, d)P (i, j|e)

2

. (6)

The decision-maker then uses this information (the expected number of cases averted and
uncertainty) to identify the optimal decision d∗:

d∗ = arg max
d

(
decision-maker

(
E[Ĉ, d|e], σ(Ĉi,j)

))
. (7)

This very general formulation for how the decision-maker operates, in that it simply
maximises some utility over decision options d, allows the many other factors not captured by
the decision model to influence the ultimate choice of antiviral strategy.

5 Results

The expected number of cases averted under each antiviral strategy given no situational ev-
idence, evidence for Pandemic A, and evidence for Pandemic B is shown in Figure 4. It is
important for decision-makers to consider the full Scenario posterior distribution, not just the
expected values, due to possible underlying asymmetries of the posterior. Thus the figure also
displays cases averted (values from Equation 5) for each of the pandemic scenarios, underlaid by
a density plot of the Scenario posterior. This allows us to assess the relative number of cases
averted under each combination of antiviral strategy and pandemic scenario, along with the
scenario weightings specific to each hypothetical pandemic. The number of cases averted varies
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across pandemic scenarios under each of the antiviral strategies. Thus when the Scenario pos-
terior is strongly weighted towards a high severity, low transmissibility scenario (as in Pandemic
A), the expected number of cases averted is skewed towards higher values. Conversely when the
Scenario posterior is strongly weighted towards a low severity, high transmissibility scenario
(as in Pandemic B), the expected number of cases averted is skewed towards lower values. In
the absence of situational evidence (and a uniform prior is used for Scenario), there is higher
uncertainty around the expected value, since the Scenario posterior is also uniform.
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Figure 4: Plots are shown for No evidence, Pandemic A (strong evidence of high severity, low
transmissibility scenario) and Pandemic B (strong evidence of low severity, high transmissibility
scenario) for each antiviral strategy. The plot for each antiviral strategy and evidence pair
shows the cases averted for each pandemic scenario (coloured dots) underlaid by a density
plot of the Scenario posterior, given the evidence (or the uniform prior, before situational
evidence becomes available). The size of each pandemic scenario dot is also proportional to the
Scenario posterior probability. The expected number of cases averted is indicated by the black
bar through each plot. Each of the pandemic scenarios are labelled for antiviral strategy ‘Rx
all/PEP all’, but not the other two strategies.

Thus there are three key results which have implications for decision-making:

1. Uncertainty is greatest before situational evidence becomes available.

2. For all antiviral strategies, the expected cases averted and the underlying posterior distri-
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bution are skewed towards higher values when situational evidence suggests a high sever-
ity, low transmissibility scenario (Pandemic A) compared to when situational evidence
suggests a low severity, high transmissibility scenario (Pandemic B).

3. The expected cases averted is highly variable across antiviral strategies when situational
evidence suggests a high severity, low transmissibility scenario (Pandemic A) and not when
situational evidence suggests a low severity, high transmissibility scenario (Pandemic B).

Given situational evidence, there are strong grounds to use antivirals, and to use them
liberally, in response to Pandemic A. For Pandemic B, there is little evidence to support the
widespread use of antivirals as a public health measure. In both cases, antivirals would be used
for targeted case treatment.
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