Electronic Supplementary Material

Preclinical Evaluation of a Novel TSPO-PET Ligand 2-(7-Butyl-2-(4-(2-[¹⁸F]Fluoroethoxy)phenyl)-5-Methylpyrazolo[1,5-*a*]Pyrimidin-3-yl)-*N*,*N*-Diethylacetamide (¹⁸F-VUIIS1018A) to Image Glioma

Journal: Molecular Imaging and Biology

Dewei Tang^{1,2}, Jun Li^{3,4,5}, Michael L. Nickels^{3,4,5}, Gang Huang^{1,2}, Allison S. Cohen^{3,4}, and H. Charles Manning^{3,4,5-9, *}

¹Center for Molecular Imaging, Shanghai University of Medicine & Health Sciences, Shanghai, China

²Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China

³Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, United States

⁴Center for Molecular Probes, Vanderbilt University Medical Center, Nashville, Tennessee, United States

⁵Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, United States

⁶Program in Chemical and Physical Biology, Vanderbilt University Medical Center, Nashville, Tennessee, United States

⁷Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, United States

⁸Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, United States

⁹Department of Neurosurgery, Vanderbilt University Medical Center, Nashville, Tennessee, United States

*Corresponding Author: H. Charles Manning, Ph.D., Vanderbilt Center for Molecular Probes (CMP), Vanderbilt University Medical School, 1161 21st Ave. S., AA 1105 MCN, Nashville, TN 37232-2310; Tel: (615) 322-3793 Fax: (615) 322-0734; Email: (<u>henry.c.manning@vanderbilt.edu</u>). First Author: Dewei Tang, Ph.D., Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Pudong New District, Shanghai 200127; Email:(<u>acetdw@126.com</u>).

Scheme 1. Synthetic route for VUIIS1018A (3A), VUIIS1018B (3B) and precursor (4A) for radiosynthesis.

All commercially available reagents were used without further purification. Microwave reactions were carried out with a Biotage Initiator TM Sixty microwave system (Uppsala, Sweden). Reaction residues were purified using a CombiFlash purification system (Teledyne Isco) with silica cartridges. Further reversed-phase HPLC purification was performed with a Gilson preparative separation system (Gilson Inc.; USA). ¹H- and ¹³C-NMR spectra were recorded on a Bruker 600 MHz spectrometer in the Vanderbilt Small Molecule NMR Facility. Chemical shifts are reported in ppm using the residual of chloroform as the internal standard (7.26 ppm for ¹H and 77.160 ppm for ¹³C). The following abbreviations are used: s = singlet, d = doublet, t = triplet, q = quartet and m = multiplet. High-resolution mass spectra were acquired with a Waters 2690 Alliance LC system with Thermo Finnigan TSQ 7000 Triple Quadrupole mass spectrometer equipped with a dual channel ESI-CI source. All compounds used for biological assays were purified

by HPLC and were \geq 95% purity based on analytical LC/MS monitored at 254 nm.

2. Synthetic and Characterization Data

a. 2-(5-amino-3-(4-methoxyphenyl)-1H-pyrazol-4-yl)-N,N-diethylacetamide (1)

Compound **1** was synthesized and characterized according to previously published methods [1, 2].

b. 2-(7-butyl-2-(4-hydroxyphenyl)-5-methylpyrazolo[1,5-*a*]pyrimidin-3-yl)-*N*,*N*-diethylacetamide (**2A**) and 2-(5-butyl-2-(4-hydroxyphenyl)-7-methylpyrazolo[1,5-*a*]pyrimidin-3-yl)-*N*,*N*-diethylacetamide (**2B**)

To a solution of **1** (300 mg, 1.0 mmol) in 20 mL EtOH was added 2,4-octanedione (114 mg, 1.0 mmol). The reaction mixture was irradiated with microwaves in a sealed vial at 185 °C for 30 min. The reaction progression was determined by LC/MS. When complete, the reaction mixture was concentrated *in vacuo* and the residue purified with column chromatography to afford 360 mg (89%) of product as white crystals. This product was a mixture of *N*,*N*-diethyl-2-(7-butyl-2-(4-methoxyphenyl)-5-methylpyrazolo[1,5-*a*]pyrimidin-3-yl)acetamide and *N*,*N*-diethyl-2-(5-butyl-2-(4-methoxyphenyl)-7-methylpyrazolo[1,5-*a*]pyrimidin-3-yl)acetamide.

To a solution of the mixture of N,N-diethyl-2-(7-butyl-2-(4-methoxyphenyl)-5-methylpyrazolo[1,5-*a*]pyrimidin-3-yl)acetamide and N,N-diethyl-2-(5-butyl-2-(4-methoxyphenyl)-7-methylpyrazolo[1,5-*a*]pyrimidin-3-yl)acetamide (300 mg, 0.73 mmol) in HBr (aqueous, 7.0 mL) was added a catalytic amount of hexadecyltributylphosphonium

bromide (HTPB, 40 mg, 0.079 mmol). The reaction mixture was sealed then irradiated with microwaves at 110 °C for 40 min and monitored with LC/MS. When complete, the mixture was neutralized with saturated aqueous NaHCO3 and extracted with DCM (100 mL \times 3). The organic layers were pooled and concentrated *in vacuo*. The residue was then purified with a Gilson preparative purification system, which afforded **2A** (130 mg, 45%) and **2B** (100 mg, 35%) as white crystals.

2A:¹H-NMR (CDCl3, 600 MHz) δ 7.65 (d, 2H, *J* = 8.6 Hz), 6.82 (d, 2H, *J* = 8.6 Hz), 6.46 (s, 1H), 3.97 (s, 2H), 3.49 (m, 2H), 3.37 (m, 2H), 3.13 (t, 2H, *J* = 7.8 Hz), 2.54 (s, 3H), 1.83 (m, 2H), 1.48 (m, 2H), 1.13 (t, 3H, *J* = 7.1 Hz), 1.08 (t, 3H, *J* = 7.1 Hz), 0.98 (t, 3H, *J* = 7.3 Hz).¹³C-NMR (CDCl3, 150 MHz) δ 157.52, 157.07, 155.22, 129.92, 125.17, 115.63, 106.58, 100.03, 42.53, 40.84, 29.61, 28.43, 27.90, 24.60, 22.46, 14.07, 13.85, 12.94. HRMS calcd. C₂₃H₃₀N₄O₂ for m/z = 395.2369 (M + H)⁺, found 395.2430.

2B: ¹H-NMR (CDCl3, 600 MHz) δ 7.71 (d, 2H, J = 8.4 Hz), 6.84 (d, 2H, J = 8.5 Hz), 6.50 (s, 1H), 3.98 (s, 2H), 3.55 (m, 2H), 3.37 (m, 2H), 2.77 (t, 2H, J = 7.7 Hz), 2.74(s, 3H), 1.75 (m, 2H), 1.41 (m, 2H), 1.13(t, 3H, J = 7.1 Hz), 1.07 (t, 3H, J = 7.1 Hz), 0.95(t, 3H, J = 7.4 Hz).¹³C-NMR (CDCl3, 150 MHz) δ 170.86, 161.35, 157.09, 155.51, 147.37, 144.82, 130.01, 125.13, 115.66, 107.55, 100.41, 42.65, 40.91, 37.84, 30.98, 28.44, 22.40, 17.02, 14.17, 13.93, 12.95. HRMS calcd C₂₃H₃₀N₄O₂ for m/z = 395.2369 (M + H)⁺, found 395.2437.

c. 2-(7-butyl-2-(4-(2-fluoroethoxy)phenyl)-5-methylpyrazolo[1,5-*a*]pyrimidin-3-yl)-*N*,*N*-diethylacetamide (**3A**)

To a solution of **2A** (130 mg, 0.33 mmol) in 12 mL anhydrous THF was added 100% NaH (27.4 mg, 1.14 mmol) at 0 °C. The reaction mixture was stirred at 0 °C for 10 min. To the reaction was added 2-fluoroethyl-4-methylbenzenesulfonate (248.8 mg, 1.14 mmol). The reaction mixture was then sealed and irradiated with microwaves at 120 °C for 40 min. The reaction progress was determined by LCMS. When completed, the reaction mixture was quenched then diluted with 1N HCl (100 mL) and extracted with DCM (100 mL \times 3). The organic layers were pooled and concentrated *in vacuo*. The residue was then purified with a Gilson preparative purification system, which afforded **3A** (100 mg, 70%) as white crystals. ¹H-NMR (CDCl3, 600 MHz) δ 7.84 (d, 2H, J = 8.7 Hz), 7.01 (d, 2H, J = 8.8 Hz), 6.51 (s, 1H), 4.82 (t, 1H, J = 4.1 Hz), 4.74 (t, 1H, J = 4.7 Hz), 4.28 (t, 1H, J = 4.2 Hz), 4.24 (t, 1H, J = 4.3 Hz), 3.94 (s, 2H), 3.55 (m, 2H), 3.40 (m, 2H), 2.79 (t, 2H, J = 7.7 Hz), 2.75 (s, 3H), 1.74 (m, 2H), 1.41 (m, 2H), 1.20 (t, 3H, *J* = 7.1 Hz), 1.10 (t, 3H, *J* = 7.1 Hz), 0.95 (t, 3H, J = 7.3 Hz). ¹³C-NMR (CDCl3, 150 MHz) δ 170.22, 161.31, 158.61, 155.02, 130.11, 129.95, 126.93, 114.65, 107.54, 100.96, 82.46, 81.33, 67.18, 67.04, 42.43, 40.67, 37.74, 30.97, 28.13, 22.42, 17.02, 14.38, 13.92, 13.07. HRMS calcd $C_{25}H_{33}FN_4O_2$ for m/z = $441.2588 (M + H)^+$, found 441.2672.

d. 2-(5-butyl-2-(4-(2-fluoroethoxy)phenyl)-7-methylpyrazolo[1,5-*a*]pyrimidin-3-yl)-*N*,*N*-diethylacetamide (**3B**)

To a solution of 2B (60 mg, 0.15 mmol) in 12 mL anhydrous THF was added 100% NaH

(11.8 mg, 0.49 mmol) at 0 °C. The reaction mixture was stirred at 0 °C for 10 min. To the reaction mixture was added 2-fluoroethyl-4-methylbenzenesulfonate (107 mg, 0.49 mmol). The reaction mixture was sealed and irradiated with microwaves at 120 °C for 40 min. The reaction progress was determined with LCMS. When completed, the reaction mixture was slowly quenched then diluted with 1N HCl (50 mL) and extracted with DCM (50 mL \times 3). The organic layers were pooled and concentrated in vacuo. The residue was then purified with a Gilson preparative purification system, which afforded **3B** (46 mg, 70%) as white crystals. ¹H-NMR (CDCl3, 600 MHz) δ 7.79 (d, 2H, J = 8.7 Hz), 7.00 (d, 2H, J = 8.8 Hz), 6.51 (s, 1H), 4.81 (t, 1H, J = 4.1 Hz), 4.73 (t, 1H, J = 4.1 Hz), 4.28 (t, 1H, J = 4.1 Hz), 4.23(t, 1H, J = 4.3 Hz), 3.94 (s, 2H), 3.50 (m, 2H), 3.40 (m, 2H), 3.14 (t, 2H, J = 7.6 Hz), 2.75 (s, 3H), 1.85 (m, 2H), 1.49 (m, 2H), 1.19 (t, 3H, *J* = 7.1 Hz), 1.11 (t, 3H, *J* = 7.1 Hz), 0.99 (t, 3H, J = 7.4 Hz). ¹³C-NMR (CDCl3, 150 MHz) δ 169.88, 158.30, 157.21, 154.31, 148.30, 147.48, 129.78, 129.71, 126.85, 114.37, 106.41, 100.34, 82.22, 81.09, 66.94, 66.81, 42.06, 40.34, 29.34, 27.89, 27.75, 27.66, 24.51, 22.23, 14.06, 13.62, 13.59, 12.82. HRMS calcd $C_{25}H_{33}FN_4O_2$ for m/z = 441.2588 (M + H)⁺, found 441.2672.

e. 2-(4-(7-butyl-3-(2-(diethylamino)-2-oxoethyl)-5-methylpyrazolo[1,5-*a*]pyrimidin-2yl)phenoxy)ethyl 4-methylbenzenesulfonate (**4A**)

To a solution of **2A** (140 mg, 0.36 mmol) in 12 mL anhydrous THF was added 100% NaH (27.4 mg, 1.14 mmol) at 0 °C. The reaction mixture was stirred at 0 °C for 10 min. To the reaction mixture then was added ethane-1,2-diyl bis(4-methylbenzenesulfonate) (422.3 mg, 1.14 mmol). The reaction mixture was then sealed and irradiated with microwaves at

120 °C for 40 min. The reaction progress was determined with LCMS. When completed, the reaction mixture was carefully quenched then diluted with 1N HCl (100 mL) and extracted with DCM (100 mL × 3). The organic layers were pooled and concentrated *in vacuo*. The residue was then purified with a Gilson preparative purification system, which afforded **4A** (180 mg, 84%) as white crystals. ¹H-NMR (CDCl3, 600 MHz) δ 7.82 (d, 2H, J = 8.3 Hz), 7.75 (d, 2H, J = 8.8 Hz), 7.35 (d, 2H, J = 8.2 Hz), 6.85(d, 2H, J = 8.8 Hz), 6.51 (s, 1H), 4.38 (t, 2H, J = 6.8 Hz), 4.18 (t, 2H, J = 4.9 Hz), 3.90 (s, 2H), 3.51 (m, 2H), 3.40 (m, 2H), 3.14 (t, 2H, t = 7.74 Hz), 2.54 (s, 3H), 2.45 (s, 3H), 1.85 (m, 2H), 1.49 (m, 2H), 1.19 (t, 3H, J = 7.1 Hz), 1.11 (t, 3H, J = 7.1 Hz), 0.99 (t, 3H, J = 7.1 Hz).¹³C-NMR (CDCl3, 150 MHz) δ 169.86, 157.86, 157.23, 154.25, 144.71, 132.61, 129.73, 127.75, 126.96, 114.28, 106.44, 100.34, 67.83, 65.17, 42.07, 40.34, 42.07, 40.34, 29.35, 27.87, 27.66, 24.48, 22.23, 21.40, 14.08, 13.62, 12.82. HRMS calcd C₃₂H₄₀N₄O₅S for m/z = 593.2719 (M + H)⁺, found 593.2794.

Table 1. Parameter estimates for $[^{18}F]$ VUIIS1018A pharmacokinetics in normal brain andtumor tissue using a 2-tissue, 4-parameter model for both normal 60-min dynamic scan.Results = Mean ± SEM.

Region	K_1	<i>k</i> ₂	<i>k</i> ₃	k_4
Tumor $(n = 7)$	0.831 ± 0.202	3.115 ± 1.404	0.298 ± 0.084	0.014 ± 0.002
Brain $(n = 7)$	0.610 ± 0.215	2.320 ± 1.074	0.152 ± 0.058	0.052 ± 0.017

References

1. Tang, D., Buck, J. R., Hight, M. R. and Manning, H. C. (2010). Microwave-assisted Organic Synthesis of a High-affinity Pyrazolo-pyrimidinyl TSPO Ligand. Tetrahedron Lett 51: 4595-4598.

2. Tang, D., McKinley, E. T., Hight, M. R., et al. (2013). Synthesis and structureactivity relationships of 5,6,7-substituted pyrazolopyrimidines: discovery of a novel TSPO PET ligand for cancer imaging. J Med Chem 56: 3429-3433.