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Appendix
Modes of relationships between data sources

msPLS is able to account for relationship between multiple data sources. The pos-

sible relationship forms between each data source pair A and B is that either they

are not connected, or they are connected through a symmetrical or an asymmetrical

relationship.

Symmetric and asymmetric relationship between data sources

We consider three cases to model the relationship between data source pairs. In the

first case, data source A can be considered as explanatory to data source B (and

therefore data source B as response for data source A), so that the MVs in data

source A will be regarded as explanatory for MVs in data source B. In the second

case, data source B can be considered as explanatory to data source A. These first

two cases are called asymmetric relationships between data sources. In the third

case, data source A can be considered as response to data source B while data

source B is also considered as response for data source A. This third case is called

a symmetrical relationship. For msPLS, we will restrict the relationships between

two data sources to these three cases. The reason to not include all the relationship

models proposed for PLS-PM (see [1] for an overview of all possible relationship

models) and restrict msPLS the above three is that they correspond to well known

multivarate methods and therefore they have well defined objective functions re-

garding the optimisation criterion of the analysis. We show in the next sections that

in the case when msPLS is applied to two data sources and the data sources have

a symmetrical relationship corresponds to Canonical Correlation Analysis (CCA)

and that an asymmetric relationship corresponds to Redundancy Analysis (RDA).

Asymmetric relationship of two data sources: RDA

msPLS two data sources example

Given data sources X1, X2

(i) Preliminary steps

• Center and scale X1, X2

• Set connectivity matrix as C =

[
0 0

1 0

]
, that is X2 is response to X1

• Set w
(0)
1 and w

(0)
2 to arbitrary vectors [1, 1, ..., 1]

′
with length p1 and p2,

respectively

• Define convergence criterion CRT = 1 and a small positive tolerance γ =

10−6

(ii) Iterative regression steps

While CRT ≥ γ

a. Estimate initial LVs

ζ1 ∝ X1w
(0)
1 ; where ∝ indicates that ζ1 is normalized to unit variance

ζ2 ∝ X2w
(0)
2
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b. Model the relationship between data sources

Let Z be the matrix of the column-bind LVs, i.e. Z = [ζ1, ζ2]

(i) Let vector cq be the q-th row vector of C that denotes the explanatory data

sources for data source q, i.e. c1 = [0, 0], c2 = [1, 0]

If
∑2

i=1 cqi> 0, i.e. if data source q has any explanatories:

θcq,q = [Z′cq
Zcq ]−1Z′cq

ζq,

where Zcj
is the matrix of column-bind explanatory LVs of data source q,

i.e. ||c1||2 = 0, which implies X1 doesn’t have any explanatory data sources,

for c2, we calculate

θc2q = [Z′c2
Zc2

]−1Z′c2
ζq

θ12 = [ζ′1ζ1]−1ζ′1ζ2

(ii) Let vector cq′ be the k-th column vector of C that denotes the response data

sources for data source q′, i.e. c1 = [0, 1]′, c2 = [0, 0]′

If
∑2

i=1 ciq′> 0, i.e. if data source q′ has any responses:

θcq′ ,q
′ = cor(ζq′ , ζcq′

),

for c1 we calculate

θc11 = cor(ζ1, ζc2
)

θ21 = cor(ζ1, ζ2)

After the last two steps, the entries of Θ will look as follows;

Θ =

[
0 [ζ′1ζ1]−1ζ′1ζ2

cor(ζ1, ζ2) 0

]
c. Re-estimate the the LVs

[ζ̃1, ζ̃2] = [ζ1, ζ2]Θ

d. Estimate the new w
(1)
q weights

w
(1)
1 = [X′1X1]−1X

′

1ζ̃1

w
(1)
2 =

[
[ζ̃
′
2ζ̃2]−1ζ̃

′
2X2

]′
e. Evaluate the convergence criteria and discard the old w

(0)
q weights

CRT =
∑2

q=1(w
(1)
q −w

(0)
q )2

w
(0)
q = w

(1)
q

(iii) Upon convergence, return w
(0)
1 and w

(0)
2

In this iterative regression framework, ζ̃1 is regressed multivariably on X1 to

obtain the w1 weights and X2 is regressed univariately on ζ̃2 to obtain the w2

weights. The algorithm stops when weights converge (i.e. within a small predefined
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tolerance which is denoted by γ). It can be shown that this algorithm leads to the

characteristic eigenvalue equation of RDA as follows [2]

w
(n)
2 =

[
[ζ̃
′
2ζ̃2]−1ζ̃

′
2X2

]′
∝
[
ζ̃
′
2X2

]′
,

(1)

where the symbol ∝ indicates that the left side is proportional to a scaled right

side (i.e. [ζ̃
′
2ζ̃2]−1 is a scalar) and superscript n denotes the sequence number of the

iteration. Note that after Step (2-b-ii) in the algorithm above, ζ̃2 becomes a scaled

version of ζ1. This can be derived from Step (2-c), i.e.

[ζ̃1, ζ̃2] = [ζ1, ζ2]Θ

= [ζ1, ζ2]

[
0 [ζ′1ζ1]−1ζ′1ζ2

cor(ζ1, ζ2) 0

]
=
[[
ζ2 × cor(ζ1, ζ2)

]
,
[
ζ1 × [ζ′1ζ1]−1ζ′1ζ2

]]
,

(2)

where cor(ζ1, ζ2) and [ζ′1ζ1]−1ζ′1ζ2 are scalars. Then we can rewrite Eq (1) as

w
(n)
2 ∝

(
ζ̃
′
2X2

)′
∝
((
ζ1 × [ζ′1ζ1]−1ζ′1ζ2

)′
X2

)′
∝
(
ζ

′

1X2

)′
∝
(
w

(n−1)′
1 X′1X2

)′
∝
(
ζ̃
′
1X1[X′1X1]−1X′1X2

)′
,

(3)

note here that ζ̃1 is a scaled version of ζ2 (from Eq (2)). Therefore

w
(n)
2 ∝

(
ζ̃
′
1X1[X′1X1]−1X′1X2

)′
∝
(
ζ

′

2X1[X′1X1]−1X′1X2

)′
∝
(
w

(n−1)′
2 X

′

2X1[X′1X1]−1X′1X2

)′
.

(4)

Transposing the right side leads to

w
(n)
2 ∝ X

′

2X1[X′1X1]−1X
′

1X2w
(n−1)
2 , (5)

and, upon convergence of the algorithm results

w2 ∝ X
′

2X1[X′1X1]−1X
′

1X2w2. (6)
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The last equation corresponds with the characteristic eigenvalue equation for RDA

[3, 4]. Denote X1 with X and X2 with Y and rearrange Eq (6) as

Y
′
X[X′X]−1X

′
Yw2 = λw2

(Y
′
X[X

′
X]−1X

′
Y−λI)w2 = 0

(SYXS
−1
X′X

S
′

YX − λI)w2 = 0,

(7)

where SYX is the covariance matrix of Y and X and SXX is the variance matrix

of X, and w2 and λ are the eigenvector and eigenvalue of the characteristic RDA

equation [3].

Symmetric relationship of two data sources: CCA

In a symmetric relationship, connectivity matrix C in Section Step (1-b) becomes

C =

[
0 1

1 0

]
,

that is X2 is response to X1 and X1 is response to X2. Θ in Step (2-b) becomes

Θ =

[
0 cor(ζ1, ζ2)

cor(ζ1, ζ2) 0

]

and w2 in Step (2-d) is calculated as

w
(1)
2 =

(
[X

′

2X2]−1X
′

2ζ̃2

)′
With the new connectivity matrix C encoding the symmetric relationship type,

the algorithm leads to the characteristic eigenvalue equation of CCA as follows [2]:

w
(n)
2 =

(
[X

′

2X2]−1X
′

2ζ̃2

)′
(8)

where superscript n denotes the sequence number of the iteration. Note that after

Step (2-b-ii) ζ̃2 becomes a scaled version of ζ1. This can be derived from Step (2-c),

i.e.

[ζ̃1, ζ̃2] = [ζ1, ζ2]Θ

= [ζ1, ζ2]

[
0 cor(ζ1, ζ2)

cor(ζ1, ζ2) 0

]
=
[(
ζ2 × cor(ζ1, ζ2)

)
,
(
ζ1 × cor(ζ1, ζ2)

)]
,

(9)

where cor(ζ1, ζ2) is a scalar. Then we can rewrite Eq (8) as
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w
(n)
2 =

(
[X

′

2X2]−1X
′

2ζ̃2

)′
∝
(
[X

′

2X2]−1X
′

2ζ1

)′
∝
(
[X

′

2X2]−1X
′

2X1w
(n−1)
1

)′
∝
(
[X

′

2X2]−1X
′

2X1[X
′

1X1]−1X
′

1ζ̃1

)′
,

(10)

where the symbol ∝ indicates that the left side is proportional to the scaled right

side. Note that ζ̃1 is a scaled version of ζ2 (from Eq 9). Therefore

w
(n)
2 ∝

(
[X

′

2X2]−1X
′

2X1[X
′

1X1]−1X
′

1ζ̃1

)′
∝
(
[X

′

2X2]−1X
′

2X1[X
′

1X1]−1X
′

1ζ2

)′
∝
(
[X

′

2X2]−1X
′

2X1[X
′

1X1]−1X
′

1X2w
(n−1)
2

)′
.

(11)

Transposing the right side leads to

w
(n)
2 ∝ w

(n−1)′
2 X2

′
X1[X

′

1X1]−1X
′

1X2[X
′

2X2]−1, (12)

and, upon convergence of the algorithm results

w2 ∝ w
′

2X2

′
X1[X

′

1X1]−1X
′

1X2[X
′

2X2]−1 (13)

Eq (13) corresponds with the characteristic eigenvalue equation for CCA [3, 5].

Denote X1 with X and X2 with Y and rearrange Eq 13 as

w
′

2Y
′
X[X

′
X]−1X

′
Y[Y

′
Y]−1 = λw2

(Y
′
X[X

′
X]−1X

′
Y[Y

′
Y]−1 − λI)w2 = 0

(SYXS
−1
X′X

S
′

YXS
−1
Y′Y
− λI)w2 = 0,

(14)

where SYX is the covariance matrix of Y and X, SXX is the variance matrix of X,

SYY is the variance matrix of Y and w2 and λ are the eigenvector and eigenvalue

of the characteristic CCA equation [3].
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