Supplementary Materials

Robust generation of erythroid and multilineage hematopoietic progenitors from human iPSCs using a scalable monolayer culture system

Juan Pablo Ruiz^a, Guibin Chen^b, Juan Jesus Haro Mora^a, Keyvan Keyvanfar^c,

Chengyu Liu^d, Jizhong Zou^e, Jeanette Beers^e, Hanan Bloomer^a, Husam Qanash^{a,f,g}

Naoya Uchida^a, John F. Tisdale^a, Manfred Boehm^b, Andre Larochelle^{a*}

Affiliations:

^aCellular and Molecular Therapeutics Branch, National Heart, Lung and Blood Institute (NHLBI),

National Institutes of Health (NIH), Bethesda, MD 20892, USA.

^bTranslational Vascular Medicine Branch, NHLBI, NIH, Bethesda, MD 20892, USA.

^cClinical Flow Core Facility, NHLBI, NIH, Bethesda, MD 20892, USA.

^dTransgenic Core Facility, NHLBI, NIH, Bethesda, MD 20892, USA.

^eiPSC Core Facility, NHLBI, NIH, Bethesda, MD 20892, USA.

^fCollege of Applied Medical Sciences, University of Hail, Hail, Saudi Arabia.

^gDepartment of Biology, The Catholic University of America, Washington, DC 20064, USA.

Author list footnotes:

* **Corresponding author:** Andre Larochelle, M.D. Ph.D., National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, 9000 Rockville, Bethesda, MD 20892, USA.

(301) 451-7139 🖄 <u>larochea@nhlbi.nih.gov</u> 🖶 (301) 496-8396

This PDF file includes:

Figures S1-S6 Tables S1-S3

Figure S1 | **Complete gating strategies used for flow cytometry characterization of the cellular constituents arising during human iPSC differentiation with STEMdiff**TM **hematopoietic kit.** (A) Representative gating strategy for hematopoietic and non-hematopoietic fractions at day 12 of differentiation; associated with Fig. 1C. (B) Representative gating strategy for hematopoietic populations at day 10 of differentiation; associated with Fig. 2A. (C) Representative gating strategy for populations of mesenchymal cells, vascular endothelium (VE) and hemogenic endothelium (HE) at day 5 of differentiation; associated with Fig. 3A. (D) Representative gating strategy for populations of mesenchymal stromal cells (MSC) at day 10 of differentiation; associated with Fig. 3C. (E) Representative gating strategy for populations of arterial and venous VE at day 5 of differentiation; associated with Fig. 3F. (F) Representative gating strategy for populations of immunophenotypic HSCs at day 12 of differentiation; associated with Fig. S4A.

Figure S2 | **Characterization of MCND-TENS2 iPSC line.** (**A**) Hematoxylin and eosin stain of a teratoma from MCND-TENS2 iPSCs, displaying structures representative of ectoderm, mesoderm and endoderm. E, epidermal tissue; N, neutral tissue; M, striated muscle; C, cartilage; A, adipose tissue; G, gut epithelial tissue. Scale bar = $250 \mu m$. (**B**) Cytogenetic analysis showing a normal karyotype (46, XY). (**C**) Flow cytometry analysis of iPSCs showing expression of pluripotency protein markers, TRA-1-60 and NANOG, compared to isotype controls.

Figure S3 | Cell viability during human iPSC differentiation with STEMdiffTM hematopoietic kit. Total cell viability was measured by acridine orange (AO)/propidium iodide (PI) staining for each sample throughout differentiation. Results are shown as mean \pm SEM (n=8). Associated with Fig. 1E.

Figure S4 | Production of immunophenotypic HSCs with no long-term engraftment potential during human iPSC differentiation with STEMdiffTM hematopoietic kit. (A) Representative flow cytometry plots depicting CD34⁺CD38⁻CD45RA⁻CD90⁺CD49f⁺ cells in gated CD43⁺CD45⁺ hematopoietic cells at various days of differentiation. The complete gating strategy is shown in Fig. S1F. (B) Human cell engraftment depicted as percentage of human CD45-expressing cells in the bone marrow of recipient NSG mice 16 weeks after transplantation of day 10 or 12 sorted CD43⁺CD45⁺ hematopoietic cells derived from control (left panel, associated with Fig. 2E) or CHIR/SB-supplemented cultures (right panel, associated with Fig. 5G). Results are shown as mean \pm SEM; each dot represents an individual mouse (n= 5 to 6 mice per group).

Figure S5 | **Limited hemogenic endothelium (HE) and arterial-type HE formation during human iPSC differentiation with STEMdiff**TM hematopoietic kit. Representative flow cytometry plots of CD34, CD144 (VE-cadherin), CD73, DLL4 and CD184 expression in gated CD43⁻CD45⁻ non-hematopoietic cells at various days of differentiation. Gates shown include: CD144⁻CD34⁻ mesenchymal cells (dark blue), CD144⁺CD34^{hi} vascular endothelium (VE, light blue), CD144⁺CD34^{hi}CD73⁻ hemogenic endothelium (HE, green), and CD144⁺CD34^{hi}CD73⁻ DLL4⁺CD184^{+/-} arterial-type HE. The complete gating strategy is shown in Fig. S1C.

Figure S6 | CHIR/SB molecules increase non-hematopoietic cells and decrease hematopoietic production during human iPSC differentiation with STEMdiffTM hematopoietic kit. (A) Absolute numbers of CD43⁺CD45^{+/-} hematopoietic cells arising from 20-35 iPSC clusters (one well of a 12-well plate) in control and CHIR/SB-supplemented cultures at various days of differentiation (n=6). Associated with Fig. 4A. (B) Absolute numbers of CD43⁻CD45⁻ non-hematopoietic cells arising from 20-35 iPSC clusters (one well of a 12-well plate) in control and CHIR/SB-supplemented cultures at various days of differentiation (n=6). Associated with Fig. 5A. Results are displayed as mean \pm SEM. *P<0.05, **P < 0.01, ****P<0.0001, by two-way unpaired Student's t-tests comparing cell numbers in control vs CHIR/SB groups at each culture day.

Tuble 51 Human II 50 miles subjected to 51 Enfant – nematopoletie americation						
Cell line	Туре	Starting material	Reprogramming method			
MCND-TENS1	Normal control	MPB CD34 ⁺ CD38 ⁻ cells ⁽¹⁾	Sendai virus			
MCND-TENS2 ⁽²⁾	Normal control	MPB CD34 ⁺ CD38 ⁻ cells ⁽¹⁾	Sendai virus			
MCND-TENS3	Normal control	MPB CD34 ⁺ CD38 ⁻ cells ⁽¹⁾	Sendai virus			
MCND-S1	Normal control	MPB CD34 ⁺ cells ⁽¹⁾	Sendai virus			
MCND-S3	Normal control	MPB CD34 ⁺ cells ⁽¹⁾	Sendai virus			
NL-5	Normal control	Cord blood CD34 ⁺ cells	Episomal plasmid			
ND-2	Normal control	Fibroblasts	Episomal plasmid			
NC-1	Normal control	Fibroblasts	Episomal plasmid			
NC-4	Normal control	Fibroblasts	Episomal plasmid			
NC-5	Normal control	Fibroblasts	Episomal plasmid			
113-7	Normal control	Fibroblasts	Episomal plasmid			
DBA863-S13	DBA ⁽³⁾	Mononuclear blood cells	Sendai virus			
DBA869-S1	DBA ⁽³⁾	Mononuclear blood cells	Sendai virus			
DBA872-S1	$DBA^{(3)}$	Mononuclear blood cells	Sendai virus			

Table S1 | Human iPSC lines subjected to STEMdiff[™] hematopoietic differentiation

(1) Derived from G-CSF mobilized peripheral blood (MPB)
 (2) Used in this study
 (3) Diamond Blackfan Anemia (DBA)

Table 52 Antibodies for now cytometry analysis and FACS							
Antigen	Fluorochrome	Company/Catalogue #	Species	μL/test			
CD34	PE-Cy7	BD Pharmingen 560710	Mouse anti-human	10			
CD34	PE	BD Pharmingen 555822	Mouse anti-human	20			
CD38	APC	BD Pharmingen 555462	Mouse anti-human	20			
CD43	BV711	BD OptiBuild [™] 743614	Mouse anti-human	5			
CD43	FITC	BD Pharmingen 555475	Mouse anti-human	20			
CD45	V450	BD Horizon 560367	Mouse anti-human	5			
CD45RA	APC-H7	BD Pharmingen 560674	Mouse anti-human	5			
CD49f	PE-Cy5	BD Pharmingen 551129	Rat anti-human	20			
CD73	PE	BD Pharmingen 550257	Mouse anti-human	20			
CD73	FITC	BD Pharmingen 561254	Mouse anti-human	5			
CD90	PE-Cy7	BD Pharmingen 561558	Mouse anti-human	5			
CD105	AF647	BD Pharmingen 561439	Mouse anti-human	5			
CD144	BV605	BD OptiBuild TM 743705	Mouse anti-human	5			
CD184	PE-CF594	BD Horizon 562389	Mouse anti-human	5			
CD235a	FITC	BioLegend 349104	Mouse anti-human	5			
N/A	7-AAD	Thermofisher 00-6993-50	N/A	5			

 Table S2 | Antibodies for flow cytometry analysis and FACS

Gene	Assay or sequence	Probe
GAPDH	Life Technologies, Hs03929097_g1	VIC
HoxA5	Life Technologies, Hs00430330_m1	FAM
HoxA9	Life Technologies, Hs00365956_m1	FAM
HoxA10	Life Technologies, Hs00172012_m1	FAM

Table S3 | Taqman[™] primers and probes