Supplementary Information for

Implementation of permeation rules leads to a FabI inhibitor with activity against Gram-negative pathogens

Erica N. Parker,^{1,4} Bryon S. Drown,^{1,4} Emily J. Geddes,¹ Hyang Yeon Lee,¹ Nahed Ismail,² Gee W. Lau,³ and Paul J. Hergenrother^{1,*}

¹ Department of Chemistry and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801, USA.

² Department of Pathology, College of Medicine, University of Illinois at Chicago, 840 South Wood Street, Chicago, IL 60612, USA.

³ Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL 61802, USA.

⁴ These authors contributed equally

*Correspondence to: <u>hergenro@illinois.edu</u>

Table of Contents

1) Supplementary Table 1	2
2) Supplementary Table 2	12
3) Supplementary Table 3	13
4) Supplementary Table 4	14
5) Supplementary Table 5	17
6) Supplementary Table 6	18
7) Materials and Methods for Chemical Synthesis	19

Supplementary Table 1. Structures and physicochemical properties of candidates for conversion. SMILES strings were generated using Open Babel with canonicalized atom order. If known, the target of each antibiotic was included. If available, PDB accession codes are included for co-crystal structures of antibiotic bound to protein target. * indicates PDB accession for close analogue.

Structure/name	Phase	# RB	Glob	SAR	Validated Target	X-ray structure
	Approved	4	0.058	Yes	50S ribosome	PDB: 3CPW, 3DLL, 4WFA
	Approved	4	0.370	Yes	50S ribosome	PDB: 1XBP, 20GM, 20GN, 20GO
	Approved	5	0.166	Yes	DHFR	PDB: 3FRA, 3FRF
	Approved	5	0.367	Yes	RNA polymeras e	PDB: 6CCV, 5UAC, 4KMU
NH ₂ N N N N N N N N N N N N N N N N N N N	Approved	5	0.154	Yes	DHFR	PDB: 2W9H, 3FRE
	Phase 3, Terminated	6	0.337	Yes	RNA polymeras e	none
Clindamycin	Approved	7	0.157	Yes	50S ribosome	PDB: 1JZX, 4V7V

Structure/name	Phase	# RB	Glob	SAR	Validated Target	X-ray structure
dalfopristin	Approved	7	0.384	Yes	50S ribosome	PDB: 4U24, 4U26
erythromycin	Approved	7	0.283	Yes	50S ribosome	PDB: 4V7U
HO HO MINING HO	Approved	7	0.213	Yes	50S ribosome	PDB: 5HKV
	Phase 1	7	0.115	Yes	50S ribosome	none
cethromycin	Approved	8	0.263	Yes	50S ribosome	PDB: 1NWX
	Approved	8	0.200	Yes	50S ribosome	PDB: 1J5A
Modithromycin (EP-013420)	Phase 1	8	0.204			none

Structure	Phase	# RB	Glob	SAR	Validated Target	X-ray structure
$ = \begin{bmatrix} & & & & \\ & & & & \\ & & & & \\ & & & &$	Approved	10	0.364		50S ribosome	PDB: 1SM1, 1YJW, 4U1U, 4U26
لاتبار Structure not shown غوانthromycin	Structure not shown		0.335			PDB: 4V7S, 4WF9
N CH dirfthromycin	Approved	12	0.290			none
Structure not shown roxithromycin	Approved	13	0.280	Yes	50S ribosome	PDB: 1JZZ
Structure not shown vancomycin	Approved	13	0.281	Yes	D-ala-D- ala	PDB: 1FVM, 3RUN
Structure not shown oritavancin	Approved	19	0.299	Yes	D-ala-D- ala	none
Structure not shown teicoplanin	Approved	19	0.287		D-ala-D- ala	none

Structure/name	Phase	# RB	Glob	SAR	Validated Target	X-ray structure
dalbavancin	Approved	22	0.331	Yes	D-ala-D- ala	PDB: 3RUL
telavancin	Approved	30	0.298	Yes	D-ala-D- ala	none
daptomycin	Approved	35	0.380	Limited	Cell membrane	none
CI OH CI CI CI	Approved	2	0.069	Yes	Fabl	PDB: 1QSG, 4ALI
	Phase 3	1	0.087	Yes	DNA gyrase	PDB: 5CDM*
Phase 2		4	0.093	Yes	Fabl	PDB: 4JQC, 4FS3
	Phase 2	5	0.115	Yes	DNA gyrase	PDB: 5IWI,* 2XCS*

Structure/name	Phase	# RB	Glob	SAR	Validated Target	X-ray structure
CG400549	Phase 2	6	0.110	Yes	Fabl	PDB: 4CV1, 4CV2
$\begin{array}{c} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & &$	Phase 1	6	0.307	Yes	MetRS	PDB: 4ZT6,* 4ZT7*
$ \begin{array}{c} -N, N \rightarrow F \\ \hline Delpazolid (LCB01-0371) \end{array} $	Phase 1	3	0.046	Yes	50S ribosome	none
H ₂ N lefamulin O	Phase 3	6	0.266	Yes	50S ribosome	PDB: 5HL7
MGB-BP-3	Phase 1	10	0.145	Limited	DNA minor groove	none
$\begin{bmatrix} 0 & F \\ F & F \\ F & N & N \\ Contezolid (MRX^{1}) \end{bmatrix}$	Phase 2	5	0.059	Yes	50S ribosome	none
PF-708093	Phase 1	3	0.069	Yes	50S ribosome	none

Structure/name	Phase	# RB	Glob	SAR	Validated Target	X-ray structure
Not shown ramoplanin	Phase 2	35	0.546	No	Lipid II	CSD: 729786
$\begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & \\ $	Phase 2	3	0.020	No	No	none
		0	0.024	Yes	Yes DNA gyrase	none
HO HO HO HO HO HO HO HO HO HO HO HO HO H		1	0.057	Yes	Methionine aminopepti dase	PDB: 3D27*
$ \begin{array}{c} $	Preclinical	2	0.118	Yes	Yes DHFR	PDB: 4LAE
Preclinical		2	0.021	Yes	Methionine aminopepti dase	PDB: 4A6W
imidazole LolCDE	Preclinical	3	0.088	Limited	Yes LoICDE	none

Structure/name	Phase	# RB	Glob	SAR	Validated Target	X-ray structure
indolmycin	indolmycin		0.188	Yes	TrpRS	PDB: 5DK4
		4	0.171	No	RNAP	none
$ \begin{array}{c} & HN-N \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & &$	HN-N HN-N HO NH 6 azaindazolo		0.042	Limited	DNA ligase	PDB: 4CC6*
$ \begin{array}{c} $	Preclinical		0.136	Yes	PheRS	PDB: 4P73
$\begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\$	Preclinical	5	0.100	Yes	MurC	none
HO	Preclinical		0.057	Yes	FabH	PDB: 5BQS*
$\bigvee_{\substack{0\\N=V\\NH_2}} \bigvee_{\substack{N=V\\NH_2}} \bigoplus_{\substack{0\\N=V\\NH_2}} \bigoplus_{\substack{N=V\\NH_2}} \bigoplus_{\substack{N=V}} \bigoplus_{\substack{N=V}} \bigoplus_{\substack{N=V}} \bigoplus_{\substack{N=V}} \bigoplus_{\substack{N=V}} \bigoplus$	Preclinical	5	0.180	Limited	AccC	PDB: 2W6N*

Structure/name	Phase	# RB	Glob	SAR	Validated Target	X-ray structure
pyrazole LolCDE	Preclinical		0.155	Limited	LoICDE	No
N N S N S N OH N N N OH Ribocil-C	Preclinical		0.193	Limited	<i>ribA</i> riboswithc	PDB: 5KX9
$H_0 \rightarrow 0 \qquad \text{UCP1106}$	V NH2 V NH2 V NH2 V NH2 V NH2 Preclinical		0.117	Yes	DHFR	PDB: 5IST
HO O HO FabH	Preclinical	6	0.060	Yes	FabH	PDB: 3IL6*
$H_{2}N, H_{N} H_{O}$	$H_2N, H_2N, H_N, H_N, H_N, H_N, H_N, H_N, H_N, H_$		0.174	Yes	Methionine aminopepti dase	PDB: 4Z7M*
	$H_{2N} \xrightarrow{N}_{N} H_{CI}$ Preclinical SCH71		0.180	Yes	AccC	PDB: 3JZ1
HO HO JUCHOI MUTC	Preclinical	7	0.095	Yes	MurC	none

Structure/name	Phase	# RB	Glob	SAR	Validated Target	X-ray structure
$ \begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & & $	Preclinical	7	0.195	Yes	GlmU	PDB: 4AC3
$\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$	Preclinical	8	0.088	Yes	No	none
H ₂ N N NH ₂ Pfizer AccC	Preclinical	4	0.143	Limited	Resistance	PDB: 2J9G

Supplementary Table 2. Physiochemical properties of Debio-1452 and amine analogues. eNTRy rule guidelines (RBs, Globularity, Functional Group) were calculated using eNTRyway. For calculation of vsurf_A, chemical structures were created and managed using Canvas (Version 2.6, Schrödinger, LLC). Initial structure preparation and 3D minimization was performed with LigPrep (Version 3.6, Schrödinger, LLC) using OPLS_2005 force fields. Tautomeric and protonation states were determined using Epik (Version 3.4, Schrödinger, LLC) at pH 7.4 (*J. Comput. Aided Mol. Des.* **24**, 591-604 (2010); *J. Comput. Aided Mol. Des.* **21**, 681-691 (2007)). Generation of ensembles of conformations was performed using Conformational Search in MOE 2015.10 (*J. Chem. Inf. Model* **50**, 792-800 (2010)) using the LowModeMD method with default settings. The vsurf_A value obtained for individual stereoisomers was then averaged.

Compound	Number of RBs	Globularity	Functional Group	Vsurf_A
Debio-1452	4	0.093	No Amine	6.44
Debio-1452-NH3	4	0.061	Primary Amine	6.73
Compound 2	5	0.059	Primary Amine	6.84
Compound 3	6	0.082	Primary Amine	6.43

Supplementary Table 3. Results from molecular docking of Debio-1452 derivatives into FabI. S. aureus FabI (PDB: 4FS3) was prepared as a receptor using Schrodinger Protein Prep Wizard. Ligands were prepared using LigPrep and docked using Glide XP (rigid receptor, flexible ligand). Amine-containing derivatives were docked as protonated forms. Top ranked poses were refined using MM-GBSA with Prime (VSGB solvation model, OPLS3e force field, flexibility allowed 5 Å around ligands with hierarchical sampling).

		Docking So	core (kcal/mol)	MM-GBSA 🛆	G bind (kcal/mol)
Name	R	E.coli	S. aureus	E.coli	S. aureus
Debio-1452	n.c.	n.a.	n.a.	0	0
Debio-1452-NH3		-15.25	-15.18	-4.29	-5.76
2		-15.19	-14.84	-3.11	-1.50
3		-14.59	-14.33	-7.57	-4.62

Supplementary Table 4. Antimicrobial susceptibility of clinical isolates to Debio-1452 and derivatives. The aqueous solubility limit of Debio-1452 prevents determining actual MIC values that are above 32 μ g/mL. Compounds were evaluated against a panel of Gram-positive and Gram-negative organisms. MIC values were determined using the micro-dilution broth method as outlined by the Clinical and Laboratory Standards Institute (CLSI. *Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically.* 11th ed. CLSI standard M07. Wayne, PA: Clinical and Laboratory Standards Institute; 2018) and are listed in μ g/mL. All experiments were performed in biological triplicate.

Bacterial Strain	MIC (µg/mL)					
	Debio-1452	Debio-1452-NH3	2	3	8	
WT Gram-positive						
S. aureus ATCC 29213	0.008-0.016	0.03	0.03	0.125	0.016	
S. aureus ATCC 29213	0.125	0.050				
(+50% Human serum)	0.125	0.062				
Gram-negative permeability mutant						
E. coli Δ tolC JW5503	0.031	0.062	0.125	0.062	0.125	
E. coli ∆rfaC JW3596	0.5	0.25	0.5	0.5	0.25	
WT Gram-negative						
E. coli MG1655	>32	4	8	8	>32	
E. coli MG1655						
(+ 4% Human serum albumin)	>32	16				
E. coli BAA-2340	>32	4			>32	
E. coli BAA-2469	4	2	2			
<i>E. coli</i> BAA-2471	8	4	4			
E. coli F20987	>32	4				
E. coli M66623	>32	8				
<i>E. coli</i> AR-0048	>32	32			>32	
<i>E. coli</i> AR-0058	32	8			>32	
<i>E. coli</i> AR-0085	>32	16			>32	
<i>E. coli</i> AR-0114	>32	8			>32	
<i>E. coli</i> AR-0137	>32	8			>32	
<i>E. coli</i> AR-0151	>32	8			>32	
E. coli AR-0162	>32	8			>32	
<i>E. coli</i> AR-0346	>32	8	4			
<i>E. coli</i> AR-0349	4	2	2			
<i>E. coli</i> AR-0493	>32	4	4		>32	
<i>E. coli</i> AR-0495	8	4	2			
<i>E. coli</i> AR-0541	>32	8			>32	

E. coli AR-0543	>32	8		>32
E. coli AR-0559	32	8		>32
E. cloacae ATCC 29893	>32	8		>32
E. cloacae BAA-2341	>32	8	16	
E. cloacae BAA-2468	>32	8	8	
<i>E. cloacae</i> S28901.1	>32	16	8	
K. pneumoniae AR-0034	16	8		>32
K. pneumoniae AR-0066	>32	32		>32
K. pneumoniae AR-0098	>32	32		>32
K. pneumoniae AR-0113	>32	32		>32
K. pneumoniae AR-0139	>32	16		>32
K. pneumoniae AR-0141	>32	8		>32
K. pneumoniae AR-0347	>32	16	8	
K. pneumoniae AR-0542	>32	16		>32
K. pneumoniae AR-0548	>32	32		>32
K. pneumoniae AR-0555	>32	32		>32
K. pneumoniae AR-0560	>32	32		>32
K. pneumoniae BAA-1705	>32	8	16	
K. pneumoniae BAA-2342	>32	16	16	
K. pneumoniae BAA-2470	8	4	4	
K. pneumoniae BAA-2472	>32	16	16	
K. pneumoniae BAA-2473	>32	16	16	
K. pneumoniae M14723	>32	16	16	
K. pneumoniae M67198	>32	32	32	
K. pneumoniae M67297	>32	32	32	
K. pneumoniae S20595	>32	16	16	
K. pneumoniae S47889	>32	8	8	>32
A. baumannii AR-0033	>32	32		>32
A. baumannii AR-0078	>32	16		>32
A. baumannii AR-0083	>32	16		>32
A. baumannii AR-0273	>32	32		>32
A. baumannii AR-0278	>32	32		>32
A. baumannii AR-0288	>32	32		>32
A. baumannii AR-0299	>32	32		>32
A. baumannii AR-0311	8	8		>32
A. baumannii AR-0312	>32	16		>32

H. sapiens IMR-90 IC ₅₀		52.2 ± 3.6			
(% inhibition at 30 μ M)					
H. sapiens IMR-90	16%	30%	48%	12%	
Mammalian					
P. aeruginosa PA01	>32	>64			>32
4. baumannii WO22	>32	64	>64		
A. baumannii M13100	>32	16	16		
4. baumannii KB357	>32	64	>64		
4. baumannii KB343	>32	64	>64		
4. baumannii KB304	>32	64	64		
A. baumannii F19521	>32	4	16		
A. baumannii W41979	>32	4	16		>32
A. baumannii AR-0313	>32	32			>32

Supplementary Table 5. Antimicrobial susceptibility of triclosan to Debio-1452-NH3-resistant colonies. MIC values were determined using the micro-dilution broth method as outlined by the Clinical and Laboratory Standards Institute (http://clsi.org/) (CLSI. *Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically.* 11th ed. CLSI standard M07. Wayne, PA: Clinical and Laboratory Standards Institute; 2018) and are listed in µg/mL. All experiments were performed in biological triplicate.

Bacterial Strain	MIC (µg/mL)			
	Triclosan	Debio-1452-NH3		
WT Gram-negative				
E. coli MG1655	0.5	4		
Debio-1452-NH3 Resistant Strains				
E. coli MG1655 A116V colony 1	0.5	64		
E. coli MG1655 A116V colony 5	0.5	64		
E. coli MG1655 G148S colony 1	2	>64		
E. coli MG1655 G148S colony 2	2	>64		

Supplementary Table 6. Compound test set for calculation of eNTRyway accuracy. The confusion matrix to calculate eNTRyway accuracy was generated by using eNTRyway to reanalyze the diverse compound collection published in reference 14 (Tables S2-S4 of reference 14; 188 compounds). The predicted results using eNTRyway for this compound test set was compared to experimental results published in reference 14 (Tables S2-S4 of reference 14; 188 compounds) for the predicted results using eNTRyway for this compound test set was compared to experimental results published in reference 14 (Tables S2-S4 of reference 14; 188 compounds) for whole-cell accumulation in *E. coli*.

Materials and Methods for Chemical Synthesis:

All reactions were performed under inert atmosphere using nitrogen gas unless otherwise specified. Chemical reagents were purchased from commercial sources and used without further purification. Debio-1452 used for in vitro and cell-based studies was purchased from MedChemExpress. Anhydrous solvents were either purchased from commercial suppliers or dried after being passed through columns packed with activated alumina under positive pressure of nitrogen using a PureSolv MD-5 (Inert, previously Innovative Technology Inc.) solvent purification system. Final compounds were dried in an Abderhalden drying pistol to remove any residual solvents. ¹H NMR, ¹³C NMR, and 2D NMR experiments for prepared intermediates and products were recorded on a Varian Unity Inova 600 MHz NMR system equipped with an autoX broadband probe and/or a Bruker Avance III HD 500 MHz NMR system equipped with a CryoProbe. Spectra were obtained in the following solvents (reference peaks also included for ¹H and ¹³C NMRs: Deuterated Chloroform-d (¹H NMR 7.26 ppm; 13 C NMR 77.16 ppm), DMSO- d_6 (¹H NMR 2.50 ppm; 13 C NMR 39.52 ppm) ¹. All the chemical shifts are expressed in ppm (δ), coupling constants (*J*, Hz) and peak patterns are reported as broad (br), singlet (s), doublet (d), triplet (t), quartet (q) and multiplet (m). High resolution mass spectra (HRMS) were obtained in the School of Chemical Sciences Mass Spectrometry Laboratory on a Waters Q-TOF Ultima quadrupole time of flight spectrometer using electrospray ionization ESI. Purity of the final compounds were purified to $\geq 95\%$ as assessed by an Agilent Technologies 1290 Infinity II UHPLC equipped with a Phenomenex Kinetex column (2.1 mm ID x 50 mm, 1.7 μm particle size, 100 Å pore size).

Figure S1. Synthesis of Naphthyridinone Precursors and Debio-1452 Amine Containing Analogues Boc₂O, di*-tert*-butyl dicarbonate; DIPEA, *N*,*N*-diisopropylethylamine ; LHMDS, lithium bis(trimethylsilyl)amide; THF, tetrahydrofuran

ethyl (tert-butoxycarbonyl)glycinate (S1)- *N*,*N*-diisopropylethylamine (2.2 eq, 44 mmol) was added dropwise to a solution of glycine ethyl ester hydrochloride (1 eq, 20 mmol) in CH_2Cl_2 (80 mL) at 0 °C followed by the dropwise addition of di-*tert*-butyl dicarbonate (1.1 eq, 22 mmol). The reaction mixture was allowed to warm to room temperature and stirred for 1.5 h. The reaction was quenched with saturated aqueous ammonium chloride and extracted with dichloromethane. The combined organic extracts were washed with saturated aqueous sodium bicarbonate, dried over sodium sulfate, and concentrated under reduced pressure. Purification by flash purification column chromatography (10:40:50, EtOAc:CH₂Cl₂:Hexanes) yielded ethyl (*tert*-butoxycarbonyl)glycinate (S1, 3.58 g, 17.6 mmol, 88%) as a colorless oil.

¹**H NMR** (500 MHz, Chloroform-*d*): δ 5.00 (s, 1H), 4.21 (q, *J* = 7.1 Hz, 2H), 3.90 (d, *J* = 5.6 Hz, 2H), 1.45 (s, 9H), 1.28 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (126 MHz, Chloroform-*d*): 170.49, 155.83, 80.11, 61.48, 42.62, 28.47, 14.31.

Experimental information for the above compound has been previously reported ².

ethyl 3-((tert-butoxycarbonyl)amino)propanoate (**S2**)- *N*,*N*-diisopropylethylamine (2.2 eq, 44 mmol) was added dropwise to a solution of β -alanine ethyl ester hydrochloride (1 eq, 20 mmol) in CH₂Cl₂ (80 mL) at 0 °C followed by the dropwise addition of di-*tert*-butyl dicarbonate (1.1 eq, 22 mmol). The reaction mixture was allowed to warm to room temperature and stirred for 1.5 h. The reaction was quenched with saturated aqueous ammonium chloride and extracted with dichloromethane. The combined organic extracts were washed with saturated aqueous sodium bicarbonate, dried over sodium sulfate, and concentrated under reduced pressure. Purification by flash purification column chromatography (10:40:50, EtOAc:CH₂Cl₂:Hexanes) yielded ethyl 3-((*tert*-butoxycarbonyl)amino)propanoate (**S2**, 3.25 g, 15.0 mmol, 75%) as a colorless oil.

¹**H NMR** (500 MHz, Chloroform-*d*): δ 5.01 (s, 1H), 4.15 (q, *J* = 7.2 Hz, 2H), 3.48 – 3.27 (m, 2H), 2.51 (t, *J* = 6.1 Hz, 2H), 1.43 (s, 9H), 1.26 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (126 MHz, Chloroform-*d*): δ 172.64, 155.92, 79.48, 60.78, 36.26, 34.81, 28.54, 14.35.

Experimental information for the above compound has been previously reported ³.

ethyl 4-((tert-butoxycarbonyl)amino)butanoate (**S3**)- *N*,*N*-diisopropylethylamine (2.2 eq, 44 mmol) was added dropwise to a solution of ethyl 4-aminobutyrate hydrochloride (1 eq, 20 mmol) in CH₂Cl₂ (80 mL) at 0 °C followed by the dropwise addition of di-*tert*-butyl dicarbonate (1.1 eq, 22 mmol). The reaction mixture was allowed to warm to room temperature and stirred for 1.5 h. The reaction was quenched with saturated aqueous ammonium chloride and extracted with dichloromethane. The combined organic extracts were washed with saturated aqueous sodium bicarbonate, dried over sodium sulfate, and concentrated under reduced pressure. Purification by flash purification column chromatography (10:40:50, EtOAc:CH₂Cl₂:Hexanes) yielded ethyl 4-((*tert*-butoxycarbonyl)amino)butanoate (**S3**, 3.66 g, 15.8 mmol, 79%) as a colorless oil.

¹**H NMR** (500 MHz, Chloroform-*d*): δ 4.62 (s, 1H), 4.13 (q, *J* = 7.2 Hz, 2H), 3.25 – 3.06 (m, 2H), 2.34 (t, *J* = 7.3 Hz, 2H), 1.81 (p, *J* = 7.2 Hz, 2H), 1.43 (s, 9H), 1.25 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (126 MHz, Chloroform-*d*): δ 173.42, 156.06, 79.34, 60.59, 40.11, 31.77, 28.55, 25.45, 14.37.

Experimental information for the above compound has been previously reported ⁴.

(2-amino-5-bromopyridin-3-yl)methanol hydrobromide (**S4 Precursor**)- Bromine (1.01 eq, 39.02 mmol) was added dropwise to a solution of 2-amino-3-(hydroxymethyl)pyridine (1 eq, 38.6 mmol) in glacial acetic acid (60 mL) cooled in an ice bath. After the addition of bromine was complete, the reaction mixture was returned to room temperature. After stirring overnight, the reaction mixture was filtered and washed several times with ether to yield (2-amino-5-bromopyridin-3-yl)methanol hydrobromide (**S4 Precursor**, 10.01 g, 35.5 mmol, 92% yield) as a yellow solid. (HBr Salt)

¹**H NMR** (500 MHz, DMSO-*d*₆): δ 8.17 (d, *J* = 2.3 Hz, 1H), 7.97 – 7.93 (m, 1H), 4.41 (s, 2H).

¹³C NMR (126 MHz, DMSO-*d*₆): δ 151.39, 141.11, 135.60, 127.72, 104.27, 57.98.

Experimental information for the above compound has been previously reported ⁵.

5-bromo-3-(bromomethyl)pyridin-2-amine hydrobromide (**S4**)-A suspension of (2-amino-5-bromopyridin-3yl)methanol hydrobromide (1 eq, 35.47 mmol) in 48% hydrobromic acid (70 mL) was refluxed for 10 h. After 10 h, the reaction mixture was allowed to slowly cool to room with stirring, filtered, and rinsed with ethyl acetate. The solid was triturated with ethyl acetate to yield 5-bromo-3-(bromomethyl)pyridin-2-amine hydrobromide (**S4**, 10.226 g, 29.7 mmol, 84%) as a light beige solid.

¹**H NMR** (500 MHz, DMSO- d_6): δ 8.18 (d, J = 2.4 Hz, 1H), 8.15 (d, J = 2.4 Hz, 1H), 4.72 (s, 2H).

¹³C NMR (126 MHz, DMSO): δ 153.04, 144.29, 141.01, 121.66, 104.11, 29.13.

Experimental information for the above compound has been previously reported ⁵.

N,3-dimethylbenzofuran-2-carboxamide (**4 Precursor a**)-To a solution of 3-methylbenzo[b]furan-2-carboxylic acid (1 eq, 52 mmol), methylamine hydrochloride (1.1 eq, 57.52 mmol), *N*,*N*-diisopropylethylamine (2.2 eq, 114.4 mmol), and HOBt (1.1 eq, 57.52 mmol) in DMF (150 mL) was added EDC (1.1 eq, 57.52 mmol). The reaction mixture was heated to 70 °C overnight. The solvent was reduced to a few mL. The crude reaction mixture was diluted with CH₂Cl₂ and washed with saturated aqueous sodium bicarbonate. The organic extracts were dried over sodium sulfate and concentrated under reduced pressure. Purification by flash column chromatography (**4 Precursor a**, 20:50:30, EtOAc:CH₂Cl₂:hexanes) yielded *N*,3-dimethylbenzofuran-2-carboxamide (9.24 g, 48.9 mmol,94%) as a white solid.

¹**H** NMR (500 MHz, Chloroform-*d*): δ 7.61 (dt, J = 7.8, 1.0 Hz, 1H), 7.45 – 7.36 (m, 2H), 7.29 (ddd, J = 8.0, 6.4, 1.7 Hz, 1H), 6.64 (s, 1H), 3.03 (d, J = 5.0 Hz, 3H), 2.63 (s, 3H).

¹³**C NMR** (126 MHz, Chloroform-*d*): δ 161.10, 153.35, 142.96, 129.95, 127.04, 123.19, 122.19, 121.07, 111.55, 25.86, 9.00.

Experimental information for the above compound has been previously reported ⁶.

4 Precursor b

N-methyl-1-(3-methylbenzofuran-2-yl)methanamine (**4 Precursor b**)-Lithium aluminum hydride (3 eq, 47.6 mmol) was added portionwise to a solution of *N*,3-dimethylbenzofuran-2-carboxamide (1 eq, 15.86 mmol) in THF (75 mL) at room temperature. The reaction mixture was refluxed for 11 h. After reaction completion, the reaction mixture was cooled to 0 °C and slowly quenched by the sequential dropwise addition of 2 mL water, 2 mL 15% sodium hydroxide, 6 mL water at 15-30 min intervals. The mixture was filtered through a pad of celite rinsed several times with ethyl acetate. Purification by flash column chromatography (5:95, MeOH:CH₂Cl₂) yielded *N*-methyl-1-(3-methylbenzofuran-2-yl)methanamine (**4 Precursor b**, 2.513 g, 14.3 mmol, 91%).

¹**H NMR** (500 MHz, Chloroform-*d*): δ 7.49 – 7.44 (m, 1H), 7.43 – 7.37 (m, 1H), 7.27 – 7.23 (m, 1H), 7.22 (td, *J* = 7.3, 1.3 Hz, 1H), 3.87 (s, 2H), 2.45 (s, 3H), 2.23 (s, 3H).

¹³**C NMR** (126 MHz, Chloroform-*d*): δ 154.25, 151.34, 130.08, 124.01, 122.26, 119.28, 112.33, 111.04, 46.23, 35.80, 8.07.

Experimental information for the above compound has been previously reported ⁶.

N-methyl-N-((3-methylbenzofuran-2-yl)methyl)acrylamide (**4**)-*N,N*-diisopropylethylamine (1.5 eq, 15.4 mmol) was added dropwise to a solution of *N*-methyl-1-(3-methylbenzofuran-2-yl)methanamine (1 eq, 10.3 mmol) in CH₂Cl₂ (75 mL) at room temperature. After 10 min, acryloyl chloride (2 eq, 20.6 mmol) was added dropwise and the reaction mixture was stirred overnight. The solvent was removed under reduced pressure and purification by flash column chromatography (1:99 to 3:97, MeOH:CH₂Cl₂) yielded *N*-methyl-*N*-((3-methylbenzofuran-2-yl)methyl)acrylamide (**4**, 1.861 g, 8.12 mmol, 79%) as a colorless oil.

Note: Tabulated NMR data for acrylamide derivatives consist of two rotamers that exist at room temperature in a ratio of 35:65 and is reflected in the reported integral values.

¹**H** NMR (500 MHz, Chloroform-*d*): 7.51 - 7.45 (m, 1H), 7.43 - 7.36 (m, 1H), 7.32 - 7.18 (m, 2H), 6.85 (dd, J = 16.8, 10.6 Hz, 0.35H), 6.59 (dd, J = 16.7, 10.4 Hz, 0.65H), 6.42 - 6.33 (m, 1H), 5.80 - 5.67 (m, 1H), 4.77 (s, 1.3H), 4.62 (s, 0.7H), 3.13 (s, 1.95H), 3.02 (s, 1.05H), 2.29 (s, 1.95H), 2.25 (s, 1.05H).

Note: Tabulated NMR data for acrylamide derivatives consist of two rotamers that exist at room temperature which results in doubling of signals for most ¹³C nuclei.

¹³C NMR (126 MHz, Chloroform-*d*): 167.07, 166.29, 154.26, 154.23, 148.93, 147.52, 129.84, 129.48, 128.48, 128.22, 128.04, 127.54, 124.75, 124.30, 122.59, 122.37, 119.49, 113.74, 113.36, 111.20, 111.07, 45.21, 42.26, 35.36, 33.64, 7.95.

Experimental information for the above compound has been previously reported ⁷.

tert-butyl (6-*bromo-2-oxo-1,2,3,4-tetrahydro-1,8-naphthyridin-3-yl)carbamate* (**5**). To a solution of LHMDS (1 M in THF, 4 eq, 33.4 mmol) cooled to -78 °C was added a solution of ethyl (*tert*-butoxycarbonyl)glycinate (**S1**, 2 eq, 16.72 mmol) in THF (34 mL) dropwise. The reaction mixture was stirred for 1 h followed by the portionwise addition (3 portions at 15 min intervals) of 5-bromo-3-(bromomethyl)pyridin-2-amine hydrobromide (**S4**, 1 eq, 8.36 mmol) via a solid addition tube kept under N₂. The reaction mixture was kept at -78 °C for several hours and allowed to warm to -40 °C overnight. The reaction mixture was quenched with 0.5M HCl (aq) and extracted with ethyl acetate. The combined organic extracts were dried over sodium sulfate and concentrated under reduced pressure. Purification by flash purification column chromatography (01:99 to 10:90, THF:CH₂Cl₂) followed by trituration with ether/n-pentane yielded *tert*-butyl (6-bromo-2-oxo-1,2,3,4-tetrahydro-1,8-naphthyridin-3-yl)carbamate (**5**, 1.48 g, 3.46 mmol, 41%) as a white solid.

¹**H NMR** (500 MHz, Chloroform-*d*): δ 9.68 (s, 1H), 8.32 (s, 1H), 7.65 (s, 1H), 5.63 (s, 1H), 4.42 – 4.30 (m, 1H), 3.52 (dd, *J* = 16.4, 6.4 Hz, 1H), 2.83 (t, *J* = 14.9 Hz, 1H), 1.48 (s, 9H).

¹³**C NMR** (126 MHz, Chloroform-*d*): δ 169.16, 155.72, 148.68, 147.95, 139.50, 119.83, 114.37, 80.54, 49.85, 31.17, 28.48.

HRMS (ESI): m/z calc for C₁₃H₁₆BrN₃O₃ [M+H]⁺: 342.0448, found: 342.0451.

tert-butyl ((6-bromo-2-oxo-1,2,3,4-tetrahydro-1,8-naphthyridin-3-yl)methyl)carbamate (**6**). To a solution of LHMDS (1 M in THF, 4 eq, 36 mmol) cooled to -78 °C was added a solution ethyl 3-((*tert*-butoxycarbonyl)amino)propanoate (**S2**, 2 eq, 18 mmol) in THF (36 mL) dropwise. The reaction mixture was stirred for 1.5 h followed by the portionwise addition (3 portions at 15 min intervals) of 5-bromo-3-(bromomethyl)pyridin-2-amine hydrobromide (**S4**, 1 eq, 9 mmol) via a solid addition tube kept under N₂. The reaction mixture was kept at -78 °C for several hours and allowed to warm to -40 °C overnight. The reaction mixture was quenched with 0.5M HCl (aq) and extracted with ethyl acetate. The combined organic extracts were dried over sodium sulfate and concentrated under reduced pressure. Purification by flash purification column chromatography (01:99 to 10:90, THF:CH₂Cl₂) followed by trituration with ether/n-pentane yielded *tert*-butyl ((6-bromo-2-oxo-1,2,3,4-tetrahydro-1,8-naphthyridin-3-yl)methyl)carbamate (**6**, 1.431 g, 4.02 mmol, 45%) as a white solid.

¹**H** NMR (500 MHz, Chloroform-*d*): δ 9.38 (s, 1H), 8.28 (s, 1H), 7.63 (s, 1H), 5.31 (d, *J* = 6.9 Hz, 1H), 3.71 – 3.55 (m, 1H), 3.48 (dt, *J* = 13.7, 6.3 Hz, 1H), 2.95 (dd, *J* = 16.1, 6.9 Hz, 1H), 2.89 (t, *J* = 14.5 Hz, 1H), 2.74 (ddt, *J* = 13.0, 6.7, 3.4 Hz, 1H), 1.43 (s, 9H).

¹³**C NMR** (126 MHz, Chloroform-*d*): δ 172.23, 156.45, 149.34, 147.35, 138.99, 120.65, 113.89, 79.69, 40.77, 40.01, 28.53, 27.84.

HRMS (ESI): m/z calc for C₁₄H₁₈BrN₃O₃ [M+H]⁺: 356.0604, found: 356.0609.

tert-butyl (2-(6-bromo-2-oxo-1,2,3,4-tetrahydro-1,8-naphthyridin-3-yl)ethyl)carbamate (**7**). To a solution of LHMDS (1 M in THF, 4 eq, 18 mmol) cooled to -78 °C was added a solution ethyl 4-((*tert*-butoxycarbonyl)amino)butanoate (**S3**, 2 eq, 9 mmol) in THF (18 mL) dropwise. The reaction mixture was stirred for 1.5 h followed by the portionwise addition (2 portions at 15 min intervals) of 5-bromo-3-(bromomethyl)pyridin-2-amine hydrobromide (**S4**, 1 eq, 4.5 mmol) via a solid addition tube kept under N₂. The reaction mixture was kept at -78 °C for several hours and allowed to warm to -40 °C overnight. The reaction mixture was quenched with 0.5M HCl (aq) and extracted with ethyl acetate. The combined organic extracts were dried over sodium sulfate and concentrated under reduced pressure. Purification by flash purification column chromatography (01:99 to 10:90, THF:CH₂Cl₂) followed by trituration with ether/n-pentane yielded *tert*-butyl (2-(6-bromo-2-oxo-1,2,3,4-tetrahydro-1,8-naphthyridin-3-yl)ethyl)carbamate (**7**, 0.740 g, 2.01 mmol, 45%) as a white solid.

¹**H** NMR (500 MHz, Chloroform-*d*): δ 8.73 (s, 1H), 8.25 (d, J = 2.2 Hz, 1H), 7.62 (d, J = 2.1 Hz, 1H), 4.81 (s, 1H), 3.44 – 3.29 (m, 1H), 3.28 – 3.17 (m, 1H), 3.08 (dd, J = 16.0, 6.1 Hz, 1H), 2.78 (dd, J = 16.0, 9.8 Hz, 1H), 2.65 (dq, J = 9.8, 6.6 Hz, 1H), 2.00 (dq, J = 13.8, 6.9 Hz, 1H), 1.82 – 1.67 (m, 1H), 1.43 (s, 9H).

¹³**C NMR** (126 MHz, Chloroform-*d*): δ 172.83, 156.19, 149.31, 147.47, 138.98, 120.11, 113.80, 79.53, 38.23, 37.37, 30.33, 29.67, 28.55.

HRMS (ESI): m/z calc for C₁₅H₂₀BrN₃O₃ [M+H]⁺: 370.0761, found: 370.0766.

tert-butyl(*E*)-(6-(3-(*methyl*)((3-*methylbenzofuran*-2-*yl*)*methyl*)*amino*)-3-oxoprop-1-*en*-1-*yl*)-2-oxo-1,2,3,4*tetrahydro*-1,8-*naphthyridin*-3-*yl*)*carbamate* (8). Anhydrous DMA (10 mL, sparged with N₂ before using) was added to a flask containing 4 (1.5 eq, 1.875 mmol), 5 (1 eq, 1.25 mmol), palladium(II) acetate (0.2 eq, 0.25 mmol), and tricyclohexylphosphine tetrafluoroborate (0.4 eq, 0.5 mmol) followed by the addition of *N*,*N*diisopropylethylamine (2 eq, 2.5 mmol, distilled and sparged with N₂ before using). The reaction mixture was heated to 90-100 °C for 24 h. After reaction completion, the reaction mixture was diluted with ethyl acetate and filtered through a pad of celite and the filtrate was washed with saturated sodium bicarbonate. The combined organic extracts were dried over sodium sulfate and concentrated under reduced pressure. Purification by flash purification column chromatography (10:90 to 20:00, THF:CH₂Cl₂) followed by trituration with ether/n-pentane yielded *tert*-butyl (*E*)-(6-(3-(methyl((3-methylbenzofuran-2-yl)methyl)amino)-3-oxoprop-1-en-1-yl)-2-oxo-1,2,3,4-tetrahydro-1,8-naphthyridin-3-yl)carbamate (**8**, 0.374 g, 0.762 mmol, 61%) as a white solid.

Note: Tabulated NMR data for acrylamide derivatives consist of two rotamers that exist at room temperature in a ratio of 40:60 and is reflected in the reported integral values.

¹**H NMR** (600 MHz, DMSO- d_{6} , 25 °C): δ 10.82 (s, 1H), 8.48 – 8.33 (m, 1H), 8.17 – 8.02 (m, 1H), 7.60 – 7.54 (m, 1H), 7.54 – 7.44 (m, 2.4H), 7.30 – 7.22 (m, 2H), 7.20 (d, *J* = 15.4 Hz, 0.6H), 7.12 – 6.97 (m, 1H), 4.98 (s, 0.8H), 4.79 (s, 1.2H), 4.40 – 4.17 (m, 1H), 3.18 (s, 1.8H), 3.08 – 2.91 (m, 3.2H), 2.26 (s, 3H), 1.41 (s, 9H).

¹**H** NMR (600 MHz, DMSO- d_{6} , 115 °C): δ 10.33 (s, 1H), 8.36 (d, J = 2.1 Hz, 1H), 7.97 (s, 1H), 7.55 (d, J = 7.5 Hz, 1H), 7.49 (d, J = 15.4 Hz, 1H), 7.45 (d, J = 8.1 Hz, 1H), 7.28 (t, J = 7.6 Hz, 1H), 7.24 (t, J = 7.5 Hz, 1H), 7.22 – 7.16 (m, 1H), 6.57 (d, J = 7.8 Hz, 1H), 4.85 (s, 2H), 4.26 (dt, J = 13.9, 7.2 Hz, 1H), 3.16 – 3.06 (m, 4H), 3.05 – 2.98 (m, 1H), 2.27 (s, 3H), 1.44 (s, 9H).

¹³C NMR (151 MHz, DMSO-*d*₆, 115 °C): δ 168.63, 165.20, 154.67, 153.13, 150.96, 148.64, 146.37, 137.28, 133.72, 128.96, 125.41, 123.61, 121.76, 118.74, 117.92, 117.39, 112.12, 110.10, 77.93, 49.08, 42.28 (brs, see HSQC) 33.72 (brs), 29.87, 27.66, 6.61.

HRMS (ESI): m/z calc for C₂₇H₃₀N₄O₅ [M+H]⁺:491.2289, found: 491.2302.

tert-butyl(E)-((6-(3-(methyl((3-methylbenzofuran-2-yl)methyl)amino)-3-oxoprop-1-en-1-yl)-2-oxo-1,2,3,4tetrahydro-1,8-naphthyridin-3-yl)methyl)carbamate (**9**). Anhydrous DMA (32 mL, sparged with N₂ before using) was added to a flask containing **4** (1.5 eq, 6 mmol), **6** (1 eq, 4 mmol), palladium(II) acetate (0.2 eq, 0.8 mmol), and tricyclohexylphosphine tetrafluoroborate (0.4 eq, 1.6 mmol) followed by the addition of *N,N*diisopropylethylamine (2 eq, 8 mmol, distilled and sparged with N₂ before using). The reaction mixture was heated to 90-100 °C for 24 h. After reaction completion, the reaction mixture was diluted with ethyl acetate and filtered through a pad of celite and the filtrate was washed with saturated sodium bicarbonate. The combined organic extracts were dried over sodium sulfate and concentrated under reduced pressure. Purification by flash purification column chromatography (10:90 to 20:00, THF:CH₂Cl₂) followed by trituration with ether/n-pentane yielded *tert*-butyl (*E*)-((6-(3-(methyl((3-methylbenzofuran-2-yl)methyl)amino)-3-oxoprop-1-en-1-yl)-2-oxo-1,2,3,4-tetrahydro-1,8-naphthyridin-3-yl)methyl)carbamate (**9**, 1.285 g, 2.55 mmol, 64%) as a white solid.

Note: Tabulated NMR data for acrylamide derivatives consist of two rotamers that exist at room temperature in a ratio of 40:60 and is reflected in the reported integral values.

¹**H** NMR (600 MHz, DMSO- d_{6} , 25 °C): δ 10.72 (s, 1H), 8.47 – 8.32 (m, 1H), 8.15 – 8.02 (m, 1H), 7.59 – 7.54 (m, 1H), 7.54 – 7.43 (m, 2.4H), 7.31 – 7.26 (m, 1H), 7.26 – 7.17 (m, 1.6H), 6.91 – 6.81 (m, 1H), 4.99 (s, 0.8H), 4.79 (s, 1.2H), 3.51 – 3.36 (m, 1H), 3.18 (s, 1.8H), 3.12 – 2.96 (m, 2H), 2.93 (s, 1.2H), 2.81 – 2.70 (m, 1H), 2.69 – 2.59 (m, 1H), 2.26 (s, 3H), 1.45 – 1.28 (m, 9H).

¹**H** NMR (600 MHz, DMSO- d_{6} , 120 °C): δ 10.12 (s, 1H), 8.34 (s, 1H), 7.93 (s, 1H), 7.55 (d, J = 7.4 Hz, 1H), 7.49 (d, J = 15.5 Hz, 1H), 7.45 (d, J = 8.1 Hz, 1H), 7.28 (td, J = 8.1, 7.6, 1.5 Hz, 1H), 7.24 (td, J = 7.4, 1.1 Hz,

1H), 7.19 (d, *J* = 15.4 Hz, 1H), 6.27 (s, 1H), 4.85 (s, 2H), 3.43 (dt, *J* = 13.6, 5.5 Hz, 1H), 3.18 – 3.08 (m, 4H), 3.04 (dd, *J* = 15.9, 6.1 Hz, 1H), 2.79 (dd, *J* = 15.8, 10.4 Hz, 1H), 2.75 – 2.68 (m, 1H), 2.27 (s, 3H), 1.40 (s, 9H).

¹³C NMR (151 MHz, DMSO-*d*₆, 120 °C): δ 170.73, 165.23, 155.00, 153.12, 151.17, 148.62, 146.07, 137.33, 133.52, 128.94, 125.39, 123.55, 121.71, 118.68, 117.74, 117.70, 112.05, 110.04, 77.38, 43.32 (brs, see HSQC), 39.58, 39.29 (solvent overlap, see HSQC), 33.69 (brs), 27.66, 26.66, 6.54.

HRMS (ESI): m/z calc for C₂₈H₃₂N₄O₅ [M+H]⁺: 505.2445, found: 505.2443.

tert-butyl (*E*)-(2-(6-(3-(*methyl*)((3-*methylbenzofuran*-2-yl)*methyl*)*amino*)-3-oxoprop-1-en-1-yl)-2-oxo-1,2,3,4*tetrahydro*-1,8-*naphthyridin*-3-yl)*ethyl*)*carbamate* (**10**). Anhydrous DMA (10 mL, sparged with N₂ before using) was added to a flask containing **4** (1.5 eq, 1.875 mmol), **7** (1 eq, 1.25 mmol), palladium(II) acetate (0.2 eq, 0.25 mmol), and tricyclohexylphosphine tetrafluoroborate (0.4 eq, 0.5 mmol) followed by the addition of *N*,*N*-diisopropylethylamine (2 eq, 2.5 mmol, distilled and sparged with N₂ before using). The reaction mixture was heated to 90-100 °C for 24 h. After reaction completion, the reaction mixture was diluted with ethyl acetate and filtered through a pad of celite and the filtrate was washed with saturated sodium bicarbonate. The combined organic extracts were dried over sodium sulfate and concentrated under reduced pressure. Purification by flash purification column chromatography (10:90 to 20:80, THF:CH₂Cl₂) followed by trituration with ether/n-pentane yielded *tert*-butyl (*E*)-(2-(6-(3-(methyl((3-methylbenzofuran-2-yl)methyl)amino)-3-oxoprop-1-en-1-yl)-2-oxo-1,2,3,4-tetrahydro-1,8-naphthyridin-3-yl)ethyl)carbamate (**10**, 0.364 g, 0.702 mmol, 56%) as a white solid.

Note: Tabulated NMR data for acrylamide derivatives consist of two rotamers that exist at room temperature in a ratio of 40:60 and is reflected in the reported integral values.

¹**H** NMR (600 MHz, DMSO- d_{6} , 25 °C): δ 10.70 (s, 1H), 8.52 – 8.29 (m, 1H), 8.21 – 8.01 (m, 1H), 7.60 – 7.55 (m, 1H), 7.54 – 7.43 (m, 2.4H), 7.33 – 7.26 (m, 1H), 7.26 – 7.22 (m, 1H), 7.21 (d, *J* = 16.4 Hz, 0.6H), 6.87 (t, *J* = 5.8 Hz, 1H), 5.00 (s, 0.8H), 4.79 (s, 1.2H), 3.18 (s, 1.8H), 3.12 – 2.95 (m, 4H), 2.92 (s, 1.2H), 2.78 – 2.67 (m, 1H), 2.33 – 2.22 (m, 3H), 1.94 – 1.84 (m, 1H), 1.47 – 1.39 (m, 1H), 1.38 – 1.28 (m, 9H).

¹**H NMR** (600 MHz, DMSO- d_{6} , 120 °C): δ 10.05 (s, 1H), 8.34 (s, 1H), 7.93 (s, 1H), 7.55 (d, J = 7.6 Hz, 1H), 7.49 (d, J = 15.5 Hz, 1H), 7.45 (d, J = 8.0 Hz, 1H), 7.32 – 7.26 (m, 1H), 7.24 (t, J = 7.3 Hz, 1H), 7.19 (d, J = 15.4 Hz, 1H), 6.29 (s, 1H), 4.85 (s, 2H), 3.14 – 3.08 (m, 2H), 3.05 (dd, J = 15.9, 6.1 Hz, 1H), 2.88 (s, 3H), 2.75 (dd, J = 15.9, 10.1 Hz, 1H), 2.63 – 2.53 (m, 1H), 2.27 (s, 3H), 1.94 (dq, J = 13.6, 7.0 Hz, 1H), 1.51 (dq, J = 13.9, 6.9 Hz, 1H), 1.39 (s, 9H).

¹³**C NMR** (151 MHz, DMSO-*d*₆, 120 °C):): δ 171.96, 165.22, 154.95, 153.11, 151.32, 148.62, 146.10, 137.34, 133.32, 128.94, 125.28, 123.55, 121.71, 118.68, 117.92, 117.68, 112.05, 110.04, 77.01, 42.26, (brs, see HSQC) 37.59, 36.76, 33.66 (brs), 29.37, 28.53, 27.68, 6.54.

HRMS (ESI): m/z calc for C₂₉H₃₄N₄O₅ [M+H]⁺: 519.2602, found: 519.2616.

(E)-3-(6-amino-7-oxo-5,6,7,8-tetrahydro-1,8-naphthyridin-3-yl)-N-methyl-N-((3-methylbenzofuran-2-yl)methyl)acrylamide hydrochloride (**Debio-1452-NH3, 1**). Anhydrous 4M HCl in dioxane (1 mL) was added dropwise to a solution of **8** (1 eq, 0.652 mmol) in dioxane (3 mL). The reaction mixture was stirred at room temperature. After 4 h, the reaction mixture was concentrated from CH₂Cl₂ several times followed by trituration with ether/n-pentane to afford (E)-3-(6-amino-7-oxo-5,6,7,8-tetrahydro-1,8-naphthyridin-3-yl)-N-methyl-N-((3-methylbenzofuran-2-yl)methyl)acrylamide hydrochloride (**Debio-1452-NH3, 1**, 244 mg, 0.571 mmol, 88%) as a white solid.

Note: Tabulated NMR data for acrylamide derivatives consist of two rotamers that exist at room temperature in a ratio of 40:60 and is reflected in the reported integral values.

¹**H NMR** (600 MHz, DMSO-*d*₆, 25 °C): δ 11.33 (s, 1H), 8.79 – 8.66 (m, 3H), 8.55 – 8.43 (m, 1H), 8.31 – 8.20 (m, 1H), 7.62 – 7.55 (m, 1H), 7.55 – 7.45 (m, 2.4H), 7.33 – 7.26 (m, 1.6H), 7.26 – 7.21 (m, 1H), 5.01 (s, 0.8H), 4.79 (s, 1.2H), 4.44 – 4.28 (m, 1H), 3.35 – 3.24 (m, 1H), 3.24 – 3.06 (m, 2.8H), 2.92 (s, 1.2H), 2.26 (s, 3H).

¹**H NMR** (600 MHz, DMSO- d_{6} , 120 °C): δ 10.90 (s, 1H), 8.63 (s, 3H), 8.44 (s, 1H), 8.08 (s, 1H), 7.55 (d, J = 7.9 Hz, 1H), 7.51 (d, J = 15.4 Hz, 1H), 7.45 (d, J = 8.2 Hz, 1H), 7.36 – 7.18 (m, 3H), 4.86 (s, 2H), 4.28 (dd, J = 14.1, 6.9 Hz, 1H), 3.38 (dd, J = 15.6, 6.7 Hz, 1H), 3.21 (t, J = 14.7 Hz, 1H), 3.11 (s, 3H), 2.27 (d, J = 2.3 Hz, 3H).

¹³C NMR (151 MHz, DMSO, 120 °C): δ 166.20, 165.14, 153.13, 150.23, 148.61, 146.69, 136.90, 134.20, 128.95, 126.14, 123.61, 121.76, 118.74, 118.63, 115.77, 112.13, 110.07, 47.37, 42.37 (brs, see HSQC), 33.54 (brs, see HSQC), 27.44, 6.59.

HRMS (ESI): m/z calc for $C_{22}H_{22}N_4O_3$ [M+H]⁺ (Note: hydrochloride salt not observed): 391.1765, found: 391.1773.

(E)-3-(6-(aminomethyl)-7-oxo-5,6,7,8-tetrahydro-1,8-naphthyridin-3-yl)-N-methyl-N-((3-methylbenzofuran-2-<math>yl)methyl)acrylamide hydrochloride (**2**) -Anhydrous 4M HCl in dioxane (1 mL) was added dropwise to a solution of **9** (1 eq, 0.6 mmol) in dioxane (3 mL). The reaction mixture was stirred at room temperature. After 4 h, the reaction mixture was concentrated from CH₂Cl₂ several times followed by trituration with ether/n-pentane to afford (E)-3-(6-(aminomethyl)-7-oxo-5,6,7,8-tetrahydro-1,8-naphthyridin-3-yl)-N-methyl-N-((3-methylbenzofuran-2-yl)methyl)acrylamide hydrochloride (**2**, 256 mg, 0.581 mmol, 97%) as a white solid.

Note: Tabulated NMR data for acrylamide derivatives consist of two rotamers that exist at room temperature in a ratio of 40:60 and is reflected in the reported integral values.

¹**H NMR** (600 MHz, DMSO-*d*₆, 25 °C): δ 11.03 (s, 1H), 8.49 – 8.40 (m, 1H), 8.21 – 8.04 (m, 4H), 7.59 – 7.55 (m, 1H), 7.55 – 7.46 (m, 2.4H), 7.31 – 7.21 (m, 2.6H), 5.01 (s, 0.8H), 4.79 (s, 1.2H), 3.29 – 3.21 (m, 1H), 3.19 (s, 1.8H), 3.08 – 2.97 (m, 3H), 2.95 – 2.85 (m, 2.2H), 2.32 – 2.19 (m, 3H).

¹**H** NMR (600 MHz, DMSO- d_{6} , 120 °C): δ 10.49 (s, 1H), 8.40 (d, J = 2.2 Hz, 1H), 8.15 (s, 3H), 7.96 (s, 1H), 7.55 (d, J = 7.6 Hz, 1H), 7.50 (d, J = 15.5 Hz, 1H), 7.45 (d, J = 8.0 Hz, 1H), 7.28 (td, J = 8.1, 7.7, 1.5 Hz, 1H), 7.26 – 7.12 (m, 2H), 4.85 (s, 2H), 3.31 – 3.27 (m, 1H), 3.14 – 3.02 (m, 6H), 2.96 – 2.90 (m, 1H), 2.27 (s, 3H).

¹³**C** NMR (151 MHz, DMSO-*d*₆, 120 °C): δ 170.24, 165.20, 153.12, 150.80, 148.63, 146.25, 137.15, 133.57, 128.94, 125.74, 123.59, 121.74, 118.72, 118.20, 117.47, 112.10, 110.06, 42.40 (brs, see HSQC), 38.34, 36.80, 33.73 (brs), 26.66, 6.58.

HRMS (ESI): m/z calc for $C_{23}H_{24}N_4O_3$ [M+H]⁺ (Note: hydrochloride salt not observed): 405.1921, found: 405.1927

(E)-3-(6-(aminoethyl)-7-oxo-5,6,7,8-tetrahydro-1,8-naphthyridin-3-yl)-N-methyl-N-((3-methylbenzofuran-2-yl)methyl)acrylamide hydrochloride (3). Anhydrous 4M HCl in dioxane (1 mL) was added dropwise to a solution of**10**(1 eq, 0.6 mmol) in dioxane (3 mL). The reaction mixture was stirred at room temperature. After 4 h, the reaction mixture was concentrated from CH₂Cl₂ several times followed by trituration with ether/pentane to afford (*E*)-3-(6-(aminoethyl)-7-oxo-5,6,7,8-tetrahydro-1,8-naphthyridin-3-yl)-*N*-methyl-*N*-((3-methylbenzofuran-2-yl)methyl)acrylamide hydrochloride (3, 244 mg, 0.536 mmol, 89%) as a white solid.

Note: Tabulated NMR data for acrylamide derivatives consist of two rotamers that exist at room temperature in a ratio of 40:60 and is reflected in the reported integral values.

¹**H NMR** (600 MHz, DMSO- d_{6} , 25 °C): δ 10.80 (s, 1H), 8.47 – 8.37 (m, 1H), 8.17 – 8.09 (m, 1H), 8.06 – 7.95 (m, 3H), 7.60 – 7.54 (m, 1H), 7.54 – 7.43 (m, 2.4H), 7.30 – 7.26 (m, 1H), 7.26 – 7.17 (m, 1.6H), 4.99 (s, 0.8H), 4.79 (s, 1.2H), 3.18 (s, 1.8H), 3.03 – 2.97 (m, 1H), 2.96 – 2.89 (m, 3.2H), 2.80 – 2.67 (m, 2H), 2.30 – 2.22 (m, 3H), 2.10 – 2.00 (m, 1H), 1.71 – 1.63 (m, 1H).

¹**H NMR** (600 MHz, DMSO- d_{6} , 115 °C): δ 10.27 (s, 1H), 8.38 (s, 1H), 7.96 (s, 1H), 7.83 (s, 3H), 7.55 (d, J = 7.6 Hz, 1H), 7.50 (d, J = 15.4 Hz, 1H), 7.45 (d, J = 8.1 Hz, 1H), 7.28 (t, J = 7.7 Hz, 1H), 7.24 (t, J = 7.4 Hz, 1H), 7.20 (d, J = 15.4 Hz, 1H), 4.85 (s, 2H), 3.11 (s, 3H), 3.05 (dd, J = 15.4, 5.7 Hz, 1H), 3.03 – 2.89 (m, 2H), 2.79 (dd, J = 15.4, 11.3 Hz, 1H), 2.76-2.69 (m, 1H), 2.27 (s, 3H), 2.10 (dq, J = 14.4, 7.4 Hz, 1H), 1.77 (dq, J = 13.8, 7.0 Hz, 1H).

¹³C NMR (151 MHz, DMSO-*d*₆, 115 °C): δ 171.63, 165.22, 153.13, 151.19, 148.64, 146.21, 137.35, 133.50, 128.96, 125.46, 123.63, 121.78, 118.76, 117.92, 117.85, 112.13, 110.09, 42.25 (brs, see HSQC), 36.76, 36.57, 33.71 (brs), 28.73, 27.07, 6.62.

HRMS (ESI): m/z calc for $C_{24}H_{26}N_4O_3$ [M+H]⁺ (**Note:** hydrochloride salt not observed): 419.2078, found: 419.2071.

Figure S2. Synthesis of Debio-1452 Tosylate

Cy, cyclohexyl; DIPEA, *N*,*N*-diisopropylethylamine ; TFA, trifluoroacetic acid; EDC, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide; HOAt, 1-hydroxy-7-azabenzotriazole; DMF, *N*,*N*-dimethylformamide; PTSA, *p*-toluene sulfonic acid; THF, tetrahydrofuran

tert-butyl (*E*)-3-(7-oxo-5,6,7,8-*tetrahydro-1,8-naphthyridin-3-yl*)*acrylate* (**S5**). Anhydrous DMA (32 mL, sparged with N₂ before using) was added to a flask containing 6-bromo-3,4-dihydro-1,8-naphthyridin-2(*1H*)- one (1 eq, 10 mmol), palladium(II) acetate (0.05 eq, 0.5 mmol), and tricyclohexylphosphine tetrafluoroborate (0.1 eq, 1.0 mmol) followed by the addition of *tert*-butyl acrylate (1.5 eq, 15 mmol, sparged with N₂ before using), *N*,*N*-diisopropylethylamine (2 eq, 20 mmol, distilled and sparged with N₂ before using). The reaction mixture was heated to 90-100 °C for 24 h. After reaction completion, the reaction mixture was diluted with ethyl acetate and filtered through a pad of celite and the filtrate was washed with saturated sodium bicarbonate. The combined organic extracts were dried over sodium sulfate and concentrated under reduced pressure. Purification by flash purification column chromatography (10:90 to 30:70, EtOAc:CH₂Cl₂) followed by trituration with ether/n-pentane yielded *tert*-butyl (*E*)-3-(7-oxo-5,6,7,8-tetrahydro-1,8-naphthyridin-3-yl)acrylate (**S5**, 2.151 g, 7.85 mmol, 78%) as a white solid.

¹**H NMR** (500 MHz, Chloroform-*d*): δ 8.94 (s, 1H), 8.32 (d, J = 2.1 Hz, 1H), 7.65 (d, J = 1.5 Hz, 1H), 7.51 (d, J = 16.0 Hz, 1H), 6.33 (d, J = 16.0 Hz, 1H), 2.99 (t, J = 7.6 Hz, 2H), 2.71 (dd, J = 8.4, 6.8 Hz, 2H), 1.53 (s, 9H).

¹³**C NMR** (126 MHz, Chloroform-*d*): 170.97, 165.97, 151.95, 147.37, 139.43, 134.05, 126.16, 120.57, 118.84, 80.99, 77.36, 30.40, 28.34, 24.22.

Experimental information for the above compound has been previously reported⁸.

(*E*)-3-(7-oxo-5,6,7,8-tetrahydro-1,8-naphthyridin-3-yl)acrylic acid hydrochloride (**S6**). *E*)-3-(7-oxo-5,6,7,8-tetrahydro-1,8-naphthyridin-3-yl)acrylate (**S5**) was dissolved trifluoroacetic acid:CH₂Cl₂ (8mL:40mL) and stirred at room temperature. After 2h, the reaction mixture was concentrated several times from CH₂Cl₂. The crude material was suspended in 4 M HCl in dioxane (20 mL), stirred for 30 min, filtered, and rinsed with ether to afford (*E*)-3-(7-oxo-5,6,7,8-tetrahydro-1,8-naphthyridin-3-yl)acrylic acid hydrochloride (**S6**, 7.67 mmol, 99%) as a white solid.

¹**H** NMR (500 MHz, DMSO- d_6): δ 10.68 (s, 1H), 8.35 (d, J = 2.2 Hz, 1H), 8.02 (d, J = 2.1 Hz, 1H), 7.54 (d, J = 16.0 Hz, 1H), 6.51 (d, J = 16.0 Hz, 1H), 2.91 (t, J = 7.6 Hz, 2H), 2.53 (dd, J = 8.5, 6.8 Hz, 2H).

¹³C NMR (126 MHz, DMSO): δ 171.01, 167.47, 152.77, 147.33, 140.62, 133.78, 124.72, 119.20, 118.34, 29.97, 23.27.

Experimental information for the above compound has been previously reported ⁸.

(E)-N-methyl-N-((3-methylbenzofuran-2-yl)methyl)-3-(7-oxo-5,6,7,8-tetrahydro-1,8-naphthyridin-3yl)acrylamide (S7, Debio-1452)-To a solution of N-methyl-1-(3-methylbenzofuran-2-yl)methanamine (1.1 eq, 6.93 mmol), (E)-3-(7-oxo-5,6,7,8-tetrahydro-1,8-naphthyridin-3-yl)acrylic acid hydrochloride (1 eq, 6.3 mmol), 1-hydroxy-7-azabenzotriazole (1.1 eq, 6.93 mmol), in N,N-dimethylformamide (32 mL) was added *N*,*N*-diisopropylethylamine (2.2)13.86 mmol) followed 1-ethyl-3-(3eq. by dimethylaminopropyl)carbodiimide (1.1 eq, 6.93 mmol). The reaction mixture was heated to 60 °C for 6 h. The crude reaction mixture was diluted with water, filtered, rinsed with water, rinsed with ether, and dried to afford (E)-N-methyl-N-((3-methylbenzofuran-2-yl)methyl)-3-(7-oxo-5,6,7,8-tetrahydro-1,8-naphthyridin-3yl)acrylamide (**S7, Debio-1452,** 1.970 g, 5.25 mmol, 83%) as a light beige solid.

Note: Tabulated NMR data for acrylamide derivatives consist of two rotamers that exist at room temperature in a ratio of 40:60 and is reflected in the reported integral values.

¹**H NMR** (500 MHz, DMSO-*d*₆): δ 10.65 (s, 1H), 8.41 – 8.34 (m, 1H), 8.18 – 8.00 (m, 1H), 7.59 – 7.54 (m, 1H), 7.54 – 7.45 (m, 2.4H), 7.31 – 7.26 (m, 1H), 7.26 – 7.22 (m, 1H), 7.22 – 7.16 (m, 0.6H), 4.99 (s, 0.8H), 4.79 (s, 1.2H), 3.18 (s, 1.8H), 2.92 (s, 1.2H), 2.92 – 2.87 (m, 2H), 2.57 – 2.51 (m, 2H), 2.26 (s, 3H).

Experimental information for the above compound has been previously reported ⁶.

(*E*)-*N*-methyl-*N*-((3-methylbenzofuran-2-yl)methyl)-3-(7-oxo-5,6,7,8-tetrahydro-1,8-naphthyridin-3yl)acrylamide p-toluenesulfonic acid monohydride (**S8, Debio-1452 Tosylate**)- **S7, Debio-1452** (1 eq, 1.5 mmol) was suspended in THF (120 mL) and heated to reflux. After 30 min, *p*-toluene sulfonic acid monohydrate (1.05 eq, 1.58 mmol) in dioxane (12 mL) was added to the reaction mixture and stirred for 1h. The reaction mixture was allowed to cool to room temperature and diluted with a mixture of 1:1 ether:*n*pentane (80 mL), filtered, rinsed with 1:1 ether:*n*-pentane, and dried to afford (*E*)-*N*-methyl-*N*-((3methylbenzofuran-2-yl)methyl)-3-(7-oxo-5,6,7,8-tetrahydro-1,8-naphthyridin-3-yl)acrylamide *p*toluenesulfonic acid (**S8, Debio-1452 Tosylate**, 0.756 g, 1.38 mmol, 92%) as a white solid. The product was further processed for *in vivo* efficacy studies to improve solubility. For these studies, **Debio-1452 Tosylate** was ground in a mortar and pestle and then sieved through a 75 µM mesh.

Note: Tabulated NMR data for acrylamide derivatives consist of two rotamers that exist at room temperature in a ratio of 40:60 and is reflected in the reported integral values.

¹**H NMR** (500 MHz, DMSO-*d*₆): δ 10.69 (s, 1H), 9.49 (brs, 1H), 8.42 – 8.32 (m, 1H), 8.17 – 8.05 (m, 1H), 7.59 – 7.54 (m, 1H), 7.54 – 7.43 (m, 4.4H), 7.31 – 7.22 (m, 2H), 7.21 (d, *J* = 12.6 Hz, 0.6H), 7.15 – 7.09 (m, 2H), 4.99 (s, 0.8H), 4.79 (s, 1.2H), 3.18 (s, 1.8H), 2.96 – 2.89 (m, 3.2H), 2.57 – 2.51 (m, 2H), 2.29 (s, 3H), 2.26 (s, 3H).

Experimental information for the above compound has been previously reported ⁶.

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fi (ppm)

¹H NMR (500 MHz, DMSO-*d*₆):

¹H NMR (500 MHz, DMSO-*d*₆):

¹³C NMR (126 MHz, chloroform-*d*):

¹³C NMR (126 MHz, chloroform-*d*):

¹³C NMR (126 MHz, chloroform-*d*):

¹H NMR (600 MHz, DMSO-*d*₆, 25 °C):

¹H NMR (600 MHz, DMSO-*d*₆, 115 °C):

¹³C NMR (151 MHz, DMSO-*d*₆, 115 °C):

¹H NMR (600 MHz, DMSO-*d*₆, 25 °C):

¹H NMR (600 MHz, DMSO-*d*₆, 120 °C):

¹³C NMR (151 MHz, DMSO-*d*₆, 120 °C):

¹H NMR (600 MHz, DMSO-*d*₆, 25 °C):

¹H NMR (600 MHz, DMSO-*d*₆, 120 °C):

¹³C NMR (151 MHz, DMSO-*d*₆, 120 °C):

¹H NMR (600 MHz, DMSO-*d*₆, 25 °C):

¹H NMR (600 MHz, DMSO-*d*₆, 120 °C):

¹³C NMR (151 MHz, DMSO-*d*₆, 120 °C):

¹H NMR (600 MHz, DMSO-*d*₆, 25 °C):

¹H NMR (600 MHz, DMSO-*d*₆, 120 °C):

¹³C NMR (151 MHz, DMSO-*d*₆, 120 °C):

gHSQC (DMSO-d₆, 115 °C):

¹H NMR (600 MHz, DMSO-*d*₆, 25 °C):

¹H NMR (600 MHz, DMSO-*d*₆, 115 °C):

¹³C NMR (151 MHz, DMSO-*d*₆, 115 °C):

gHSQC (DMSO-d₆, 115 °C):

¹H NMR (500 MHz, DMSO-*d*₆,):

¹H NMR (500 MHz, DMSO-*d*₆,):

References:

- 1 Fulmer, G. R. *et al.* NMR Chemical Shifts of Trace Impurities: Common Laboratory Solvents, Organics, and Gases in Deuterated Solvents Relevant to the Organometallic Chemist. *Organometallics* **29**, 2176-2179, doi:10.1021/om100106e (2010).
- 2 Simpson, G. L. *et al.* Glycosylated foldamers to probe the carbohydrate-carbohydrate interaction. *J. Am. Chem. Soc.* **128**, 10638-10639, doi:10.1021/ja0614565 (2006).
- 3 Jansen, M. *et al.* Synthesis of GABAA receptor agonists and evaluation of their alphasubunit selectivity and orientation in the GABA binding site. *J. Med. Chem.* **51**, 4430-4448, doi:10.1021/jm701562x (2008).
- Weitman, M. *et al.* Structure--activity relationship studies of 1-(4-chloro-2,5dimethoxyphenyl)-3-(3-propoxypropyl)thiourea, a non-nucleoside reverse transcriptase inhibitor of human immunodeficiency virus type-1. *Eur. J. Med. Chem.* **46**, 447-467, doi:10.1016/j.ejmech.2010.11.003 (2011).
- 5 Gerusz, V. E., Sonia; Oxoby, Mayalen; Denis, Alexis. Novel heterocyclic acrylamides and their use as pharmaceuticals. US patent 8,846,711 B2 (2012).
- 6 Pauls, H. & Ramnauth, J. Salt, Prodrugs and Polymorphs of FabI Inhibitors. US patent 8,263,613 B2 (2012).
- 7 Berman, J. M. *et al.* Heterocyclic Compounds, Methods of Making Them and Their Use in Therapy. US patent 7,790,709 B2 (2010).
- 8 Seefeld, M. A. *et al.* Indole naphthyridinones as inhibitors of bacterial enoyl-ACP reductases FabI and FabK. *J. Med. Chem.* **46**, 1627-1635, doi:10.1021/jm0204035 (2003).