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SUPPLEMENTARY MATERIAL 

S1 - Spline interpolation  

 

The spline interpolation algorithm used in this work is based on the MARA algorithm 

introduced by Scholckmann et al.51 In summary, the algorithm splits the fNIRS data of each 

channel into data segments and computes the standard deviation in each segment. The 

contaminated data segments by motion artifacts are identified based on the moving standard 

deviation (S(t)) given by: 
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for 𝑡 = 𝑘 + 1, 𝑘 + 2, … , 𝑁 − 𝑘. Here, 𝑁 is the length of the time series, and 2k +1 is the sliding 

window length. k is a free parameter that defines the length of the segment and must be set a priori. 

By empirically investigating the impact of k on the performance of MARA in our data, we 

concluded that one efficient way to define k is to set 𝑘 = 2.5 × 𝑓𝑎  where 𝑓
𝑎
 is the acquisition 

frequency of the fNIRS time-series. By doing that, fluctuations due to heartbeat are not interpreted 

as motion artifacts.  

After computing the moving standard deviation, one has to define an absolute threshold for 

identifying data segments that are contaminated by motion artifacts. Note that contaminated 

segments have higher values of S due to abrupt changes.  Next, the identified segments are modeled 

by a cubic spline interpolation, and the contaminated time points are replaced by the result of the 

subtraction of the original time series by the interpolated data. Finally, the algorithm corrects the 

baseline shifts by properly adding values in each data segment based on comparisons between the 

mean value of the segments before and after the contaminated segment. 

The main drawback of the MARA algorithm is that S(t) depends on the signal-to-noise ratio 

(SNR) of each channel. In our data cohort, we verified that it is hard to find an optimal threshold 

that suits every channel. To overcome this limitation one can define one threshold for each channel 

of each subject. Since in this work we applied the spline interpolation algorithm in the optical 

density time-series, this proposed procedure would lead to the definition of two threshold values 

per channel (one per wavelength). This process, however, is time-consuming and subjective.  

In order to avoid the necessity of defining several thresholds, we defined the threshold for 

each channel based on the distribution of the values of the moving standard deviation for each 

optical density time-series. In fact, we defined the threshold of each time series as the mean value 

of S summed with a multiple of the standard deviation of S. To clarify, let 𝛿𝑖 be the standard 

deviation of S for the ith optical density time-series (𝑂𝐷𝑖). Thus, the threshold value (𝑅𝑖) of 𝑂𝐷𝑖 

will be given by 𝑅𝑖 = 𝛾𝛿𝑖 in which 𝛾 is a free parameter that needs to be defined by the user. For 



the present study, we set 𝛾 = 0.9 after testing several values. We define 𝛾 in such a way that the 

spline interpolation was optimized to be more sensitive to baseline changes than to motion-induced 

spikes. Another important change in the algorithm is that we decided to apply the spline correction 

only in the block period (baseline + stimulus + recovery period) instead of in the whole time series. 

We have observed that this procedure is helpful in long data cohorts with different tasks or long 

rest and baseline periods because different data conditions usually have different degrees of 

susceptibility to motion artifacts.  

 

S2 – Wavelet decomposition 

 

 To perform the wavelet motion artifact removal proposed by Molavi et al.,55 we used the 

hmrMotionCorrectWavelet MatLab function available in Homer250. The wavelet-based motion 

artifact removal algorithm performs motion artifact corrections individually for each channel and 

wavelength. The algorithm assumes that the recorded NIRS data (𝑦(𝑡)) is composed of real-

physiological signals, 𝑓(𝑡), and spurious signals, 𝜀(𝑡), which are originated from motion artifacts. 

The main idea behind wavelet filtering is similar to applying a band-pass filtering via a Fourier 

transform. However, in wavelet filtering, the signal is decomposed in wavelets, which are 

functions that are well localized in both time and frequency52. (Note, for comparison in Fourier 

decomposition the signal is decomposed in sins or cosines, which are highly localized in 

frequency, only.) After decomposing the recorded signal with the discrete wavelet transform 

(DWT), wavelet coefficients that have a higher probability of belonging to motion artifacts than 

to physiological data are set to zero. Next, the signal is reconstructed via the inverse wavelet 

transform. In principle, the removal of coefficients should be easy since motion and physiological 

data should have considerably different signatures in the wavelet domain.  

The sensible step of wavelet filtering is to define the probability threshold for removing 

wavelet coefficients that come from motion artifacts. Compared to motion artifacts, the 

hemodynamic signal is smoother, presenting slower variations. Hence, we can reasonably assume 

that the distribution of wavelet coefficients from the physiological data should have a normal 

distribution with smaller variance compared to artifact coefficients. In addition, the coefficients 

are spread around zero because they are outputs of a high-pass filter. In this sense, the model 

proposed by Molavi et al. assumes that the wavelet coefficients of each wavelet decomposition 

level can be written as 𝑤 = 𝑤′ + 𝜆, where 𝑤′ is a normal distribution centered at zero, and the 𝜆 

coefficients are a few large outliers from the whole distribution 𝑤 due to motion artifacts. To 

decide whether a coefficient comes from motion, we set an arbitrary probability 𝛼 such that any 

coefficient 𝑤 is set to zero if its probability of occurring is less than 𝛼. In the present work, we 

used 𝛼 = 0.1 based on previous works.52,53  

 

 

 

 



Supplementary Figures. 

 

 

 
Figure S1. Optical density for both wavelengths for one representative channel of a single 

subject during one trial of the “Reading Aloud” task. 

  

 


