
S1 Appendix: Additional Mathematical Details

Inner Products between Multivariate Normal Distributions

In this work, we only used multivariate Normal distributions. Conveniently, expressions exist for the inner
product between two Normal distributions. Assuming multivariate Normal distributions as basis functions,
we have

 j(x) = N (x ;µj ,⌃j) , (37)

where N is the probability density function for a multivariate Normal distribution with mean µ and covariance
matrix ⌃. To determine the mass matrix, adapting results from Ref. [33] we can analytically calculate the
inner product between two multivariate normal distributions as
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Requirements on Perron–Frobenius Matrix Approximation

To preserve probability, it must be the case that
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which is identical to the condition for continuous time Markov chains. This is because we require
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Therefore, for mass to be conserved, equation (13) holds.
We also require the operator etP preserves positivity, that is, etPu0 � 0 for functions u0 � 0. This implies

that the off-diagonal entries of P must be non-negative. The reason is as follows. As  � 0, the function
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u0 = c|u must have cu � 0 due to linear independence of the normalised basis functions. It therefore follows
that etP � 0 element wise, because the positivity condition and linear independence of the normalised basis
functions require that c|ue

tP � 0 element wise. Thus, 0  etP = I + tP + O(t2) for all t � 0, which in
particular means that tPi,j +O(t2) � 0 for i 6= j. The condition Pi,j � 0 follows by considering arbitrarily
small t > 0. This is sufficient for etP to be element wise non-negative, as the matrix exponential of a matrix
with non-negative off-diagonal elements is always non-negative element wise. Note that this, together with
the mass conservation condition, implies that the diagonal entries of P are all negative.

Gradient Calculation

For relevant background reading on functions of matrices, see Ref. [34]. Let H denote the Hilbert space
RN with inner product hp, qiH = p|Mq, P 2 RN⇥N . For t > 0, and p, q 2 H, we derive the gradient
of f(P ) = ketPq � pk2

H
that is used for the gradient calculation in Equation (24). Let Df (P ; dP ) be the

directional derivative of f at P , in the direction dP . Let h·, ·iF denote the Frobenius inner product on RN⇥N .
The gradient of f is the matrix G 2 RN⇥N such that Df (P ; dP ) = hG, dP iF for any dP 2 RN⇥N .

First, note that

Df (P ; dP ) = 2(etPq � p)|M [Det·(P, dP )]q = 2hetPq � p, [Det·(P, dP )]qiH . (49)

We therefore need an expression for the directional derivative Det·(P ; dP ) of P ! etP . By definition of the
matrix exponential, we have that
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The directional derivative is thus
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By combining (49) and (51) we see that the directional derivative of f is
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The final step is to derive G such that Df (P ; dP ) = hG, dP iF . Note that hq, ApiH = hMqp|, AiF for
arbitrary p, q 2 RN and A 2 RN⇥N . Thus, (53) becomes
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Fig S1. Dynamic distribution decomposition applied to
data generated by stochastic dynamical system described by
equation (1)–(2). Log transformed error plot plotting time
point against log10 of the percentage error (of the DDD fit);
the original data set (black solid line) has a mean error of
0.9%; the mean error over 100 permutations of the time labels
(dashed red line) is 10%.

It therefore follows that the gradient of f at P is the matrix

G = 2
1X

k=0

tk+1

(k + 1)!

kX

j=0

(P k�j)
|
M(etPq � p)q|(P j)

|
(56)

= 2
1X

k=0

tk+1

(k + 1)!
Sk . (57)

The terms
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can be calculated using the recursion relation

Sk = P |Sk�1 + Sk�1P
| � P |Sk�2P

|, where S�1 = 0 , S0 = M(etPq � p)q| . (59)

Detecting Non-Autonomy

DDD can be used to detect non-autonomy. Repeating the SDE example from the Results section, we now
change the observation times to t = 0, 10, . . . , 100 and apply DDD. The resulting errors at each time point are
plotted in Figure S1. We remind the reader of the earlier statement specifying that the increase error towards
the end of the simulation is due to the trajectories interacting with the boundary conditions — boundary
conditions that are not incorporated into the choice in basis functions.

We then randomly reorder the time labels such that the data now appears out of sequence, then apply
DDD. Performing this 100 times and taking the mean error at each time point, we find that this new error is
approximately constant over time. When compared to applying DDD to the data in its correct temporal
sequence, the reordered data has approximately an order of magnitude larger error.

Therefore, one can conclude that DDD fitting error reflects non-autonomy, and higher fitting error indicates
when this assumption is breaking.
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