YMTHE, Volume 28

Supplemental Information

Imaging CAR T Cell Trafficking

with eDHFR as a PET Reporter Gene

Mark A. Sellmyer, Sarah A. Richman, Katheryn Lohith, Catherine Hou, Chi-Chang Weng, Robert H. Mach, Roddy S. O'Connor, Michael C. Milone, and Michael D. Farwell

Imaging CAR T Cell Trafficking with eDHFR as a PET Reporter Gene

Mark A. Sellmyer^{1,2†*}, Sarah A. Richman^{3†}, Katheryn Lohith¹, Catherine Hou¹, Chi-Chang Weng^{1,4}, Robert H. Mach¹, Roddy S. O'Connor⁵, Michael C. Milone⁵, and Michael D. Farwell^{1*}

¹Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA;

²Department of Biochemistry and Biophysics, University of Pennsylvania;

³Division of Oncology, Department of Pediatrics, Children's Hospital of Philadelphia and

Perelman School of Medicine at the University of Pennsylvania;

⁴Department of Medical Imaging and Radiological Sciences,

Chang Gung University, Taoyuan, Taiwan;

⁵Department of Pathology and Laboratory Medicine, University of Pennsylvania.

Short Title: CAR T cell PET reporter gene imaging

Keywords: CAR T Cells, reporter gene, molecular imaging

[†] Co-first authorship
* Correspondence should be addressed to:
M.D.F. (michael.farwell@pennmedicine.upenn.edu) or
M.A.S. (mark.sellmyer@pennmedicine.upenn.edu)
https://orcid.org/0000-0002-1407-1905

Department of Radiology Perelman School of Medicine at the University of Pennsylvania 813A Stellar-Chance Labs 422 Curie Boulevard Philadelphia, PA 19104-6059 Phone: 215-573-3212

	eDHFR 116		10 µM M ⁻	10 μM MTX		10 μM TMP	
	Mean	SD	Mean	SD	Mean	SD	
5 min	14.3	1.87	17.2	1.03	5.82	1.1	
30 min	47.2	1.84	30.4	1.29	6.66	0.48	
60 min	87.1	4.82	18.8	1.84	7.04	0.7	
120 min	134.6	2.71	9.42	0.73	8.38	1.13	

	Control 116		10 µM M ⁻	10 μM MTX		10 μM TMP	
	Mean	SD	Mean	SD	Mean	SD	
5 min	5.11	0.49	6.32	0.41	5.37	0.78	
30 min	6.58	0.51	5.59	0.43	5.83	0.48	
60 min	7.37	0.62	6.74	0.63	6.48	0.52	
120 min	8.4	0.52	8.62	0.66	7.61	0.33	

Figure S1. Tabular evaluation of eDHFR and Control 116 [¹⁸F]-TMP uptake with competitive inhibitors. Values displayed are in % Input / 100 μ g Protein (n=4).

Figure S2. Ex vivo biodistribution of tissues including eDHFR and control HCT116 tumors. Mice were sacrificed at the completion of the PET/CT imaging session. **A)** Uptake in percent injected dose per gram (%ID/g) was assayed with a gamma counter (n=3). **B)** Ratio of tumor uptake to muscle (n=3). Error bars represent the standard deviation.

Figure S3. In vitro effector function, metabolic profile, and subset profile of CAR-DYR T cells. Sorted primary human T cells co-expressing the GD2-E101K CAR-T2A-mCherry and either DYR (E101K-DYR) or control construct consisting of GFP and click beetle green luciferase (E101K-CBG) were used in the following assays A) Flow cytometry comparing mCherry (CAR) expression of sorted cells prior to antigen exposure. Following exposure to GD2⁺ SY5Y target cells, IL-2 and IFN-γ secretion was determined by ELISA (B-C). Fold population expansion was determined by flow cytometric bead-based counting (D). Cytotoxicity was determined by ⁵¹Cr release assay (E). Oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) were

determined via Seahorse assay (F). The ratio of CD4⁺ and CD8⁺ T cells, as well as the proportion of CD45-RO⁺/CCR7⁺ cells (central memory) was determined by flow cytometry. Data are from one T cell donor. Graphs show mean with error bars showing SD. Cytokine release and cytotoxicity assays were performed in triplicate. Seahorse assay was performed with 14 replicates for E101K-DYR and 10 replicates for E101K-CBG.

Figure S4. Analysis of GD2 expression on HCT116 and SY5Y cells with flow cytometry. HCT116 (left panel) and known GD2⁺ positive SY5Y cells (right panel) were stained with APC isotype control or APC-anti-GD2 and analyzed by flow cytometry.

DYR-CAR M4

Figure S5. DYR-CAR M4 spleen. IHC was performed on the DYR-CAR M4 spleen for CD8 (see Figure 4 showing persistent PET signal from the M4 spleen on day 13). CD8 positive CAR T cells are present in the splenic periphery (20x).

Figure S7. BLI, autoradiography and IHC of Control M1 tumors. **A)** BLI shows foci of signal overlying the HCT116 tumor (GD2⁻). **B)** Autoradiography of the 143b tumor shows scattered areas of uptake overlying the bone of the upper arm. There were no CD8 positive T cells on IHC. **C)** The HCT116 tumor did not show any specific signal on auto-radiography and there were no CD8 positive T cells on IHC.

HLA peptide motif search results

HSV-tk

1	MASHAGQQHA	PAFGQAARAS	GPTDGRAASR	PSHRQGASEA	RGDPELPTLL
51	RVYIDGPHGV	GKTTTSAQLM	EALGPRDNIV	YVPEPMTYWQ	VLGASETLTN
101	IYNTQHRLDR	GEISAGEAAV	VMTSAQITMS	TPYAATDAVL	APHIGGEAVG
151	PQAPPPALTL	VFDRHPIASL	LCYPAARYLM	GNMTPQAVLA	FVALMPPTAP
201	GTNLVLGVLP	EAEHADRLAR	RQRPGARLDL	AMLSAIRRVY	DLLANTVRYL
251	QRGGRWREDW	GRLTGVAAAT	PRPDPEDGAG	SLPRIEDTLF	ALFRVPELLA
301	PNGDLYHIFA	WVLDVLADRL	LPMHLFVLDY	DQSPVGCRDA	LLRLTAGMIP
351	TRVTTAGSIA	EIRDLARTFA	REVGGV		

User Parameters and Scoring Information			
method selected to limit number of results	explicit number		
number of results requested	20		
HLA molecule type selected	A1		
length selected for subsequences to be scored	9		
echoing mode selected for input sequence	Y		
echoing format	numbered lines		
length of user's input peptide sequence	376		
number of subsequence scores calculated	368		
number of top-scoring subsequences reported back in scoring output table	20		

	Scoring Results				
Rank	Start Position	Subsequence Residue Listing	Score (Estimate of Half Time of Disassociation of a Molecule Containing This Subsequence)		
1	94	ASETLTNIY	67.500		
2	359	IAEIRDLAR	45.000		
3	43	DPELPTLLR	11.250		
4	298	LLAPNGDLY	5.000		
5	209	LPEAEHADR	4.500		
6	82	VPEPMTYWQ	4.500		
7	284	RIEDTLFAL	4.500		
8	227	RLDLAMLSA	2.500		
9	22	PTDGRAASR	2.500		
10	41	RGDPELPTL	2.500		
11	135	ATDAVLAPH	2.500		
12	80	VYVPEPMTY	1.250		

13	272	RPDPEDGAG	1.250
14	183	MTPQAVLAF	1.250
15	170	LLCYPAARY	1.000
16	241	DLLANTVRY	1.000
17	211	EAEHADRLA	0.900
18	165	HPIASLLCY	0.625
19	302	NGDLYHIFA	0.625
20	53	YIDGPHGVG	0.500

eDHFR

1	MISLIAALAV	DRVIGMENAM	PWNLPADLAW	FKRNTLNKPV	IMGRHTWESI
51	GRPLPGRKNI	ILSSQPGTDD	RVTWVKSVDE	AIAACGDVPE	IMVIGGGRVY
101	EQFLPKAQKL	YLTHIDAEVE	GDTHFPDYEP	DDWESVFSEF	HDADAQNSHS
151	YCFEILERR				

User Parameters and Scoring Information		
method selected to limit number of results	explicit number	
number of results requested	20	
HLA molecule type selected	A1	
length selected for subsequences to be scored	9	
echoing mode selected for input sequence	Y	
echoing format	numbered lines	
length of user's input peptide sequence	159	
number of subsequence scores calculated	151	
number of top-scoring subsequences reported back in scoring output table	20	

	Scoring Results				
Rank	Start Position	Subsequence Residue Listing	Score (Estimate of Half Time of Disassociation of a Molecule Containing This Subsequence)		
1	120	EGDTHFPDY	12.500		
2	137	FSEFHDADA	2.700		
3	25	PADLAWFKR	2.500		
4	63	SSQPGTDDR	1.500		
5	129	EPDDWESVF	1.250		
6	67	GTDDRVTWV	1.250		

7	88	VPEIMVIGG	1.125
8	77	SVDEAIAAC	1.000
9	98	RVYEQFLPK	1.000
10	116	DAEVEGDTH	0.900
11	15	GMENAMPWN	0.900
12	85	CGDVPEIMV	0.625
13	142	DADAQNSHS	0.500
14	92	MVIGGGRVY	0.500
15	18	NAMPWNLPA	0.500
16	132	DWESVFSEF	0.450
17	127	DYEPDDWES	0.450
18	4	LIAALAVDR	0.200
19	23	NLPADLAWF	0.200
20	36	LNKPVIMGR	0.125

Figure S8. Predicted half-time of dissociation to HLA class one molecules.

Ref: Parker, K. C., M. A. Bednarek, and J. E. Coligan. 1994. Scheme for ranking potential HLA-A2 binding peptides based on independent binding of individual peptide side-chains. J. Immunol. 152:163.

----- (100 µm)

Figure S9. Estimation of cellular density where PET signal can be determined. CD8 DYR-CAR T-cells were counted on a medium power field (10x). There are 200 cells counted (Software: Image J).

The result for calculating the volume in cu millimeters (mm³) of a rectangular box shape, with a length of 1.65 millimeters (mm), a width (thickness) of 10 micrometers (μ m) and a height of 1.1 millimeters (mm) is 0.01815 mm³. Thus per mm³ the number of cells needed for micro PET/CT detection is approximately (1/0.01815)*200 = (55.1)*200 = 11,000 cells per mm³.

DYR Gene Sequence:

Ggatcc(BamHI)ATGATAAGTTTGATTGCTGCTCTGGCTGTGGACCGGGTAATCGGTATGGAA AACGCCATGCCCTGGAACCTGCCTGCCGATTTGGCTTGGTTCAAGCGCAATACCCTGAAC AAACCAGTAATCATGGGAAGGCATACATGGGAAAGCATTGGAAGACCACTTCCCGGTAGA AAGAATATTATCCTGTCTAGCCAGCCCGGCACGGATGATAGGGTGACATGGGTAAAGAGC GTCGATGAGGCGATTGCGGCGTGTGGTGACGTGCCGGAAATTATGGTTATCGGAGGCGG CAGGGTCTACGAACAGTTCCTGCCGAAGGCACAGAAGCTGTACCTCACCCACATCGATGC AGAGGTGGAAGGAGACACGCACTTTCCAGATTACGAGCCTGATGACTGGGAGAGTGTTTT TAGCGAATTCCATGACGCAGACGCCCAAAACTCTCACTCCTACTGCTTTGAGATTCTCGAA CGAAGGgcatgcgtgagcaagggcgaggagctgttcaccggggtggtgcccatcctggtcgagctggacggcgacgtaaacg gccacaagttcagcgtgtccggcgagggcgaggcgatgccacctacggcaagctgaccctgaagttcatctgcaccaccggcaa gctgcccgtgccctggcccaccctcgtgaccaccttcggctacggcctgcagtgcttcgcccgctaccccgaccacatgaagcagca cgacttcttcaagtccgccatgcccgaaggctacgtccaggagcgcaccatcttcttcaaggacgacggcaactacaagacccgcg ccgaggtgaagttcgagggcgacaccctggtgaaccgcatcgagctgaagggcatcgacttcaaggaggacggcaacatcctgg ggcacaagctggagtacaactacaacagccacaacgtctatatcatggccgacaagcagaagaacggcatcaaggtgaacttca agatecgecacaacategaggacggcagegtgcagetegecgaceactaceageagaacaececeateggegaeggeceegtg ctgctgcccgacaaccactacctgagctaccagtccgccctgagcaaagaccccaacgagaagcgcgatcacatggtcctgctgg agttcgtgaccgccgcgggatcactctcggcatggacgagctgtacaagGGCAGCGGAGAGGGCAGAGGAAGT CTTCTAACATGCGGTGACGTGGAGGAGGAGAATCCCCGGCCCTgctagcacttcgaaagtttatgatccagaac gcggtgtattataccagaccttattggtatgggcaaatcaggcaaatctggtaatggttcttataggttacttgatcattacaaatatcttact gcatggtttgaacttcttaatttaccaaagaagatcatttttgtcggccatgattggggtgcttgtttggcatttcattatagctatgagcatcaa gttgatcaaatctgaagaaggagaaaaaatggttttggagaataacttcttcgtggaaaccatgttgccatcaaaaatcatgagaaagt tagaaccagaagaatttgcagcatatcttgaaccattcaaagagaaaggtgaagttcgtcgtccaacattatcatggcctcgtgaaatc ccgttagtaaaagtggtaaacctgacgttgtacaaattgttaggaattataatgcttatctacgtgcaagtgatgattaccaaaaatgtttattgaatcggacccaggattcttttccaatgctattgttgaaggtgccaagaagtttcctaatactgaatttgtcaaagtaaaaggtcttcatt (Sall)

DYR Protein Sequence:

MISLIAALAVDRVIGMENAMPWNLPADLAWFKRNTLNKPVIMGRHTWESIGRPLPGRKNIILSSQ PGTDDRVTWVKSVDEAIAACGDVPEIMVIGGGRVYEQFLPKAQKLYLTHIDAEVEGDTHFPDYE PDDWESVFSEFHDADAQNSHSYCFEILERRACVSKGEELFTGVVPILVELDGDVNGHKFSVSG EGEGDATYGKLTLKFICTTGKLPVPWPTLVTTFGYGLQCFARYPDHMKQHDFFKSAMPEGYV QERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGIDFKEDGNILGHKLEYNYNSHNVYIMADKQK NGIKVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSYQSALSKDPNEKRDHMVLLE FVTAAGITLGMDELYKGSGEGRGSLLTCGDVEENPGPASTSKVYDPEQRKRMITGPQWWARC KQMNVLDSFINYYDSEKHAENAVIFLHGNAASSYLWRHVVPHIEPVARCIIPDLIGMGKSGKSG NGSYRLLDHYKYLTAWFELLNLPKKIIFVGHDWGACLAFHYSYEHQDKIKAIVHAESVVDVIESW DEWPDIEEDIALIKSEEGEKMVLENNFFVETMLPSKIMRKLEPEEFAAYLEPFKEKGEVRRPTLS WPREIPLVKGGKPDVVQIVRNYNAYLRASDDLPKMFIESDPGFFSNAIVEGAKKFPNTEFVKVK GLHFSQEDAPDEMGKYIKSFVERVLKNEQ