Supplemental Information

Ablation of Immunoproteasome β 5i Subunit

Suppresses Hypertensive Retinopathy

by Blocking ATRAP Degradation in Mice

Shuai Wang, Jing Li, Tong Wang, Jie Bai, Yun-Long Zhang, Qiu-Yue Lin, Jing-min Li, Qi Zhao, Shu-Bin Guo, and Hui-Hua Li

Supplemental data

1. Figures

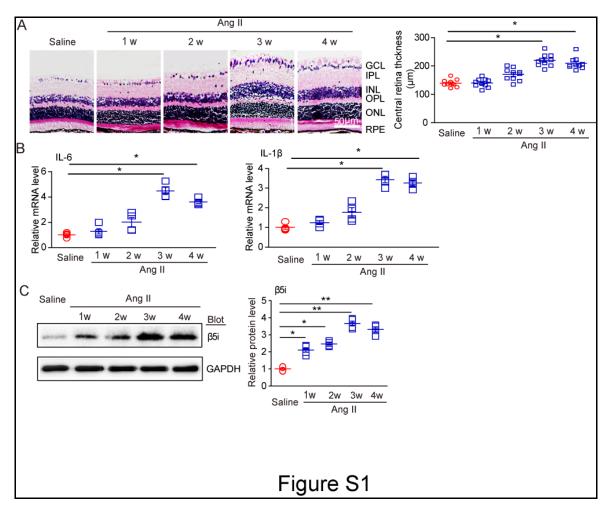


Figure S1. Ang II induces central retinal thickness and proinflammatory cytokine expression at different time points. (A) Male WT and β5i KO mice at 10-12-week-old were infused with saline or Ang II at a dose of 3000 ng/kg/minute using ALZET 1004 micro-osmotic pumps for 1-4 weeks. H&E staining of central retinal sections (left) and quantification of retinal thickness (right; n = 5 per group). Scale bar: $50 \mu m$. (B) PCR analysis of *IL-6* and *IL-1β* messenger ribonucleic acid (mRNA) levels in the retinas (n = 4 per group). (C) Immunoblotting analysis of β5i protein levels in the retinas (n = 4 per group). Data are presented as mean ± SEM. *P < 0.05, **P < 0.01 versus saline control.

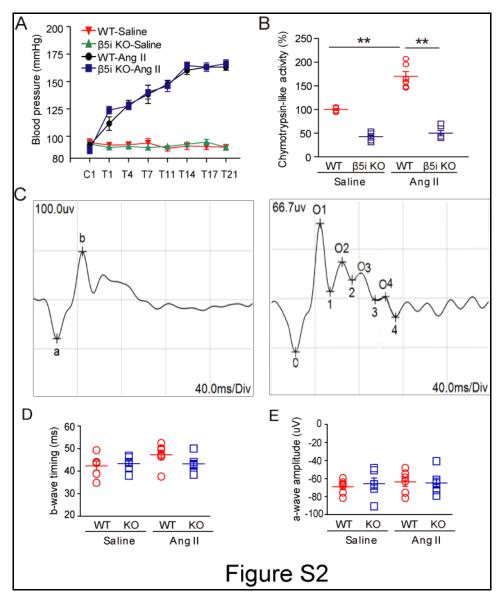


Figure S2. Effect of β5i knockout on average blood pressure and chymotrypsin-like activity. (A) WT and β5i KO mice were infused with Ang II at a dose of 3000 ng/kg/minute or saline for 3 weeks. Measurement of average systolic blood pressure (SBP) in each group before (C) and after saline or Ang II treatment (T) period. C1: day 1 before saline or Ang II treatment, T1: day 1 after saline or Ang II treatment etc (n=10 per group). (B) The chymotrypsin-like activity of retinas in each group after saline or Ang II treatment (n=6 per group). (C) A representative ERG waveform (left) and OPs (right) wave from original data. (D) Quantification of b-wave timing (n = 6 per group). (E). Quantification of b-wave amplitude (n = 6 per group). Results are the mean \pm SEM. **P < 0.01 versus WT mice with saline or Ang II infusion.

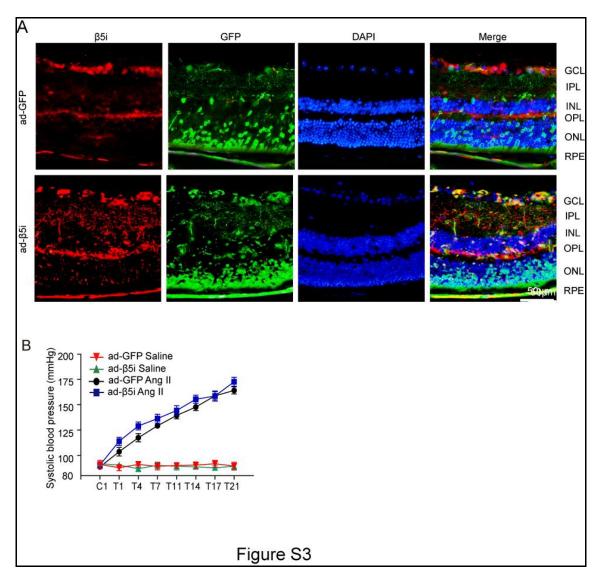


Figure 3. Effect of $\beta 5i$ overexpression on systolic blood pressure in mice. (A)

WT mice were locally injected with Ad- β 5i or Ad-GFP at a dose of 1.2×10^{12} pfu/ml and then infused with Ang II (3000 ng/kg/minute) for 3 weeks. Evaluation of GFP fluorescence and immunostaining of β 5i expression were performed 3 days after second injection. Nuclei were counterstained with DAPI (blue). Scale bar, 50 μ m. (B) Average systolic blood pressure (SBP) in Ad-GFP-injected mice and Ad- β 5i-injected mice before (C) and after saline or Ang II treatment (T) period. C1: day 1 before saline or Ang II treatment, T1: day 1 after saline or Ang II treatment etc (n=9 per group). Data are the mean \pm SEM.

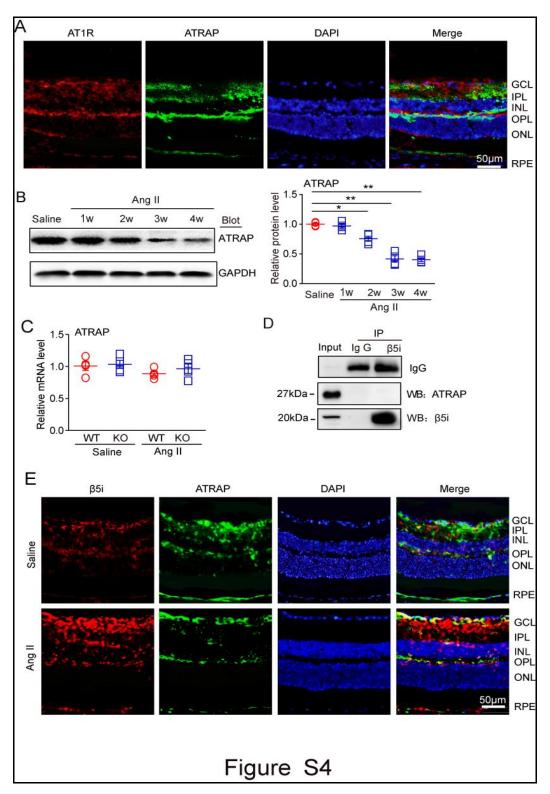
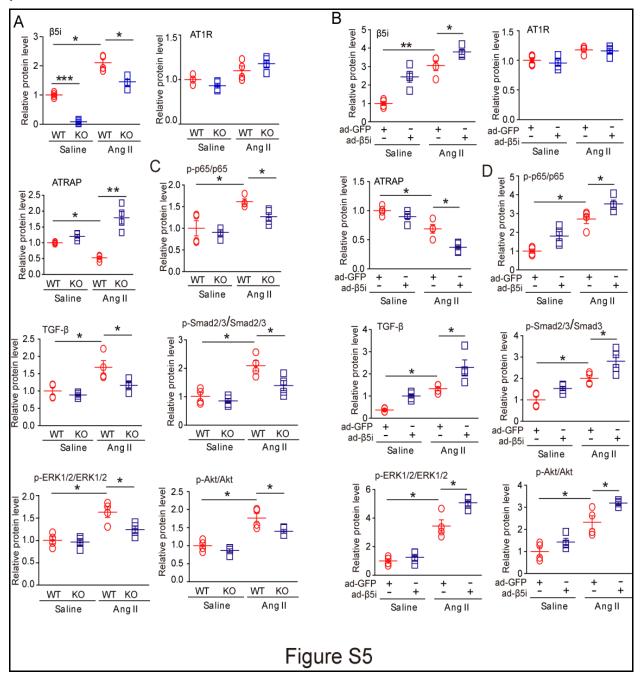



Figure 4. Expression patterns of AT1R, ATRAP and β5i in the retinal sections.

(**A**) Immunostaining of the expression of endogenous AT1R and ATRAP proteins in the central retinal sections with antibody against anti-AT1R and anti-ATRAP. Scale bar: 50 μm. (**B**) PCR analysis of *ATRAP* mRNA levels in the retinas from WT and β5i KO mice after saline or Ang II infusion (n=4 per group). (**C**) Immunoprecipitation (IP)

was performed in retinal lysates with IgG control or anti- β 5i antibody, and analyzed by western blot (WB) with antibody to detect endogenous ATRAP or β 5i. (**D**) Immunostaining of the expression of endogenous β 5i and ATRAP proteins in the central retinal sections with antibody against anti- β 5i and anti-ATRAP. Scale bar: 50 µm. *P < 0.05, **P < 0.01, vs. saline control mice.

Figure S5. Quantification of corresponding protein bands. (A) Quantification of β5i, AT1R, ATRAP, p-p65, p65, TGF-β, Smad2/3, p-Smad2/3, ERK1/2, p-ERK1/2, Akt and p-Akt protein levels in the retinas from WT and β5i KO mice infused with

saline or Ang II (3000 ng/kg/minute) or saline for 3 weeks (n = 4 per group). **(B)** Quantification of β 5i, AT1R, ATRAP, p-p65, p65, TGF- β , Smad3, p-Smad2/3, ERK1/2, p-ERK1/2, Akt, and p-Akt protein levels in the retinas from WT mice locally injected with Ad- β 5i or Ad-GFP infused with saline or Ang II (3000 ng/kg/minute) or saline for 3 weeks (n = 4 per group). Data are presented as the mean \pm SEM. *P < 0.05, **P < 0.01, ***P < 0.001 vs. saline control or Ang II-infused WT or ad-GFP-injected WT mice.

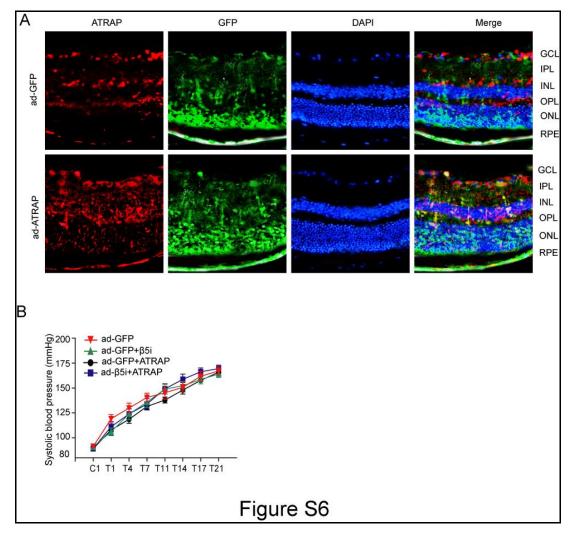


Figure S6. Effect of β5i and ATRAP overexpression on systolic blood pressure in mice. (A) WT mice were locally injected with Ad-GFP, Ad-β5i, or Ad-ATRAP at a dose of 1.2×10¹² pfu/ml and then infused with Ang II (3000 ng/kg/minute) for 3 weeks. Evaluation of GFP fluorescence and immunostaining of ATRAP expression were performed 3 days after second injection. Nuclei were counterstained with DAPI

(blue). Scale bar, 50 μ m. **(B)** Average systolic blood pressure (SBP) in WT mice injected with Ad-GFP, Ad-GFP+ β 5i, Ad-GFP+ATRAP and Ad- β 5i+ATRAP before (C) and after saline or Ang II treatment (T) period. C1: day 1 before saline or Ang II treatment, T1: day 1 after saline or Ang II treatment etc (n=10 per group). Data are the mean \pm SEM.

Supplemental Methods

Table S1. Sequence of the primers used in the quantitative real-time PCR assay

Gene	Forward Primer (5'-3')	Reverse Primer (5'-3')
β1i	CTGGAGCTACACGGGTTGGA	ATATACCTGTCCCCCCTCACATT
β2i	CAGCCGTCTGCCCTTTACTG	AGAGCCCAGGTCACTCAGGAT
β5i	CTTGGCACCATGTCTGGTTGT	CCGGTACTGCAGCATCATGT
β1	CCAATCGAGTGACTGACAAGCT	GGACTAGTGGAGGCTCGTTCA
β2	AGGCCAGATATGGAGGAGGAA	GGGCACTGAGAATGGACGAA
β5	TGCTCGCTAACATGGTGTATCAGTA	AGCCAGAGCCCACTGAGAAG
NOX1	CAGTTATTCATATCATTGCACACCTATTT	CAGAAGCGAGAGATCCATCCA
NOX4	GCACGCTGTTGATTTTATGG	GCGAGGCAGGAGAGTCAGTA
ph22phox	CTCCTCTCACCCTCACTCG	GTGGACTCCCATTGAGCCTA
IL-1β	CTTCCCCAGGGCATGTTAAG	ACCCTGAGCGACCTGTCTTG
IL-6	TTCCATCCAGTTGCCTTCTTG	TTGGGAGTGGTATCCTCTGTGA
ATRAP	CGTTGGAACTGGCGCAAC	ACCAGGAGAATAACCTGAGCG
GAPDH	GTGTTTCCTCGTCCCGTAGA	AATCTCCACTTTGCCACTGC