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Fig 1. Computational fitness map: Computational predictions of the quantitative gain or
loss in fitness of E. coli resulting from amino acid changes in β-lactamase when challenged with
2500 µg/ml concentration of ampicillin. The panel includes the training, validation and test
sets. In this specific case the training and validation sets add up to 85% of the mutational scan
data.

Fig 2. Distribution of predictions over the range of fitness: Quality of predictions when
the model was trained with 85% data is shown at different sections of the data. Distributions
were constructed by taking data which are 0.3 units wide (0.15 to -0.15, -1.15 to -0.85, -2.15 to
-1.85 and -3.15 to -2.85). The predictions made around fitness score 0 or predicted as neutral
are more reliable as the spread in the experimental data corresponding to these predictions is
lower.
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Fig 3. Results from training the model with systematically reduced data sets:
Fitness scores obtained computationally by training the models on decreasing sizes of data
sets. Training, validation and test sets for β-lactamase and APH(3′)-II are shown. The RMSD
and Pearson correlation for the test set for all proteins and for all scans are given in Table 1 in
S1 File.
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Fig 4. Hsp90 and MAPK1
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Fig 5. UBE2I and TPK1
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Fig 6. Insufficiency of alanine scan for training the model: The experimental fitness
data on substitution at every amino acid position of β-lactamase with alanine was used for
training the model. This strategy which only used 5% of the full mutational data for predicting
the fitness of all other 19 mutational scans did not give good predictions. We did not use
alanine scan for any further analysis.
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Fig 7. Results from training the model on mutations chosen with different strate-
gies: Fitness scores obtained computationally by training the models on 15% of data chosen
in different ways. The training, validation and test sets for β-lactamase and APH(3′)-II are
shown. The RMSD and Pearson correlation for the test set for all proteins and for all scans
are given in Table 1 in S1 File.
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Fig 8. Hsp90 and MAPK1
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Fig 9. UBE2I and TPK1
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Fig 10. Results from augmenting the data with transverse assay conditions: For
the same amino acid substitutions we included the fitness data obtained at different antibiotic
concentrations: 0, 10, 39, 156, 625 and 2500 µg/mL in the training set. Predictions for the
remaining 85% of the mutations that were not used in the training are shown and augmenting
do not improve the results.
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Fig 11. Feature selection: Predictions from models with reduced number of variables. (A)
Using the variables impact, average correlation, average commute time, contacts, BLOSUM and
hydrophobicity of mutant which were chosen based on the variable impact analysis (B) Using
variables chosen based on the pearson correlation between the input variables and fitness:
conservation, average correlation, average commute time, contacts, BLOSUM, SASA, PSSM
score for wild type amino acid (C) Using all 17 variables. The models with fewer variables
have comparable predictive abilities as that the one using all variables. The adjusted R2 values
for the test set are 0.74, and 0.74 and 0.78 respectively for A, B and C. The variables average
correlation, average commute time, contacts and Blosum are common in a and b.
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Fig 12. Prediction quality relative to the wild type amino acid: Predictions from
ANH were also analyzed by classifying them according to the wild type amino acid which gets
mutated. The analysis shows that there is variability in the predictability of substitution of
different amino acids such as asparagine (N) and tryptophan (W) having high prediction quality
and histidine (H) and glutamine (Q) relatively poor. The dashed red lines are guidelines with
slope 1.
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Fig 13. Quality of output relative to the substituted amino acid: Predictions from
ANH were analysed by classifying them according to the amino acid to which mutation is
performed. It can be seen that the predictability of all amino acids is comparable. However,
the predictions to alanine (A), asparagine (N), histidine (N) are notably better because of the
training set that was used. The dashed red lines are guidelines with slope 1.
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Fig 14. Distribution of error along SASA: Prediction error (Predicted fitness - exper-
imental fitness) for the test set of random 15% scan for β-lactamase as a function of solvent
exposure. The box plot shows the distribution of errors at different values of SASA. At higher
values of SASA, error is lower.
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Fig 15. Output quality versus input quality: Quality of data used in training defined as
the ratio of the range of mutational effect scores in the training set and the standard deviation
of the mode corresponding to the neutral substitutions with the prediction quality shown in
Pearson correlation between the predictions and measured fitness for the test set was used as
a measure of the quality of output. Quality of input vs and quality of output is compared
for (A) models developed for mutational effect scores measured for β-lactamase under different
concentrations of ampicillin (B) random scans performed for the six proteins. Comparison in
the same system has a trend, while no clean trend could be seen in the comparisons across
different protein and scans.
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Fig 16. Quality of predictions using different random scans: The quality of predic-
tions as seen from the Pearson correlation between predicted and experimental data in general
improve for all proteins. This improvement slows down beyond 50% data usage except for
TPK1.
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Fig 17. Distribution of error over the range of fitness: RMSD of test set calculated
across the range of experimental fitness for all the six proteins. The experimentally observed
fitness was divided into 10 bins in each of the cases and RMSD was quantified for each bin.
As it can be seen, errors are fairly systematic, which suggests that the RMSD relative to the
expected values is fairly a constant for several of the cases.
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Fig 18. Reduction of error with the increasing number of training points per bin:
RMSD of test set calculated for different ranges of the experimental fitness scores versus the
number of points in the training set in each bin. A power-law behavior emerges. It can also be
seen that having more than 100 points for training from a bin does not improve the predictions
significantly, which suggests an approximate 100×10 bins = 1000 data points for training.
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Fig 19. Comparing the results of randomly choosing from SNS versus randomly
choosing from all possible substitutions: Comparison of quality of predictions by models
generated by training on randomly selected variants from the complete data and randomly
selected mutations achievable through single nucleotide substitutions (SNS). 25% of data was
used for training and validation. The RMSD and Pearson correlation for the test set for both
scans and for all proteins are given in Table 1 in S1 File. It can be seen that the performance
of both models are comparable.
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Fig 20. Comparison of mutational effect score predictions from unsupervised meth-
ods with the experimental score: A comparison of how the scores from SNAP2 and Evo-
lutionary statistical energy relate to the experimentally observed fitness of E. coli arising from
β-lactamase mutations is shown in this figure. The scores are compared for the complete ex-
perimental data as well as by randomly selecting 15%, 50% of the data.
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Fig 21. Random scan is representative: Distribution of SASA for the complete data as
well as the training set of random 15% scan for β-lactamase. The distributions are similar
showing that the random choice of mutations is representative of the complete data set.
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Fig 22. Convergence of neural network model training and test: Results demonstrating
how the choice of number of hidden neurons was made for β-lactamase for the random 85%
scan. (A) For a given choice for the number of neurons in the hidden layer, 41 in this case,
mean square error calculated for the training set as well as the validation set as the iteration
proceeds. The quality of predictions for training data improves, and beyond the optimal number
of iterations, the error of predictions for the validation set increases. To avoid this problem of
overtraining early stopping criterion was used to terminate the iterations. When this worsening
consistently occurs for 100 iterations, the training is terminated. The iteration at which the
validation set has the lowest error is then chosen. (B) Similar calculation was repeated by
changing the number of neurons, and the R2 for training and validation was monitored as a
function of the number of neurons. The decision about the optimal number of neurons was
made considering the performance both in the training and the validation sets. In this case,
41 neurons in the hidden layer was considered optimal. (C) R2 value for test set, obtained
by performing the calculations at any given number of neurons is also shown. In this specific
case, this graph is used an a posteriori justification for our choice of 41 neurons in the hidden
layer. As it can be seen although with higher number of neurons the training and validation
may saturate, the test set can worsen, and attention needs to be paid to avoid this problem by
over training.
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