1 Supplementary Figures and Figure Legends

2

Supplementary Figure 1 | Accumulation and metabolism of ascr#18 in plants. (a-b) Accumulation of ascarosides in tomato (a) and wheat (b) roots treated with 10 and 50 nM ascr#18 for 24 h, respectively. Abundances of ascarosides are shown as the peak area, as measured in LC-MS. Data are averages \pm SEM (n = 4). (n.d. = not detected). Source data are provided as a source data file.

8

10

Supplementary Figure 2 | Confirmation of ascarosides identity in plants. LC-MS analysis of exudates from tomato roots mock treated or treated with 1 µM ascr#18 for 24 h and from *Caenorhabditis elegans*, showing extracted ion chromatograms [EIC] in ESI of ascr#18, ascr#10, ascr#1, and ascr#9. Peaks marked with an asterisk represent unrelated metabolites of similar m/z.

18

Supplementary Figure 3 | **LC-MS/MS analyses of** *Arabidopsis* **roots.** LC-MS/MS spectra of ascr#18 (**a**), ascr#10 (**b**), ascr#1 (**c**), and ascr#9 (**d**) in EST showing presence of diagnostic product ion at $m/z = 73.028 [C_3H_5O_2]^{-}$, which originates from the ascarylose unit of ascarosides. The method has been previously used for the detection of ascarosides in *C. elegans*¹.

- 23
- 24
- 25

28

Supplementary Figure 4 | Metabolism of naturally acquired ascr#18 by plants. (a-b) LC-MS analysis of *Arabidopsis* (a) and tomato (b) roots from plants grown in soil and treated with 50 nM and 1 μ M ascr#18 or treated with mock solution for 48 h. Abundances of ascarosides are shown as the peak area, as measured in LC-MS. Data are mean \pm SEM (n = 9 for *Arabidopsis* and n=3 for tomato). (c) LC-MS analysis of exudate of tomato plant roots naturally infested with plant parasitic nematodes (*M. incognita*). Abundances of ascarosides are shown as peak area, as measured in LC-MS.

Supplementary Figure 5 | LC-MS analyses of tomato leaves. LC-MS analysis of tissue of
tomato leaves infiltrated with 1 µM ascr#18; tissue was collected over a 12 h period.
Abundances of ascr#18 and ascr#9 are shown as the peak area, as measured in LC-MS. Source
data are provided as a source data file.

44

45 **Supplementary Figure 6** | **Transcript level of** *ACX1* **and** *ACX5*. RNAseq analysis of ten day-46 old *Arabidopsis* wildtype and *acx1 acx5* roots. TNA-Seq counts was normalized and plotted as 47 Transcripts per million (TPM). Data are mean \pm SEM (n = 5). two-tailed *t*-test. Source data are

- 48 provided as a source data file.
- 49

51 Supplementary Figure 7 | The abundance of ascarosides in *wt*, *acx1*, *and acx5 Arabidopsis*

52 plants. (a-b) LC-MS analysis of *wt*, *acx1*, and *acx5 Arabidopsis* roots treated with 250 nM (a)

and 1 μ M (b) of ascr#18 for 24 h. Abundances of ascarosides are shown as the peak area, as

54 measured in LC-MS. Data are mean \pm SEM (n = 3)

MYC2

wt

acx1 acx5

1

56 Supplementary Figure 8 | At a concentration of 50 nM, ascr#18 does not activate defense responses in Arabidopsis roots. Expression of defense-related genes in Arabidopsis roots 48 h 57 58 after treatment with 50 nM ascr#18. Transcript level of jasmonic acid signaling genes (PDF1.2, AOS, LOX2, MYC2 (Jasmonate insensitive 1), Vegetative storage protein 1, 2 (VSP1, VSP2), and 59 60 Tyrosine Aminotransferase (TAT)), salicylic acid signaling genes (PR-1 and PR-4), MAPK signaling related FRK1, transcription factor WRKY53 (involved in both JA and SA signaling), 61 62 ethylene signaling gene Ethylene sensitive 2 (EIN2) and absicic acid signaling gene Responsive to Dessication 26 (RD26) were determined by qRT-PCR. Data are mean \pm SEM (n \geq 4). two-63 tailed *t*-test. Source data are provided as a source data file. 64 65

67

Supplementary Figure 9 | The abundance of ascarosides in root exudates. (a) Relative 68 abundances of ascarosides in root exudates of ten-day old Arabidopsis acx1 acx5 mutant 69 70 seedlings treated with 10 nM ascr#18 for 6 h. Exudates from approximately 40 seedlings were 71 collected in distilled water for 1 h and pooled in one tube. Abundances of ascarosides are shown as the peak area, as measured in LC-MS. Data are average \pm SEM (n = 3), n.d. = not detected. 72 (b-c) Relative abundances of ascarosides in root exudates of eight-day old tomato seedlings 73 74 treated with 10 nM (b) or 1000 nM (c) ascr#18 for 6 h. Exudates from approximately 10 75 seedlings were collected in distilled water for 1 h and pooled in one tube. Abundances of ascarosides are shown as the peak area, as measured in LC-MS. Data are average \pm SEM (n = 3), 76 n.d. = not detected. (d) Relative abundances of ascr#10, ascr#1, and ascr#9 in the growth media 77 of eight-day old tomato seedlings supplemented with 1 µM ascr#18. Ten-gram media was 78 79 collected over a 48 h period for metabolome extraction. Abundances of ascarosides are shown as the peak area, as measured in LC-MS. Source data are provided as a source data file. 80

Primer Name	Sequence
AtPR-1 F	TCGTCTTTGTAGCTCTTGTAGGTG
AtPR-1 R	TAGATTCTCGTAATCTCAGCTCT
AtPDF1.2-F	TCATGGCTAAGTTTGCTTCC
AtPDF1.2-R	AATACACACGATTAGCACC
AtFRK1-fw	TGCAGCGCAAGGACTAGAG
AtFRK1-rv	ATCTTCGCTTGGAGCTTCTC
AtPHI-fw	TTGGTTTAGACGGGATGGTG
AtPHI-rv	ACTCCAGTACAAGCCGATCC
AtUBQ10-fw	GGCCTTGTATAATCCCTGATGAATAAG
AtUBQ10-rv	AAAGAGATAACAGGAACGGAAACATAG
AtPR4-F	CTGGACCGCCTTCTGCGGG
AtPR4-R	AGCCTCCGTTGCTGCATTGGT
AtAOS-F	TCTTCTCTCGCCACGTGC
AtAOS-R	GGTTATGAACTTGATGACCCGC
AtLOX2-F	TTGCTCGCCAGACACTTGC
AtLOX2-R	GGGATCACCATAAACGGCC
AtVSP1-F	ACTGGTCGTGGTTAGAGTCC
ATVSP1-R	CTCCAATATTCCCAACGATG
AtVSP2-F	TCCATCAACTACGCCAACT
AtVSP2-R	GGAGGGTATCATCTAGTACAA
AtMYC2-F	CTGGCAACCGTCGTATGATTTCT
AtMYC2-R	AACCATTCCGTATCCGTCACCTC
AtTAT-F	TGGCTCTAGGGGCAGAGAAT
AtTAT-R	CCTTGGAGATGGCATGACGA
AtWRKY53-F	TCACTTTTTCTGACCACTTTGG
AtWRKY53-R	AAGGAAGAGATATGTTAAGTTGGG
AtEIN2-F	GGTGTGCGTCTTATGGTCG
AtEIN2-R	AACTGCTCAAAGGGCTGTCTGG
AtRD26-F	TTATTGGAAAGCAACGGGTA
AtRD26-R	TCGTCAAGCTGTGATGAAGA
AtERF1-F	CTAATCGAGCAGTCCACGCAACA
AtERF1-R	GTCCCGAGCCAAACCCTAATACC
AtMPK3-F	ATGCGCTTATTGACAGAGTT
AtMPK3-R	TCAGAGCTTGTTCAACAGTG

81 Supplementary Table 1: Primers used in this study.