1 2

## 3 4

# Label-free impedance flow cytometry for nanotoxicity screening

- Melanie Ostermann<sup>1</sup>, melanie.ostermann@uib.no
- Alexander Sauter<sup>1,2</sup>, asauter@fhs.mil.no
- Ying Xue<sup>1</sup>, <u>ying.xue@uib.no</u>
- Eivind Birkeland<sup>1,3</sup>, <u>eiv.birk@gmail.com</u> Julia Schoelermann<sup>1,4</sup>, <u>julia schoelermann@gmail.com</u>
- Bodil Holst<sup>5</sup>, <u>bodil.holst@uib.no</u>
- \*Mihaela Roxana Cimpan<sup>1</sup>, <u>mihaela.cimpan@uib.no</u>
- 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

### \*Correspondence: mihaela.cimpan@uib.no

<sup>1</sup>Department of Clinical Dentistry, University of Bergen, Norway.

**Supplementary Information** 

- <sup>2</sup>Present address: Royal Norwegian Naval Academy, Bergen, Norway.
- <sup>3</sup>Present address: Institute for Biochemistry, ETH Zürich, Switzerland.
- <sup>4</sup>Present address: BerGenBio ASA, Bergen, Norway.
- <sup>5</sup>Department of Physics and Technology, University of Bergen, Norway.
- 23
- 24

- Table S1: Physicochemical properties of NMs in 0.05 % w/v BSA-water (stock
- 26 solution) and complete cell culture medium (exposure medium). Abbreviations:
- 27 DLS Dynamic Light Scattering, PDI Polydispersity index, ELS Electrophoretic
- 28 light scattering, TEM Transmission Electron Microscopy,  $\rho_{NM}$  Density of raw
- 29 NMs, SF Stacking Factor, and  $\rho_{EV}$  Effective density estimated by volumetric
- 30 centrifugation (measurements were performed at least in duplicates / triplicates).
- 31 <sup>a</sup> Measurement of particle clusters.

32 Table S2: Overview of physicochemical properties of NMs. Abbreviations: XRD -

- 33 X-ray Diffraction, EDS Energy-dispersive X-ray spectroscopy, TEM Transmission
- 34 Electron Microscopy, BET Brunauer–Emmett–Teller theory for specific surface
- 35 area, DLS Dynamic Light Scattering, ICP-OES Inductively Coupled Plasma
- 36 Optical Emission Spectrometry, PDI Polydispersity index, ISP isoelectric point,
- BSA Bovine serum albumin, PBS Phosphate-buffered saline, ppm parts per
- million. Data was collected from the following references: JRC reports  $^{21-24}$  and
- 39 NANoREG technical data sheets <sup>39–45</sup>.

Figure S1: Intensity-based size distributions. Individual repeats (n > 3) of NM
stock dispersions in 0.05 % w/v BSA-water. Each size spectra is the average of ten

42 individual DLS measurements ± SE conducted using automatic optimization. (a) NM-

43 100 (TiO<sub>2</sub>), (**b**) NM-101 (TiO<sub>2</sub>), (**c**) NM-200 (SiO<sub>2</sub>), (**d**) NM-203 (SiO<sub>2</sub>), (**e**) NM-110

44 (ZnO), (**f**) NM-111 (ZnO), (**g**) NM-300K (Ag), and (**h**) NM-302 (Ag-rods).

45 Figure S2: Transmission electron micrographs of NMs dispersed in 0.05 % w/v

46 **BSA-water.** Morphology of (a) NM-100 (TiO<sub>2</sub>), (b) NM-101 (TiO<sub>2</sub>), (c) NM-200 (SiO<sub>2</sub>),

- 47 (**d**) NM-203 (SiO<sub>2</sub>), (**e**) NM-110 (ZnO), (**f**) NM-111 (ZnO), (**g**) NM-300K (Ag), and (**h**)
- 48 NM-302 (Ag-rods) (scale bar: 200 nm).

49 Figure S4: Representative flow cytometry dot plots for Annexin-V eFluor450

50 and 7-AAD staining. To check for NM-induced interferences, 100 µg/mL NM-100

51 TiO<sub>2</sub> particles were added prior to treatment of U937 cells with TNF- $\alpha$  / CHX (positive

- 52 control for apoptosis) and to heating cells at 70°C for 30 min (positive control for
- necrosis). Annexin-V eFluor 450 and 7-AAD staining were used to detect apoptotic
- and necrotic cells. The addition of NM-100 prior to TNF-  $\alpha$  /CHX treated cells resulted
- 55 in an overestimation of viable (Annexin V- / 7-AAD-) cells as compared to cells
- 56 treated only with TNF-  $\alpha$  / CHX. The Annexin V- population increased when NM-100 57 were added prior to cell heating.
- 58 **Figure S5: Transmission electron micrographs of U937 cells. (a)** Viable (untreated) cells and **(b)** after TNF- $\alpha$  / CHX treatment. Scale bar = 10 µm. (TEM
- 60 image by CI Vamanu, published with permission).

| Sample                     | Mean hydrodynamic<br>diameter ± S.E. [nm] (DLS) | PDI ± S.E.        | Zeta potential ± S.E.<br>[mV] (ELS) | Mean particle size ± S.E.<br>[nm] (n>28) (TEM) | $\rho_{NM}~(g/cm^3)$ | SF    | $\rho_{EV} \pm S.E.$<br>(g/cm <sup>3</sup> ) |
|----------------------------|-------------------------------------------------|-------------------|-------------------------------------|------------------------------------------------|----------------------|-------|----------------------------------------------|
| NM-100 (TiO2)              |                                                 |                   |                                     |                                                |                      |       |                                              |
| 0.05 % w/v BSA-water       | $249.6 \pm 2.2$                                 | $0.169 \pm 0.003$ | $0.1 \pm 0.1$                       | $141 \pm 4$                                    |                      |       |                                              |
| (Supplier)                 | (230)                                           | (0.187)           |                                     |                                                |                      |       |                                              |
| DMEM/10% FBS, t 0 hrs      | $303.2 \pm 7.9$                                 | $0.166 \pm 0.020$ | $-9.5 \pm 0.1$                      |                                                |                      |       |                                              |
| DMEM/10% FBS, t 24 hrs     | $294.6\pm0.7$                                   | $0.148 \pm 0.023$ | $-9.5 \pm 0.1$                      |                                                | 4.23                 | 0.634 | $1.844\pm0.152$                              |
| NM-101 (TiO <sub>2</sub> ) |                                                 |                   |                                     |                                                |                      |       |                                              |
| 0.05 % w/v BSA-water       | $478.6 \pm 4.1$                                 | $0.334 \pm 0.008$ | $-2.2 \pm 0.3$                      | $71 \pm 4^{b}$                                 |                      |       |                                              |
| (Supplier)                 | (423)                                           | (0.275)           |                                     |                                                |                      |       |                                              |
| DMEM/10% FBS, t 0 hrs      | $522.3 \pm 14.3$                                | $0.364 \pm 0.015$ | $-9.7 \pm 0.2$                      |                                                |                      |       |                                              |
| DMEM/10% FBS, t 24 hrs     | $368.7 \pm 10.5$                                | $0.346 \pm 0.015$ | $-9.9 \pm 0.1$                      |                                                | 4.23                 | 0.634 | $1.554 \pm 0.041$                            |
| NM-110 (ZnO)               |                                                 |                   |                                     |                                                |                      |       |                                              |
| 0.05 % w/v BSA-water       | $233.9 \pm 0.6$                                 | $0.111 \pm 0.002$ | $-13.2 \pm 0.3$                     | $107 \pm 5$                                    |                      |       |                                              |
| (Supplier)                 | (233)                                           | (0.110)           |                                     |                                                |                      |       |                                              |
| DMEM/10% FBS, t 0 hrs      | $255.0 \pm 1.8$                                 | $0.123 \pm 0.013$ | $-11.7 \pm 0.9$                     |                                                |                      |       |                                              |
| DMEM/10% FBS, t 24 hrs     | $237.1 \pm 4.9$                                 | $0.129 \pm 0.001$ | $-10.3 \pm 0.3$                     |                                                | 5.61                 | 0.634 | 1.870 ±0.348                                 |
| NM-111 (ZnO)               |                                                 |                   |                                     |                                                |                      |       |                                              |
| 0.05 % w/v BSA-water       | $244.3 \pm 1.9$                                 | $0.127 \pm 0.004$ | $-12.1 \pm 0.3$                     | $80 \pm 7$                                     |                      |       |                                              |
| (Supplier)                 | (247)                                           | (0.125)           |                                     |                                                |                      |       |                                              |
| DMEM/10% FBS, t 0 hrs      | $237.2 \pm 1.6$                                 | $0.166 \pm 0.004$ | $-10.1 \pm 0.1$                     |                                                |                      |       |                                              |
| DMEM/10% FBS, t 24 hrs     | $238.9 \pm 3.4$                                 | $0.141 \pm 0.006$ | $-6.3 \pm 1.6$                      |                                                | 5.61                 | 0.634 | $1.661 \pm 0.063$                            |

Table S1 Physicochemical properties of NMs in 0.05 % w/v BSA-water (stock solution) and complete cell culture medium (exposure medium).

| NM-200 (SiO2)              |                   |                   |                 |                  |       |       |                   |
|----------------------------|-------------------|-------------------|-----------------|------------------|-------|-------|-------------------|
| 0.05 % w/v BSA-water       | $257.6 \pm 8.3$   | $0.458 \pm 0.017$ | $-33.1 \pm 2.1$ | $169 \pm 21^{a}$ |       |       |                   |
| (Supplier)                 | (253)             | (0.387)           |                 |                  |       |       |                   |
| DMEM/10% FBS, t 0 hrs      | $274.8 \pm 14.8$  | $0.466 \pm 0.045$ | $-7.9 \pm 0.6$  |                  |       |       |                   |
| DMEM/10% FBS, t 24 hrs     | $167.0 \pm 0.7$   | $0.588 \pm 0.025$ | $-8.3 \pm 0.7$  |                  | 2.65  | 0.634 | $1.231 \pm 0.011$ |
| NM-203 (SiO <sub>2</sub> ) |                   |                   |                 |                  |       |       |                   |
| 0.05 % w/v BSA-water       | $144.6 \pm 1.2$   | $0.205\pm0.010$   | $-39.2 \pm 1.4$ | $128 \pm 16^{a}$ |       |       |                   |
| (Supplier)                 | (145)             | (0.203)           |                 |                  |       |       |                   |
| DMEM/10% FBS, t 0 hrs      | $162.5\pm9.7$     | $0.326 \pm 0.001$ | $-8.1 \pm 0.1$  |                  |       |       |                   |
| DMEM/10% FBS, t 24 hrs     | N/A               | N/A               | $-7.2 \pm 0.3$  |                  | 2.65  | 0.634 | $1.097\pm0.008$   |
| NM-300K (Ag)               |                   |                   |                 |                  |       |       |                   |
| 0.05 % w/v BSA-water       | $79.8 \pm 0.2$    | $0.260\pm0.002$   | $-4.5 \pm 0.3$  | $19 \pm 0$       |       |       |                   |
| (Supplier)                 | (87)              | (0.259)           |                 |                  |       |       |                   |
| DMEM/10% FBS, t 0 hrs      | $110.6\pm6.9$     | $0.369 \pm 0.031$ | $-8.9 \pm 0.1$  |                  |       |       |                   |
| DMEM/10% FBS, t 24 hrs     | $108.4 \pm 3.2$   | $0.374 \pm 0.017$ | $-9.2 \pm 0.6$  |                  | 10.49 | 0.634 | $1.889 \pm 0.064$ |
| NM-302 (Ag-rod)            |                   |                   |                 |                  |       |       |                   |
| 0.05 % w/v BSA-water       | $878.9 \pm 88.9$  | $0.641 \pm 0.040$ | $-17.3 \pm 0.7$ | $804 \pm 104$    |       |       |                   |
| (Supplier)                 | (797)             | (0.527)           |                 |                  |       |       |                   |
| DMEM/10% FBS, t 0 hrs      | $1032.5 \pm 55.1$ | $0.682 \pm 0.017$ | $-8.4 \pm 0.9$  |                  |       |       |                   |
| DMEM/10% FBS, t 24 hrs     | N/A               | N/A               | $-9.5 \pm 0.2$  |                  | 10.49 | 0.634 | $1.966\pm0.095$   |

Measurements of the stock dispersion and NMs in complete cell culture medium were performed at least in triplicates and duplicates, respectively. Abbreviations: DLS – Dynamic Light Scattering, PDI – Polydispersity index, ELS – Electrophoretic light scattering, TEM – Transmission Electron Microscopy,  $\rho_{NM}$  – Density of raw NMs, SF – Stacking Factor, and  $\rho_{EV}$  – Effective density estimated by volumetric centrifugation.

<sup>a</sup> Measurement of particle clusters.

#### Table S2: Overview of physicochemical properties of NMs.

| Material<br>code | Material         | Polymorph<br>(XRD)                | Chemical composition<br>[wt%] (EDS)                                        | Primary particle size<br>± SD or size range<br>[nm] (TEM) | Morphology (TEM)                                                                                                      | BET [m²/g] | z-Average<br>[nm] and PDI<br>(DLS; 0.05%<br>BSA-water) | Zeta potential ± SD in<br>PBS [mV] and<br>isoelectric point (ISP)<br>[pH] |
|------------------|------------------|-----------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|------------|--------------------------------------------------------|---------------------------------------------------------------------------|
| NM-100           | TiO <sub>2</sub> | Anatase                           | Ti 58.57, O (calculated)<br>40.08; traces (ppm) of Si, P,<br>Al, K, Cr, Fe | 100 ± 57                                                  | Primary sub-units are equi-axed.<br>Aggregates/agglomerates are more fractal-like<br>with minor spheroidal particles. | 9 - 10     | z-Average: 230<br>PDI : 0.187                          | Zeta pot: -50 ± 10<br>ISP: N/A                                            |
| NM-101           | TiO <sub>2</sub> | Anatase                           | Ti 58.79, O (calculated)<br>40.35; traces (ppm) of Si, P,<br>Al, S         | 5.5 ± 0.7                                                 | Primary particles more or less euqi-axedor slightly elongated.                                                        | 234 - 316  | z-Average: 449<br>PDI: 0.315                           | Zeta pot: -33 ± 9<br>ISP: 6                                               |
| NM-110           | ZnO              | Hexagonal<br>zincite<br>structure | Zn 89.90, O 10.01; traces<br>(ppm) of Si, Al, Ca, Ni, Pb,<br>Co (ICP-OES)  | Population 1= 20 - 250<br>Population 2= 50 - 350          | Population 1 = hexagonal, Population 2 = cubic, tetragonal and orthorhombic.                                          | 12 -13     | z-Average: 233<br>PDI: 0.110                           | Zeta pot: -47 ± 9<br>ISP: N/A                                             |
| NM-111           | ZnO              | Hexagonal<br>zincite<br>structure | Zn 87.39, O 12.48; taces<br>(ppm) of Ni, Pb, Co, Si, Al,<br>Ca (ICP-OES)   | Population 1= 20 - 200<br>Population 2= 10 - 450          | Polyhedral with variable morphologies:<br>hexagonal, cubic, tetragonal, and<br>orthorhombic.                          | 15-16      | z-Average: 247<br>PDI: 0.125                           | Zeta pot: -39 ± 6<br>ISP: N/A                                             |
| NM-200           | SiO <sub>2</sub> | Synthetic<br>amorphous<br>silica  | Si 44.77,O 53.02; traces<br>(ppm) of Fe, K, Mg, Zr, Al,<br>Na, S (ICP-OES) | 14 ± 7                                                    | Sub-units are equi-axed and rounded or slightly elongated (sphericity 0.39).                                          | 189        | z-Average: 253<br>PDI: 0.387                           | Zeta pot: -48 (milliQ<br>water, pH 7)<br>ISP: < 2                         |
| NM-203           | SiO <sub>2</sub> | Synthetic<br>amorphous<br>silica  | Si 46.32, O 53.21; traces<br>(ppm) of Al, S                                | 13 ± 6                                                    | Sub-units are equi-axed and rounded or slightly elongated (sphericity 0.35).                                          | 204        | z-Average: 145<br>PDI: 0.203                           | Zeta pot: -46 (milliQ<br>water, pH 6.6)<br>ISP: < 2                       |
| NM-<br>300K      | Ag               | Metallic                          | Ag 99.84, O 0.16                                                           | Majority around 20                                        | Majority is round shaped; others are triangular or trapezium-like.                                                    | N/A        | z-Average: 87<br>PDI: 0.259                            | Zeta pot: -11 ± 3<br>(ultrapure water)<br>ISP: N/A                        |
| NM-302           | Ag               | Metallic                          | Ag 100 (EDS)                                                               | Width: 183 ± 80<br>Length: 2700 ± 2200                    | Fibres, acicular.                                                                                                     | N/A        | z-Average: 665<br>PDI: 0.539                           | N/A                                                                       |

Abbreviations: XRD - X-ray Diffraction, EDS - Energy-dispersive X-ray spectroscopy, TEM - Transmission Electron Microscopy, BET - Brunauer–Emmett–Teller theory for specific surface area, DLS - Dynamic Light Scattering, ICP-OES - Inductively Coupled Plasma Optical Emission Spectrometry, PDI – Polydispersity index, ISP – isoelectric point, BSA – Bovine serum albumin, PBS – Phosphate-buffered saline, ppm – parts per million. Data was collected from the following references: JRC reports [21]–[24] and NANOREG technical data sheets [39–45]. [39] National Research Centre for the Working Environment. Technical data sheet – Material code: NM-101. http://www.nanoreg-materials.eu/Documentation/NM-101\_NRG-TDS\_08.05.15.pdf. [40] National Research Centre for the Working Environment. Technical data sheet – Material code: NM-110. http://www.nanoreg-materials.eu/Documentation/ NM-110\_NRG-TDS\_08.05.14.pdf. [41] National Research Centre for the Working Environment. Technical data sheet – Material code: NM-101\_NRG-TDS\_08.05.14.pdf. [42] National Research Centre for the Working Environment. Technical data sheet – Material code: NM-200\_NRG-TDS\_08.05.15.pdf. [43] National Research Centre for the Working Environment. Technical data sheet – Material code: NM-200\_NRG-TDS\_08.05.15.pdf. [43] National Research Centre for the Working Environment. Technical data sheet – Material code: NM-203\_NRG-TDS\_08.05.15.pdf. [44] National Research Centre for the Working Environment. Technical data sheet – Material code: NM-203\_NRG-TDS\_08.05.15.pdf. [44] National Research Centre for the Working Environment. Technical data sheet – Material code: NM-300K\_NRG-TDS\_02.02.15.pdf. [45] National Research Centre for the Working Environment. Technical data sheet – Material code: NM-302\_NRG-TDS\_02.02.15.pdf.



**Figure S1: Intensity-based size distributions.** Individual repeats (n > 3) of NM stock dispersions in 0.05 % w/v BSA-water. Each size spectra is the average of ten individual DLS measurements ± SE conducted using automatic optimization. (a) NM-100 (TiO2), (b) NM-101 (TiO2), (c) NM-200 (SiO2), (d) NM-203 (SiO2), (e) NM-110 (ZnO), (f) NM-111 (ZnO), (g) NM-300K (Ag), and (h) NM-302 (Ag-rods).



Figure S2: Transmission electron micrographs of NMs dispersed in 0.05 % w/v BSA-water. Morphology of (a) NM-100 (TiO2), (b) NM-101 (TiO2), (c) NM-200 (SiO2), (d) NM-203 (SiO2), (e) NM-110 (ZnO), (f) NM-111 (ZnO), (g) NM-300K (Ag), and (h) NM-302 (Ag-rods) (scale bar: 200 nm).



**Figure S3: Impedance measurements of U937 cells using different sucrose-buffer concentrations and various frequencies.** Imaginary (y-axis) and real part of impedance (x-axis) for the peak position (Gaussian approximation centre) were used to determine the sucrose-buffer concentration allowing an optimal differentiation of viable and necrotic cells for a given frequency. Buffer concentrations with ratio 2:3 (PBS : 0.28 M sucrose solution) and higher allows a separation of the two populations with increasing separation in the peak position. At 100% sucrose solution, artefacts appeared.



### Figure S4: Representative flow cytometry dot plots for Annexin-V eFluor450 and 7-AAD staining.

To check for NM-induced interferences, 100  $\mu$ g/mL NM-100 TiO2 particles were added prior to treatment of U937 cells with TNF- $\alpha$  / CHX (positive control for apoptosis) and to heating cells at 70°C for 30 min (positive control for necrosis). Annexin-V eFluor 450 and 7-AAD staining were used to detect apoptotic and necrotic cells. The addition of NM-100 prior to TNF-  $\alpha$  /CHX treated cells resulted in an overestimation of viable (Annexin V- / 7-AAD-) cells as compared to cells treated only with TNF-  $\alpha$  / CHX. The Annexin V- population increased when NM-100 were added prior to cell heating.



**Figure S5: Transmission electron micrographs of U937 cells.** (a) Viable (untreated) cells and (b) after TNF- $\alpha$  / CHX treatment. Scale bar 10  $\mu$ m. (TEM image by CI Vamanu, published with permission).