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Online Methods 

Theoretical TFBS abundance 

We estimated the abundance of TFBSs in random DNA by analyzing the information 

contents (ICs) of known motifs associated with yeast TFs
18

. The IC of a motif (ICmotif ) is 

proportional to the frequency (fmotif) with which that motif is expected to be found on 

either strand of random DNA with the following relationship, where ICmotif is expressed 

in bits:  

𝑓𝑚𝑜𝑡𝑖𝑓 = 2−(𝐼𝐶𝑚𝑜𝑡𝑖𝑓−1) 

The number of instances present in a library of a given TFBS motif, assuming that 

binding sites are independent, is the number of positions in the library that could 

potentially contain a complete binding site multiplied by the expected frequency of the 

TFBS motif. For a library with a complexity of 10
7
, comprised of 80 bp sequences, the 

number of possible TFBSs is (80 – lengthmotif + 1) * 10
7
.  

For Fig. 1a, we used the average motif length as the lengthmotif for all motifs so that the x 

axis could include frequency and the expected number of binding sites. For this analysis, 

motifs for zinc cluster monomers were excluded, since these are abundant in the 

database
18

 and are likely to represent only a half TFBS. Several TFBS motifs that are 

long, but generally have low IC content, were also excluded since they are unlikely to 

represent true TF specificities. The motifs used in this analysis are summarized in 

Supplementary Table 1. 
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Promoter library construction  

For pTpA and Abf1TATA libraries, a single-stranded oligonucleotide pool was ordered 

from IDT containing the random 80 bp oligonucleotide flanked by arms complementary 

to the promoter scaffold for use with Gibson assembly
51

. These oligonucleotides were 

double stranded with a complementary primer sequence and Phusion polymerase master 

mix (NEB), gel purified and cloned into the dual reporter vector, ensuring a complexity 

of at least 10
8
 for each library for libraries for which we measured expression, and 10

5
 for 

libraries for which we only inspected the overall expression distribution (Fig. 1c and 

Supplementary Fig. 1a). The dual reporter vector yeast_DualReporter (AddGene: 

127546) was modified from Sharon et al
7
 to fix a mutation in the YFP ORF, and to 

include a multiple cloning site in the YFP promoter, facilitating promoter scaffold 

cloning and library construction. 

The two promoter scaffold sequences used for GPRA were:  

For pTpA: 

(poly-T; distal) 

GCTAGCAGGAATGATGCAAAAGGTTCCCGATTCGAACTGCATTTTTTTCACAT

C  

(poly-A; proximal) 

GGTTACGGCTGTTTCTTAATTAAAAAAAGATAGAAAACATTAGGAGTGTAAC

ACAAGACTTTCGGATCCTGAGCAGGCAAGATAAACGA (up to the theoretical 

TSS).   

For Abf1TATA:  
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(Abf1 site; distal) 

GCTAGCTGATTATGGTAACTCTATCGGACTTGAGGGATCACATTTCACGCAGT

ATAGTTC  

(TATA-box; proximal) 

GGTTTATTGTTTATAAAAATTAGTTTAAACTGTTGTATATTTTTTCATCTAACG

GAACAATAGTAGGTTACGCTAGTTTGGATCCTGAGCAGGCAAGATAAACGA. 

In both cases, 80 Ns were inserted in between distal and proximal regions.  

We restricted the randomized region to 80 bp because an 80 bp window is short enough 

that a bound nucleosome would likely cover the entire region, simplifying modeling of 

accessibility, and because the entire region could be sequenced with a 150 cycle kit, with 

overlap in the middle, which is necessary because the promoter sequence is unknown 

until we sequence it. We inserted the N80 oligonucleotide into a region corresponding to 

~ (-170):(-90) bp relative to the TSS because this is where most TFBSs lie
52

, and because 

randomizing the region more proximal to the TSS might alter TSS location and 

translation of the YFP reporter.  

For the scaffold library (sequences in Supplementary Table 2), the library was cloned in 

two stages. In the first, the promoter scaffolds (synthesized by microarray synthesis) were 

amplified and cloned using Gibson Assembly. The resulting library had a common 

restriction site into which the N80 was cloned by ligation. 
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Reporter assay 

Libraries were transformed into yeast (strain Y8205
53

) using the lithium acetate method
54

, 

starting with 1L of yeast harvested at an OD of 0.3-0.4, ensuring at least 10
8
 cells were 

transformed (with the exception of the high-quality pTpA library, where a dilution series 

was performed to achieve the desired lower complexity). The yeast were then grown in 

SC-Ura for two days, diluting the media by 1:4 three times during this period. Media was 

then either changed to YPD, growing for at least 5 generations prior to cell sorting, or to 

YPGly and YPGal, with culture grown for at least 8 generations (due to the different 

carbon source). In the final 10 hours of growth prior to cell sorting, all cultures were 

allowed to grow continuously in log phase, never achieving an OD above 0.6, by diluting 

in fresh media.  All cultures were grown in a shaker incubator, at 30C and 

approximately 250 RPM.  

Prior to sorting, yeast were spun down, washed once in ice-cold PBS, and then suspended 

in ice-cold PBS and kept on ice until cell sorting. Cells were sorted by log2(RFP/YFP) 

signal (using mCherry and GFP absorption/emission) on a Beckman-Coulter MoFlo 

Astrios, using the constitutive RFP under pTEF2 regulation to control for extrinsic noise. 

Cells were sorted into 18 uniform bins, done in three batches of six bins each, with the 

exception of the scaffold library, which was sorted into non-uniform bins to account for 

the higher variance at low expression levels and the larger dynamic range of the library. 

The FACS configuration varied between experiments (e.g., different laser intensities), 

resulting in different baseline expression values. Post sort, cells were spun down and 

resuspended in SC-Ura (supplemented with 1% Gal for Gal sort), grown for 2-3 days, 

shaking at 30C. The plasmids were then isolated, the promoter region amplified, Nextera 
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adaptors and multiplexing indices added, and the resulting libraries sequenced with 2 x 

76 bp, paired-end reads, using 150 cycle kits on an Illumina NextSeq sequencer, 

achieving complete coverage of the promoter, including overlap in the center. Libraries 

were not sequenced to saturation. For example, the pTpA+glucose experiment was 

sequenced with 155 million reads, yielding 31 million promoter sequences, but doubling 

the number of reads is projected
55

 to only have yielded a further 8.5 million promoter 

sequences (30%; Supplementary Fig. 3). 

 

Promoter sequence consolidation and expression level estimation 

The paired end reads representing both sides of the promoter sequence were aligned 

using the overlapping sequence in the middle, constrained to have 40 (+/-15) bp of 

overlap for pTpA and Abf1TATA libraries and 16 (+/-10) bp for the scaffold library, and 

discarding any reads that failed to align well within these constraints. Note that only 

~0.3g of N80 DNA was received from IDT, and only ~10
8
 of these were successfully 

cloned; these are only a vanishingly small portion of the possible 4
80

 sequences in N80 

(which would weigh ~10
26

 kg even with just one copy of each possible molecule). Thus, 

any very similar sequences we observe represent the same source promoter with high 

probability, with minor differences likely corresponding to PCR or sequencing errors. To 

collapse related promoters into a single representative sequence, we aligned the 

sequences observed in each library to themselves using Bowtie2 (version 2.2.1)
56

, 

creating a Bowtie database containing all unique sequences observed in the experiment 

(default parameters), and aligning these same sequences, allowing for multimapping 

reads (parameters included “–N 1 -L 18 -a -f --no-sq --no-head -5 <N5> -3 <N3>”, where 
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<N5> and <N3> are the lengths constant termini of the sequences, excluded from the 

alignment (e.g. “-5 17 –3 13” for pTpA)). Any sequences that align to each other were 

assigned to the same cluster. Sequences within each cluster were merged, using the 

sequence with the most reads as the “true” promoter sequence for each cluster. We note 

that it is impossible to guarantee that the data within an experiment contains no related 

sequences; this is addressed by using an independently-created high-quality experiment 

as test data. 

Expression levels for each promoter sequence were estimated as the weighted average of 

bins in which the promoter was observed. For those observed only once, the expression 

level was the center of the observed bin. Although the high-quality pTpA+glucose dataset 

theoretically had ~100,000 promoter sequences in it, we restricted our analysis to only 

those ~10,000 promoter sequences that had sufficient coverage (>100 reads each). 

 

Estimating the proportion of active random promoter sequences 

We also created a library of scaffolds that included 3,811 scaffolds that were random but 

for the restriction site required to ligate in a random 80 mer, and the proximal 50 bp was 

ensured to be free of ATGs (to avoid out-of-frame reporter translation). Each scaffold 

included fixed distal and proximal promoter regions (-298:-195 and –103:-33, relative to 

the theoretical TSS, respectively) surrounding a variable 80 bp random oligonucleotide (-

189:-109 regions).  Each random scaffold was tested with ~660 random 80-mers, yielding 

approximately 2.5x10
6
 distinct random promoter sequences total. This scaffold library 

was sequenced with a 300 cycle kit using a 190 bp read 1 and 112 bp read 2. 
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Promoter sequences were first clustered into those sharing a common scaffold, using 

Bowtie2 to align to the known scaffold sequences (using the following parameters: -L 18 

-p 4 -f --no-sq --no-head --np 0 --n-ceil C,100). Promoter sequences were then sub-

clustered within each scaffold using the sequences of the random 80-mers using CD-HIT 

(version 4.6.5, using the following parameters: -g 1 -p 1 -r 0 -c 0.96 -uS 0.05 -uL 0.05 -

mismatch -1) 
57

, yielding a single consensus sequence for each promoter. 

We estimated the proportion of random promoter sequences that were expressed at 

detectable levels using the empirical log(YFP/RFP) distributions of regrown, previously-

sorted, cells (as in Fig. 2b). We considered any bin above the lowest expression bin to be 

“expressed”, but since some cells might end up in this lowest expression bin upon re-

sorting, we attempted to estimate the number of cells that would remain expressed upon 

resorting. AUROC statistics were calculated to estimate how well the cells sorted into 

each bin can be distinguished from those sorted into the not-expressed bin. Here, each 

AUROC is equivalent to the probability that a cell sorted into the corresponding 

expressing bin is expressed higher than a randomly selected cell from the not-expressed 

bin. Thus, cell proportions in expressing bins were weighted by the corresponding 

AUROC for that bin to get an estimate of the number of expressing random promoters, 

83%.  

 

Testing native yeast promoters by GPRA 

To test native yeast promoters in the GPRA system, the promoter sequences from the 

S288C reference genome (v64; TSS coordinates given in Supplementary Table 3) were 

segmented into 80 bp fragments (from the TSS to -480), overlapping by 40 bp, for a total 
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of 11 fragments per promoter and 62,897 promoter fragments overall. We also included 

8,027 random promoter sequences originally assayed within the high-quality pTpA N80 

glucose experiment for use as controls (these were excluded from analyses evaluating 

model performance on native promoter sequences). The sequences were created by 

pooled oligonucleotide synthesis (Twist Biosciences), including ends complementary to 

the pTpA scaffold. The fragments were amplified by PCR and cloned into the pTpA 

vector by Gibson assembly. The resulting library was transformed into yeast (S288C 

ura3Δ) and assayed as described above, with two replicates. We combined the two 

replicates, which showed some non-linearities resulting from differences in FACS 

binning procedures, using loess regression (span=0.1) to remove the non-linear 

relationship between one replicate and the average of the two replicates. After combining 

the replicates, the Pearson r
2
 between expression measurements in the combined 

replicates and the expression values originally measured for the high-quality random 

promoter sequences (from the high-quality pTpA N80 glucose experiment) was 0.977.  

 

Linear transcription model 

TF motifs (Supplementary Table 1) were taken from the YeTFaSCo database
18

 and 

supplemented with the poly-A motif (AAAAA), which we initialized to 100% A at all 

five positions. Motifs were trimmed to fill 25 bp 1-d convolutional filters, centering the 

motif if it was less than 25 bp, and, where motifs were longer than 25 bp, trimming off 

the least informative bases until it was 25 bp.   

To identify dissociation constants, Kd, for each TFBS motif and each potential binding 

site instance, motif filters were applied to DNA sequences of each promoter (DNAp) and 
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their reverse complements by scanning them with the TFBS motif position weight matrix 

for each yeast TF (PWM). Binding to each site in the DNA was determined by the 

GOMER method using a fixed TF concentration (Cx) that corresponds to the minimum Kd 

possible with the motif (and therefore a perfect match corresponds to 50% occupancy)
21

. 

We considered all TFBSs, such that weak sites can also be influential, creating an affinity 

landscape for each TF across the region
58

, and summed the predicted occupancy at each 

site, to obtain the expected occupancy for each TF of each sequence. 

The expected binding (sum of all binding to all binding sites; DBpx), assuming Michaelis-

Menten equilibrium binding occupancies for all possible binding sites (position i, strand 

s) for TF x in promoter p, where Kds for each binding site are calculated from the position 

weight matrix: 

  𝐷𝐵𝑝𝑥 = ∑
1

1+ 
𝐾𝑑𝑝𝑥𝑠𝑖

𝐶𝑥

strand 𝑠
position 𝑖

 

Correlations between predicted occupancy for each individual TF and expression level 

were done using these values (DBpx). We optimized a single “activity” weight for each 

TF (Ax), representing the ability of that TF to activate or repress transcription, as well as a 

constant (c1).  

𝐸𝐿𝑝 = 𝑐1 + ∑ 𝐷𝐵𝑝𝑥𝐴𝑥

TF 𝑥

 

This model was implemented in Tensorflow, as described for the other models below, but 

without a regularization term.  
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Billboard model of transcription 

The billboard model includes parameters for TF concentration (Cx), TF activity (Ax), TF 

potentiation (Px), and TF activity limits (ALx). Motifs were trimmed, as before, but filling 

25 bp 1-d convolutional filters. As described above, we use these filters, the DNA 

sequence of each promoter (DNAp), and the (now learned) TF concentration parameter to 

gain an initial estimate for DNA binding in the absence of chromatin (DBpx). 

Some TFs can displace nucleosomes, so the model learns TF-specific parameters that 

capture the ability of each TF to modulate the binding of other TFs (Px), which we 

assume is primarily driven by chromatin opening. Promoter accessibility is estimated as a 

logistic function on the potentiation-weighted DBpx estimates (including a constant cp), 

yielding a probability of the DNA being accessible (Ωp):  

 Ω𝑝 =
1

1+ 𝑒
(𝑐𝑝+∑ 𝐷𝐵𝑝𝑥𝑃𝑥

TF 𝑥  

Since nucleosomes can potentially prevent TF binding
25

, the previous estimate of binding 

(DBpx) is then scaled with this value, yielding the expected binding of each TF to each 

promoter in the context of chromatin (CBpx): 

𝐶𝐵𝑝𝑥 = 𝐷𝐵𝑝𝑥 × Ω𝑝 

Because our promoters are small, we can reasonably assume that a TF that opens 

chromatin would open it for the entire 80 bp variable region: if the promoter is open, all 

TFs can bind unimpeded; if the promoter is closed, no TFs can bind. For example, a 

promoter that is predicted to be 0% accessible will have no TF binding, regardless of the 

TFBSs present in the sequence (CBpx = 0 for all TFs x), while a promoter that is 100% 

accessible will have occupancy unchanged (DBpx = CBpx). Thus, the model learns which 
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TFs may, for example, open and close chromatin by their ability to potentiate the activity 

of other TFs (i.e., TFBSs for TFs that affect transcription, but cannot open chromatin, 

only have an effect when “potentiated” by another factor, presumably by opening 

chromatin and allowing binding).  

Finally, the predicted expression level (ELp) is the sum of binding values for each TF x, 

weighted by their learned effect on expression (Ax), including a constant ce, similar to the 

linear model described above:  

𝐸𝐿𝑝 = 𝑐𝑒 + ∑ 𝐶𝐵𝑝𝑥
TF 𝑥 𝐴𝑥 

Here, the measured and predicted expression levels are in log space, corresponding to the 

log-space bins of YFP/RFP. One possible interpretation of the formulation above is that 

TF activities are proportional to how much the TF affects the zero-order rate constants for 

different steps of mRNA production, which would be multiplicative in linear space or 

additive (as above) in log space. 

When activity limits for TFs (ALx) were included as a learned parameter, the expression 

level was instead calculated as follows, putting an upper limit on TF activity: 

  𝐸𝐿𝑝 = 𝑐𝑒 +  ∑ {
min(𝐶𝐵𝑝𝑥𝐴𝑥, 𝐴𝐿𝑥) , if 𝐶𝐵𝑝𝑥𝐴𝑥 ≥ 0

max(𝐶𝐵𝑝𝑥𝐴𝑥, 𝐴𝐿𝑥) , otherwise
TF 𝑥  

Position-specific activity model 

Position-specific activity models (Supplementary Fig. 9) were built as an extension of 

the billboard model that included activity limits. Here, each potential TFBS position was 

allowed its own (learned) activity parameter. Position-specific TF binding in chromatin 

was estimated similarly to before, but accounting for the strand (s) and binding position 
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(i) of each TF (x) to each promoter (p), again, weighted by the estimated accessibility of 

the DNA (Ωp; calculated as before): 

 𝐶𝐵𝑝𝑥𝑠𝑖 = 𝐵𝑆𝑝𝑥𝑠𝑖 × Ω𝑝 

The activity contribution of each TF on each promoter (ACpx) was estimated using the 

position-specific activity parameters (Axsi), which were implemented as a local scale of 

the overall TF activity (Ax) learned previously: 

𝐴𝐶𝑝𝑥 =  ∑ 𝐶𝐵𝑝𝑥𝑠𝑖𝐴𝑥𝑠𝑖

strand 𝑠
position 𝑖

 

We then re-implement the binding limits as follows: 

𝐸𝐿𝑝 = 𝑐𝑎 + ∑ {
min(𝐴𝐶𝑝𝑥, 𝐴𝐿𝑥), if 𝐴𝐶𝑝𝑥 ≥ 0 

max(𝐴𝐶𝑝𝑥, 𝐴𝐿𝑥) , otherwise

TF 𝑥

 

 

Model learning 

Parameters were learned iteratively, first learning TF activity and potentiation, then TF 

concentration, then allowing the motifs themselves to be changed, then including a 

parameter that limited the maximum activity of each TF, and finally learning position-

specific activity parameters, each time, learning the new parameters and updating those 

previously included with a single pass through the data.  

Transcriptional models were implemented in Tensorflow
59

, minimizing the mean squared 

error between predicted and measured expression level using the AdamOptimizer and 

learning in batches of 1,024 promoter sequences. In all cases (except the linear model 
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above), potentiation and activity parameters were regularized with an L1 penalty 

(0.00001), motifs were regularized with an L2 penalty (0.000001), and position-specific 

activity biases (when present) were regularized with an L2 penalty (0.00001) on the 

difference between adjacent (by location l) activity biases. Learning rate was set to 0.04 

for the epoch learning activity and potentiation parameters, 0.01 when also learning 

concentration, and 0.001 when also learning motifs, activity limits, and position-specific 

activities. The model learning motifs de novo (on pTpA+glucose data) was initialized 

with 1,000 random motifs (PWM values normally distributed about mean=0, SD=1) of 

width 30 bp, potentiations and activities were initialized to 0.01, learning rate was set to 

0.001, and the model was trained on 10 epochs of the training data. In addition to the 

canonical GRFs, this model also identified the Cbf1 motif as a potentiating motif, 

consistent with previous descriptions
60

. All learned parameters are included in 

Supplementary Table 4. 

 

Applying models to native sequences 

Since the models above were designed to operate on relatively short sequences (~110 bp), 

scanning the yeast genome (R64) was done in tiling windows of 110 bp each, spaced at 1 

bp intervals, yielding expression and accessibility predictions for nearly all bases in the 

genome.  

To compare to chromatin organization in native promoters, the accessibility predictions 

were averaged across all yeast promoter sequences to yield a metagene plot, as was done 

for DNase
27

 and nucleosome occupancy
26

 data.  



 14 

Predictions on the 80 bp fragments of native promoters tested in the pTpA scaffold were 

done as with other pTpA-scaffold model predictions. 

 

Comparing refined and original motifs 

The original and model-refined motifs were evaluated for their ability to predict 

independent ChIP binding and TF mutant gene expression data. The GOMER method
21

 

was used to get a predicted binding occupancy of each sequence for the original and 

model-refined motifs. For ChIP data
45

, ChIP-chip probes were scanned with the motifs, 

and their ability to predict ChIP binding for the corresponding TF was evaluated. For TF 

perturbation experiments
18,46

 promoter sequences were scanned with motifs, and their 

ability to predict expression changes when the cognate TF is perturbed (mutated, over-

expressed, or deleted) was evaluated. In both cases, there were often multiple 

experiments for the same TF. We repeatedly sampled the data from each experiment 

(50% of the data sampled randomly 100 times, without replacement), and with each 

sample calculated the Pearson correlation coefficient between motif-predicted binding 

and biological measurement (gene expression, ChIP intensity) for both model-refined and 

original motifs. If the model-refined motif had a Pearson r
2
 greater than the original in at 

least 95% of samples, we considered the experiment to be predicted better by the refined 

motif. Conversely, if the original motif was better in at least 95% of samples, the 

experiment was considered to be predicted worse by the refined motif. A model-refined 

motif was considered to be better than the original if at least one experiment was 

predicted better and no experiment was predicted worse, while it was considered worse if 

at least one experiment was predicted worse and no experiment was predicted better. In 
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all other cases, the motifs were considered equal. Motifs that were regularized out of the 

model (i.e. became neutral PWMs) were not considered in this analysis.  

 

Classifying TFs into activators and repressors by GO annotation 

GO terms for yeast genes were downloaded from SGD
61

 on Jan. 14, 2017. TFs annotated 

with a term containing any of "positive regulation of transcription", "transcriptional 

activator", "activating transcription factor binding", or "positive regulation of RNA 

polymerase II" were labeled as activators. TFs annotated with "negative regulation of 

transcription", "transcriptional repressor", "repressing transcription factor binding", or 

"negative regulation of RNA polymerase II" were labeled as repressors. Any annotated as 

both or neither were ignored for the purposes of testing for enrichment.  

The models predicted that most TFs opened rather than closed chromatin (i.e., had 

positive potentiation scores; 64-66%) and most were predicted activators rather than 

repressors (53-55%), although most TFs in all four experiments were predicted to have 

little activity, consistent with many TFs being inactive in rich media
62

. 

 

Promoter library MNase-Seq  

Aliquots of the pTpA library, expected to correspond to ~100,000 (sample A) or 

~200,000 (sample B) viable cells were each cultured in duplicate (Rep 1 and 2) in YPD 

for ~16 hours to an OD of ~0.4-1.0. For each sample, 0.5 mL of culture was pelleted and 

frozen to prepare input genomic DNA, and 3 mL of culture was crosslinked with 1% 

formaldehyde, washed twice with 1mL H2O supplemented with a protease inhibitor 
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cocktail, and the pellet frozen for MNase treatment. These pellets were next 

spheroplasted using zymolyase, and spheroplasts were lysed in NP buffer (10 mM Tris 

pH 7.4, 50 mM NaCl, 5 mM MgCl2, 1 mM CaCl2, and 0.075% NP-40, freshly 

supplemented with 1 mM β-mercaptoethanol, 500 μM spermidine, and EDTA-free 

protease inhibitor cocktail) at a concentration of 2 x 10
6
 cells/l of NP buffer. 0.125 

units of Worthington MNase were added per 10l of lysed spheroplasts and MNase 

digestion was performed at 37C for 20 minutes. MNase digestion was stopped by 

addition of equal volume of 2X MNase Stop Buffer (220 mM NaCl, 0.2% SDS, 0.2% 

sodium deoxycholate, 10 mM EDTA, 2% Triton X-100, EDTA-free protease inhibitor 

cocktail). MNased chromatin samples were treated with RNase A and proteinase K, 

reverse cross linked, separated on a 4% agarose gel and mononucleosome bands were 

isolated. Genomic DNA was prepared using the Masterpure Yeast Genomic DNA 

Preparation Kit (Epicenter). For both MNase and genomic DNA, the variable region of 

the promoter library was amplified, and adaptors added for sequencing using an Illumina 

NextSeq with 76 bp single-end reads.  

 

Sequencing reads were mapped to all known promoters in any pTpA library using 

Bowtie2
56

. Only promoter sequences with at least 20 reads in the input DNA and 1 read 

in the MNase data were kept for subsequent analysis. Input and MNase counts were 

scaled within each sample to yield counts per million (CPM) per promoter sequence and 

the log ratio of MNase to input was compared between replicates and to the model’s 

predicted occupancy, corresponding to log(1-predicted accessibility). To combine MNase 

replicates, the log ratio of MNase to input was averaged for promoter sequences present 
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in both samples – those in only one sample were ignored. Similarly, pairwise correlations 

between samples in Fig. 3a reflect only the promoter sequences common to both 

samples, and all promoter sequences within the sample when comparing to the model’s 

predictions. Spearman’s rho was used to compare to model predictions, which is rank-

invariant (unaffected by log-transformation). 

 

Position and orientation-specific TF activities 

In order to identify the approximate fraction of TFs displaying a 10.5 bp helical activity 

bias, the position-specific activities across the variable promoter region were compared to 

a 10.5 bp sine wave. First, the overall positional activity bias was regressed out using 

loess regression (span=0.5; green curves in Supplementary Fig. 13a). These long-range 

trends were subtracted from the data, leaving only the short-range trends (blue curves in 

Supplementary Fig. 13a), which were then compared to a 10.5 bp sine wave for 100 

possible alignments of the sine wave, taking the largest magnitude correlation for each 

TF and strand, and calculating Spearman’s correlation coefficient, . As background, the 

same procedure was performed after first shuffling the position-specific activity biases 

for 100 permutations of the data per TF. A P-value and AUROC were calculated 

describing the difference between the randomized and actual data for each model using 

Wilcoxon’s rank sum test. Although we tried using a Fourier Transform for this analysis 

and its results were suggestive of a 10.5 bp period, the length of the region being studied 

(~80 bp) was too short to yield sufficient signal. 
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Testing designed sequences and motif tiling in random sequences by GPRA 

We generated 1,000 random DNA sequences in silico, predicted expression for each 

using the pTpA+glucose positional model, found that they were predicted to span a wide 

range of expression levels, and included these sequences for synthesis (below). We 

further selected three of these corresponding to the 25, 50, and 75
th

 percentiles for 

predicted expression, as background sequences in which to embed motifs. We then 

embedded a single consensus for each motif (polyA: AAAAA; Skn7: GTCTGGCCC; 

Mga1: TTCT; Ume6: AGCCGCC; Mot3: GCAGGCACG; and Azf1: TAAAAGAAA) at 

every possible position (with the motif contained completely within the 80 bp variable 

region) and orientation for each of the three background sequences, for a total of 2,658 

sequences. We synthesized (Twist Biosciences), cloned, and assayed these sequences as 

described above, using the pTpA scaffold, and measuring expression in glucose. Data 

were processed as before, but considering only reads that were perfect matches to the 

sequences ordered (i.e., no mismatches or indels). All sequences for which at least one 

read matching that sequence was observed were included in the expression estimates. For 

the plots in Fig. 5 and Supplementary Fig. 14, we used loess regression to correct for a 

nonlinear relationship between the predicted-vs.-actual expression resulting from 

differences in the relative scaling of the bins between experiments. Reported Pearson r
2
s 

are on the raw data (without correction).  

Data availabilityData are available at NCBI’s GEO: GSE104903, GSE104878.  

Code availability 

Open source code for our transcriptional models is available at 

https://github.com/Carldeboer/CisRegModels  

https://github.com/Carldeboer/CisRegModels
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Statistics 

All statistics were calculated in R, with the cor.test function for calculating Pearson and 

Spearman correlation coefficients and associated P-values (as indicated in the text), 

phyper for calculating hypergeometric P-values (one tailed), and pnorm and a custom 

Fisher’s r to z function (function (r1,r2,n) (atanh(r1) - atanh(r2)) / ((1/(n-3))+(1/(n-

3)))^0.5) for calculating the significance of differences in Pearson’s r.  

Reporting Summary 

Further information on research design is available in the Nature Research Reporting 

Summary linked to this article. 
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