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Supplementary Table 1. Summary statistics of pain sensitivity, in-scanner motion and demographic data.  
Summary statistics were computed after exclusions. Abbreviations: BMI: body mass index, FD: framewise displacement, Diff 
MRI-QST: difference between MRI and QST measurements in days, PSQ: pain sensitivity questionnaire, PCS: pain 
catastrophising questionnaire, STAI: state-trait anxiety inventory, PSQI: Pittsburgh sleep quality index, ADS-K: German 
depression scale, PSQ20: perceived stress questionnaire, QST: quantitative sensory testing, pain sens.: pain sensitivity, MAE: 
mean absolute error. 
 
 Study 1 Study 2 Study 3 
Demographics 
Site location Bochum, GER Essen, GER Szeged, HUN 
N before exclusion 39 48 29 
N after exclusion 35 37 19 
Age (mean ± sd) 26.1 ± 3.9 24.9 ± 3.5 24.8 ± 3.1 
Age (min, max) 20, 39 19, 36 21, 31 
Sex (%female) 37% 54% 53% 
BMI (mean ± sd) 23.4 ± 2.3 23.2 ± 2.7 23.1 ± 4.3 
Confounders - MRI 
meanFD (mean ± sd) 0.08 ± 0.02mm 0.07 ± 0.02mm 0.07 ± 0.02mm 
meanFD (min, max) 0.04, 0.13 0.04, 0.12 0.04, 0.12 
%scrubbed (mean ± sd) 7.1 ± 7.4% 6.4 ± 6.7% 8.4 ± 8.0% 
%scrubbed (min, max) 0, 26% 0, 29% 2, 26% 
Diff MRI-QST (mean ± sd) 0 ± 0 days 3.1 ± 2.9 days 2.3 ± 1.4 days 
Diff MRI-QST (min, max) 0, 0 days 1, 18 days 1, 5 days 
Confounders - questionnaires    
PSQ pain sensitivity (mean ± sd) 56.6 ± 19.1 55.3 ± 18.5 44.7 ± 14.8 
PCS catastrophising (mean ± sd) 15.47 ± 7.9 14.9 ± 9.6 9.8 ± 10.4 
STAI state anxiety (mean ± sd) 42.8 ± 4.0 33.4 ± 7.4 31.6 ± 10.2 
STAI trait anxiety (mean ± sd) 44.4 ± 3.1 37.2 ± 9.9 31.2 ± 8.6 
PSQI sleep quality (mean ± sd) N/A 6.1 ± 3.1 3.0 ± 2.2 
ADS-K depression (mean ± sd) 7.0 ± 4.1 7.8 ± 6.6 5.8 ± 5.9 
PSQ20 stress (mean ± sd) N/A 44.4 ± 9.4 26.5 ± 4.0 
Prediction target 
QST pain sens. (mean ± sd) 0.008 ± 0.73 0.29 ± 0.80 -0.44 ± 0.46 
QST pain sens. (min, max) -1.45, 1.53 -1.82, 1.57 -1.2, 0.56 
Prediction 
Explained variance 39.2% 18.1% 17.0% 
MAE 0.271 0.553 0.248 
perm. P-value MAE >0.0001 0.039 0.025 
MSE 0.316 0.536 0.173 
perm. P-value MSE >0.0001 0.02 0.025 
Pearson’s r 0.63 0.43 0.47 
Perm. P-value >0.0001 0.0037 0.021 
Parametric p-value 0.00006 0.008 0.04 
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Supplementary Table 2 Recruitment numbers and exclusions per criteria 
For privacy reasons, possible cases with incidental findings are not shown in the table. 

 Study 1 Study 2 Study 3 Total 
Recruited 39 48 29 116 
Excluded due to extreme QST values -0 -3 -2 -5 
Excluded due to motion -4 -8 -8 -20 
Eligible for analysis 35 37 19 91 

 
 
 
Supplementary Table 3. Results of confounder analysis not shown in main Table 1. 
Trait anxiety and blood pressure (systolic and diastolic) as measured on the day of QST measurement. 

 anxiety trait BP sys. QST BP dias. QST 
R2 p R2 p R2 p 

Study 1 0.000 1.000 N/A N/A N/A N/A 
Study 2 0.001 0.876 0.010 0.547 0.002 0.816 
Study 3 0.040 0.412 0.013 0.723 0.110 0.291 

 
 
Supplementary Table 4. Predictive connections of the RPN signature with bootstrapped confidence intervals and p-
values. 
Non-zero regression coefficients naturally delineate the predictive sub-network. Regions and corresponding large-scale resting-
state network (RSN) modules are to be interpreted as in the MIST atlas (see Methods, original atlas-index is given). Predictive 
connections are ordered by their absolute predictive weights. Connectivity strengths associated with higher and lower 
sensitivity to pain are highlighted in red and blue, respectively. The 95% confidence intervals (ci) and the p-values are based 
on bootstrapping analysis. Note that the bootstrap analysis only allows for inference conditional on variable selection. 
Abbreviations: CER: cerebellum, roman numbers: cerebellar lobes, GM grey matter, VAN: ventral attention network, SN: 
salience network, BG: basal ganglia, Thal: thalamus, Hb: habenula, MLN: mesolimbic network, FPN: frontoparietal network, 
SMN: somatomotor network, DMN: default mode network, VN: visual network, Ins: insula, PO: parietal operculum, SII: 
secondary somatosensory cortex, STG: superior temporal gyrus, FEF: frontal eye-field, PrCG: precentral gyrus, PoCG: 
postcentral gyrus, SMC: supplementary motor cortex, Put: putamen, Caud: caudate nucleus, Acc: nucleus accumbens, LOG: 
lateral orbital gyrus, CF: collateral fissure, OTG: occipitotemporal gyrus, MFG: middle frontal gyrus, IPS: intraparietal sulcus, 
pgACC: perigenual anterior cingulate cortex, PrC: precuneus cortex. Prefix: L: left, R: right, a: anterior, p: posterior, v: ventral, 
d: dorsal, l: lateral, m: medial. 
 

Predictive connections between brain regions weight   
region RSN idx region RSN idx 95% ci p 
PO/pSTG VAN+SN+BG+Thal 119 pPut VAN+SN+BG+Thal 25 0.270 [0.06, 0.38] <0.0001 
FP FPN 75 5 CER 48 0.245 [0.06, 0.37] <0.0001 
pCVI CER 9 SMC VAN+SN+BG+Thal 28 -0.200 [-0.37, -0.02] 0.001 
R aCrus2 CER 62 lPrCG SMN 93 0.150 [0.02, 0.3] 0.0001 
dPrCG SMN 67 pmVN VN 51 -0.102 [-0.3, -0.006] 0.003 
pdlVN VN 43 mVN VN 40 0.095 [0.004, 0.21] 0.01 
L IPL DMN 114 mean GM mean GM - -0.086 [-0.2, -0.004] 0.009 
vCaud VAN+SN+BG+Thal 2 plVN VN 39 0.085 [0.001, 0.236] 0.02 
Acc MLN 78 pvmVN VN 107 -0.073 [-0.24, -0.004] 0.006 
CF MLN 79 vlPrCG SMN 110 -0.062 [-0.24, -0.004] 0.007 
5 CER 48 pdlVN VN 43 -0.059 [-0.2, -0.002] 0.02 
pThal/Hb VAN+SN+BG+Thal 36 plVN VN 39 0.058 [-0.009, 0.22] 0.03 
dCVI CER 44 lOTG FPN 117 -0.057 [-0.19, -0.002] 0.01 
dCiX CER 11 L vMFG FPN 105 -0.056 [-0.22, -0.001] 0.01 
R IPS FPN 20 plVN VN 39 -0.054 [-0.17, 0.005] 0.03 
avIns VAN+SN+BG+Thal 12 admVN VN 19 -0.044 [-0.21, 0] 0.02 
R aMFG FPN 58 lPoCG VAN+SN+BG+Thal 102 0.043 [-0.1, 0.13] 0.3 
CrusI CER 84 dPoCG VAN+SN+BG+Thal 116 -0.017 [-0.15, 0.03] 0.1 
pgACC DMN 115 mSTG VAN+SN+BG+Thal 88 0.009 [-0.04, 0.11] 0.2 
Precun DMN 103 LOG MLN 109 -0.003 [-0.16, 0.06] 0.1 
vThal VAN+SN+BG+Thal 36 FEF VAN+SN+BG+Thal 113 -0.001 [-0.11, 0.1] 0.3 
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Supplementary  Figure 1. Nipype workflow of the MRI image preprocessing and connectivity calculation for the RPN-
signature. 
Workflow is based on the in-house PUMI workflow library system (https://github.com/spisakt/PUMI).  
Source code of the workflow: 
https://github.com/spisakt/PAINTeR/blob/master/pipeline/pipeline_PAINTeR.py 
High resolution workflow graph is available on-line: 
https://github.com/spisakt/PAINTeR/blob/master/pipeline/graph.png 
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Supplementary Figure 2. Quality-check images for the spatial standardisation of the anatomical images in Study 1. 
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Supplementary Figure 3. Quality-check images for the spatial standardisation of the anatomical images in Study 2. 
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Supplementary Figure 4. Quality-check images for the spatial standardisation of the anatomical images in Study 3. 

 
 
 
 
 
Supplementary Figure 5. Illustration of the brain atlas individualization procedure and the construction of study-
specific probability maps for the Putamen region with 6 example subjects. 

 
 
 



Supplementary Note 1

November 19, 2019

1 Analysis of the rationale beyond using the composite score of
(Zunhammer et al., 2016) as a prediction target for the RPN-
signature.

1.1 Supplementary Analysis 1 for the paper “Pain-free resting-state functional
brain connectivity predicts individual pain sensitivity”

Supplementary Analyses 1 is also available at the following link:

https://raw.githack.com/spisakt/RPN-signature/master/notebooks/Supplementary_Analysis_1.html

Alternatively, to edit and run the code:

https://nbviewer.jupyter.org/github/pni-lab/RPN-signature/blob/master/notebooks/Supplementary_Analysis_1.ipynb
>By clicking on “Execute on Binder” in the top right corner, the reviewers can enter the interactive
mode where the code of the analysis can be edited and run in a dedicated python environment.

2 Introduction

In statistics, and particularly, in biomedical research, composite scores are commonly calculated
from multiple variables in order to form simple, reliable and valid measures of latent, theoretical
constructs (Song et al., 2013, Babbie, 2016).

A common approach is, for instance, to convert each variable to a z-score and then unit-weight the
variables (i.e., take a simple sum of z-scores). This represents an equal weighting that controls for
the fact that the variables are on different metrics (Bobko et al, 2007).

Such and similar composite scores are frequently used in pain research, as well, e.g. to describe
the quality of pain (Victor et al., 2008), intensity of postsurgical (Jensen et al., 2002) and chronic
pain (Jensen et al., 1999), disease activity (Haugen et al., 2010), or pain sensitivity (O’Neill, 2014,
Starkweather et al., 2016, Zunhammer et al., 2016). The benefit of such scores is in their ability to
capture multiple aspects of interest into a single numerical value, which might increase the face and
construct validity and sensitivity to change (Haugen et al., 2010). Although these scores are mostly
based on well-established and validated measurement protocols like the Quantitative Sensory Test-
ing (QST, Rolke et al., 2006) (Jensen et al., 2002, Jensen et al., 1999, O’Neill, 2014,Starkweather
et al., 2016, Zunhammer et al., 2016), the composition of these scores depends on the specific aims
of studies.
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For instance, the QST-based pain sensitivity score proposed in (Zunhammer et al., 2016) is a unit
weighted measure of the z-score transformed pain thresholds assessed in three different sensory
modalities, namely heat, cold and mechanical pain thresholds (HPT, CPT and MPT, respectively).
This composite score was shown to be associated to combined glutamate and glutamine levels in
pain processing brain regions and importantly, it was found to outperform the single modalities it
is based on (Zunhammer et al., 2016, Supplemental Digital Content 3).

While this indirect evidence suggests that this pain sensitivity score might be a useful measure of
the modality-independent component shaping one’s sensitivity to pain, a thorough characterization
of the the effectiveness of this composite score still needs to be done, before using it as gold-standard
proxy variable for modality-independent pain sensitivity e.g. in predictive modeling studies.

3 Aim

In this python notebook, we perform a multi-stage analysis to investigate the rationale of using the
composite pain sensitivity score as defined by (Zunhammer et al., 2016) for predictive modeling
purposes like the RPN-signature.

4 Overview of the analysis

Most of the composite scales are assumed by their developers and users to be primarily a measure of
one latent variable. When it is also assumed that the scale conforms to the effect indicator model of
measurement (as is almost always the case in psychological assessment), it is important to support
such an interpretation with evidence regarding the internal structure of that scale (Zinbarg et al.,
2006).

After importing necessary python modules and loading the data, here we perform four stages of
analysis, addressing four key question: - Question Q1. Is there a common, modality-independent
component shared across the investigated pain modalities? - Question Q2. Do the the composite
score of (Zunhammer et al., 2016) capture this putative, shared, modality-independent component?
- Question Q3. Do we have evidence that the prediction of the RPN-signature (the RPN-score,
trained using the the score of (Zunhammer et al., 2016)) captures the shared, modality-independent
component? - Question Q4. To what extent is the RPN-score biased towards any of the modal-
ities? Is its correlation with the single thresholds lower than expected from its correlation to the
composite score of (Zunhammer et al., 2016)?

5 Import neccessary modules and load data.

[13]: import pandas as pd
import numpy as np
import numpy as np
import matplotlib.pyplot as plt
import networkx as nx
import seaborn as sns; sns.set()
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sns.set(style="ticks")
import warnings
warnings.filterwarnings('ignore')
from mlxtend.evaluate import permutation_test
from sklearn.decomposition import PCA
from sklearn.preprocessing import RobustScaler
from tqdm import tqdm
import statsmodels.api as sm

# Load all data:
study1 = pd.read_csv("../res/bochum_sample_excl.csv")[["HPT","CPT",

"MPT_log_geom",
␣

↪→"mean_QST_pain_sensitivity",
"prediction"]]

study2 = pd.read_csv("../res/essen_sample_excl.csv")[["HPT", "CPT",
"MPT_log_geom",

␣
↪→"mean_QST_pain_sensitivity",

"prediction"]]
study3 = pd.read_csv("../res/szeged_sample_excl.csv")[["HPT", "CPT",

"MPT_log_geom",
␣

↪→"mean_QST_pain_sensitivity",
"prediction"]]

# merge datasets
study1["study"]="Study 1"
study2["study"]="Study 2"
study3["study"]="Study 3"
df = pd.concat([study1, study2, study3])
df = df.dropna()

6 Question Q1: Is there a common, modality-independent com-
ponent shared across the investigated pain modalities?

We invetsigate heat, cold and mechanical pain thresholds (HPT, CPT and MPT, respecuvely),
as measured via Quantitative Sensory Testing (QST) with the aim of identifying any “modality-
independent” component, shared across the these measurements.

Specifically, we assume that all three variables consist of three compomnents: - A modality-specific
component (different for heat, cold and mechanical stimuli). The assumption of such a modality-
specific component is supported by a wealth of previous research suggesting that different biological
systems underly the three threshold types. Heat, cold and mechanical pain stimuli are known to be
picked up by different sets of nocisensors within nociceptive neurons (Dubin & Patapoutian, 2010).
Nerve-block studies further have suggested that the three different types of pain thresholds rely
on different sets of nociceptive neurons: HPT mainly depends on C-fibers, whereas MPT mainly
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depend on A-delta-fibers, while the relative contribution of C- and Ad-fibers to cold pain thresholds
is less clear (Rolke et al., 2006). - A modality-independent component (shared between heat, cold
and mechanical stimuli). Here we test the presence and significance of this component. - A “noise”
component (e.g. confounds specific for the different measures, like reaction time confounds, skin
physiology, etc.)

Of note, the experimental procedures for HPT and CPT are may likely be more similar compared
to the MPT in this respect. Procedures for the thermal thresholds differ only in the direction of
temperature changes and in the wording of instructions; both HPT and CPT are obtained with an
automated thermode and based on a method of ascending limits. In contrast, the MPT is obtained
with hand-held pin-pricks and based on a staircase method and involves more stimulus repetitions.
Moreover, thermal and mechanical thresholds may be affected by different types of skin physiology
may add variance to these measures. This “noise” component has the potential to partly mask the
common- and modality-specific components.

6.1 Step 1. McDonald’s omega

McDonald’s Omega as a measure of internal consistency. It measures whether several items that
propose to measure the same general construct produce similar scores.

Possible outcomes and interpretations: The value of McDonald’s Omega falls between 0 and 1.
While there are rules of thumb for cut-off values, those can be misleading and are more appropriate
for variables which are meant to measure exactly the same latent variable (Dunn et al., 2014). In
general, larger values mean stronger internal consistency and a value below 0.5 indicates the lack
of internal consistency across the variables.

R-code:

# load data into data.frame called df
library(psych)
omega(df)

6.1.1 Results

Omega (‘omega total’) was found to be 0.62.

6.1.2 Interpretation

This value suggest internal consistency across the investigated pain threshold measures.

To gain a more detailed insight into the consistency structure, below, we investigate: - the correla-
tions between the variables (Step 2), - and the underlying latent components by means of principal
component analysis (Step 3).

6.2 Step 2. Correlation analysis

Below we compute the correlation between all possible pairs of pain thresholds, as well as the mean
correlation across all possible pairs. P-values are calculated via permutation testing.
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[16]: #pairplot with histograms:
#sns.pairplot(df[["HPT", "CPT", "MPT_log_geom", "study"]], kind="reg")
# tip: add hue="study", to see data separately for each study

# Plot correlations
fig, (ax1, ax2, ax3) = plt.subplots(ncols=3, figsize=(15,5))
sns.regplot(x=df['HPT'], y=df['CPT'], ax=ax1)
ax1.set_xlabel('HPT (°C)')
ax1.set_ylabel('CPT (°C)')
sns.regplot(x=df['HPT'], y=df['MPT_log_geom'], ax=ax2)
ax2.set_xlabel('HPT (°C)')
ax2.set_ylabel('MPT (log mN)')
sns.regplot(x=df['CPT'], y=df['MPT_log_geom'], ax=ax3)
ax3.set_xlabel('CPT (°C)')
ax3.set_ylabel('MPT (log mN)')
ran=np.max(df['CPT'])-np.min(df['CPT'])
plt.xlim(np.min(df['CPT'])-0.1*ran, np.max(df['CPT'])+0.1*ran)
ran=np.max(df['MPT_log_geom'])-np.min(df['MPT_log_geom'])
ax3.set_ylim(np.min(df['MPT_log_geom'])

-0.1*ran,np.max(df['MPT_log_geom'])+0.1*ran)

p_value = permutation_test(df['HPT'], df['CPT'],
method='approximate',
func=lambda x, y: -np.corrcoef(x, y)[1][0],
num_rounds=10000,
seed=0)

print("cor(HPT, CPT) = " + str(np.corrcoef(df['HPT'], df['CPT'])[0,1]))
print("Permuation-based p = " + str(p_value))

p_value = permutation_test(df['HPT'], df['MPT_log_geom'],
method='approximate',
func=lambda x, y: np.corrcoef(x, y)[1][0],
num_rounds=10000,
seed=0)

print("cor(HPT, MPT_log_geom) = " +
str(np.corrcoef(df['HPT'], df['MPT_log_geom'])[0,1]))

print("Permuation-based p = " + str(p_value))

p_value = permutation_test(df['CPT'], df['MPT_log_geom'],
method='approximate',
func=lambda x, y: -np.corrcoef(x, y)[1][0],
num_rounds=10000,
seed=0)

print("cor(CPT, MPT_log_geom) = " +
str(np.corrcoef(df['CPT'], df['MPT_log_geom'])[0,1]))

print("Permuation-based p = " + str(p_value))
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p_value = permutation_test(df['HPT'], df['CPT'],
method='approximate',
func=lambda x, y: np.mean(np.abs([np.corrcoef(x, y)[0,1],

np.corrcoef(x, df['MPT_log_geom'])[0,1],
np.corrcoef(y, df['MPT_log_geom'])[0,1]])),

num_rounds=1000, #set to 10000 for more accuracy
seed=0)

print("Mean correlation: " +
str(np.mean(np.abs([np.corrcoef(df['HPT'], df['CPT'])[0,1],

np.corrcoef(df['HPT'], df['MPT_log_geom'])[0,1],
np.corrcoef(df['CPT'], df['MPT_log_geom'])[0,1]])

)))
print("Permuation-based p = " + str(p_value))

cor(HPT, CPT) = -0.5063125884777612
Permuation-based p = 0.0
cor(HPT, MPT_log_geom) = 0.19267290368321235
Permuation-based p = 0.0336
cor(CPT, MPT_log_geom) = -0.06731140025472557
Permuation-based p = 0.2651
Mean correlation: 0.2554322974718997
Permuation-based p = 0.0

6.2.1 Supplementary Figure 6. Correlations of CPT, HPT and MPT with each other
in all studies.

Units are °C for CPT and HPT and log(mN) for MPT. The correlation between HPT and CPT
and HPT and MPT was significant (RHPT,CPT=-0.51, pHPT,CPT<0.0001, RHPT,MPT=0.19,
pHPT,MPT=0.03). The mean correlation across all three modalities was also significant (Rmean=-
0.25, pHPT,CPT<0.0001).
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6.2.2 Results

Two out of the three possible correlations (HPT-CPT and HPT-MPT) are statistically significant.

The mean correlation is statistically significant, as well, p<0.001.

Below, we plot the correlation structure as a network to aid interpretation.

[18]: # Calculate the correlation between individuals.
# We have to transpose first, because the corr function calculate
# the pairwise correlations between columns.
corr = df[["HPT", "CPT", "MPT_log_geom", "study"]].corr()
corr = corr.where(np.triu(np.ones(corr.shape)).astype(np.bool))

# Transform it in a links data frame (3 columns only):
links = corr.stack().reset_index()
links.columns = ['var1', 'var2','value']
links['value']=np.round(links['value'], decimals=2)

# Remove self correlation (cor(A,A)=1)
links_filtered=links.loc[ (links['var1'] != links['var2']) ]

# Build your graph
G=nx.from_pandas_dataframe(links_filtered, 'var1', 'var2', edge_attr='value')

significant = [(u, v) for (u, v, d) in G.edges(data=True)
if np.abs(d['value']) > 0.15]

significant_value = [d['value'] for (u, v, d) in G.edges(data=True)
if np.abs(d['value']) > 0.15]

nonsignificant = [(u, v) for (u, v, d) in G.edges(data=True)
if np.abs(d['value']) <= 0.15]

nonsignificant_value = [d['value'] for (u, v, d) in G.edges(data=True)
if np.abs(d['value']) <= 0.15]

# Plot the network:
pos = nx.circular_layout(G)
plt.figure(3,figsize=(7,5))
nx.draw(G, pos, with_labels=True, node_color='lightgray', node_size=4000,

edge_color='lightgray', linewidths=10, width=10, style='dotted')
edges=nx.draw_networkx_edges(G, pos, edge_color=significant_value,

edgelist=significant, width=10,
edge_cmap=plt.cm.bwr, edge_vmin=-1, edge_vmax=1)

plot=nx.draw_networkx_edge_labels(G,
pos,
edge_labels=nx.get_edge_attributes(G,'value'),
font_color='black',
font_size=25)
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colorbar=plt.colorbar(edges)

6.2.3 Supplementary Figure 7. Network representation of the correlation structure
across CPT, HPT and MPT.

Dotted lines and light gray color mean no significance. Solid lines mean significant correlation and
are color-coded, according to the legend.

As shown by this plot, the correlation structure of the pain threshold data suggests that: - there
is a relationship (or shared component) between the thermal thresholds (HPT and CPT), implied
by a strong statistically significant correlation. - there is also a relationship (or shared component)
between HPT and MPT, implied by a weaker, but still statistically significant correlation.

6.2.4 Interpretation

Two interpretations are possible: - There is a single shared component across all three modalities,
but we were unable to detect the CPT-MPT relationship in the current sample (e.g. because it
is “abolished” by the modality-specific and noise components, which are of different magnitude
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in various modalities) - There is no shared component between CPT and MPT, but there is one
shared component between HPT and CPT and another between HPT and MPT.

The current analysis is unable to decide between the above options.

Solution: unsupervised dimension reduction analysis (Step 3).

6.3 Step 3. Principal Component Analysis

We perform a Principal Component Analysis (PCA) and investigate the contribution (“loadings”)
of each modality to the principal components of the data in order to determine, which interpretation
from above fits the data better. Significance of contributions will be investigated by a permutations
test.

Possible outcomes and interpretations:

• If we find a principal component that holds significant contributions from all three variables,
it can be considered as an evidence for a common shared component.

• If, to all of the principal components, there is at least one modality that does not have a
significant contribution, then there is, most probably, no component that is shared across all
three modalities, or the variance explained by this component is too small to be captured by
PCA.

Below we perform a PCA on the original (unpermuted) data and plot the contribution-matrix
(loadings).

[19]: scaler = RobustScaler()
df_pca=df[["HPT", "CPT", "MPT_log_geom"]]
df_pca.loc[:,'HPT'] *= -1 # to align directions of scsales
df_pca.loc[:,'MPT_log_geom'] *= -1 # to align directions of scsales
data_rescaled = scaler.fit_transform(df_pca)
pca = PCA(n_components=3)
pca.fit(data_rescaled)
principal_components=pca.transform(data_rescaled)
loadings = pca.components_.T * np.sqrt(pca.explained_variance_)

plt.matshow(np.abs(loadings),cmap='viridis')
plt.xticks([0,1,2],['PC1','PC2','PC3'],fontsize=10, rotation=65,ha='left')
plt.colorbar()
plt.yticks(range(len(df[["HPT", "CPT", "MPT_log_geom"]].columns.values)),

df[["HPT", "CPT", "MPT_log_geom"]].columns.values)
#plt.tight_layout()
original_loadings=loadings
pd.DataFrame(np.abs(original_loadings),

columns=['PC1','PC2','PC3'],
index=["HPT", "CPT", "MPT"])

[19]: PC1 PC2 PC3
HPT 0.745046 0.086474 0.239769
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CPT 0.424109 0.158420 0.385858
MPT 0.221024 0.595476 0.067835

6.3.1 Supplementary Figure 8. Contribution (loadings) of HPT, CPT and MPT to
the principal components.

Contributions are color-coded according to the color-bar on the left. Loading values are given in the
table.

Principal component 1 (PC1) is obviously driven by the thermal thresholds (HPT and CPT),
however it is of question, whether the contribution of MPT to PC1 is significant.

Therefore, we permute MPT and repeat the PCA many times to construct a p-value for the null
hypothesis of PC1 being independent of MPT.

[22]: np.random.seed(0) # for reproducibility
numperms=1000 # set to 10000 for more accurate results
all_loadings=np.zeros(numperms)
# permute data
for iperm in tqdm(range(numperms)):

data_rescaled_perm=pd.DataFrame()
data_rescaled_perm['HPT'] = data_rescaled[:,0]
data_rescaled_perm['CPT'] = data_rescaled[:,1]
data_rescaled_perm['MPT_log_geom'] = np.random.permutation(

data_rescaled[:,2])
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data_rescaled_perm
pca = PCA(n_components=3)
pca.fit(data_rescaled_perm)
loadings = pca.components_.T * np.sqrt(pca.explained_variance_)
# contribution of the permuted MPT to PC1
all_loadings[iperm] = loadings[2,0]

# calculate p-value:
orignal_loading_mpt=original_loadings[2,0]
print("p = ", str(np.sum(all_loadings > orignal_loading_mpt)/len(all_loadings)))

100%|����������| 1000/1000 [00:03<00:00, 268.96it/s]

p = 0.05

6.3.2 Results

The permutation-based p-value of the PCA is p=0.049 (with 10000 permutations), providing evi-
dence for a shared component across all three modalities.

6.3.3 Interpretation

The most plausible interpretation of these results is that there is a “thermal component” shared
between HPT and CPT and another “general component” which is shared across all three modali-
ties.

While in our paper, the latter component is of interest, the mean composite pain sensitivity, as
defined by Zunhammer et al., 2016, most probably captures both the “thermal” and the “gen-
eral” components, thereby meaning a potential bias in the proposed prediction approach (RPN-
signature).

To characterize the above mentioned bias, below we evaluate, whether the composite pain sensitivity
score of (Zunhammer et al., 2016) and the score predicted by the RPN-signature is correlated with
all three modalities.

7 Question Q2. Do the the composite pain sensitivity score of
(Zunhammer et al., 2016), similarly to PC1, capture the iden-
tified modality-independent component?

7.0.1 Step 1. PC1 vs. the “mean pain sensitivity score” by (Zunhammer et al., 2016)

First we test, to what extent the the “mean pain sensitivity score” by (Zunhammer et al., 2016)
(used in our study as prediction target) correlates to PC1 (defined above).
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** Possible outcomes and interpretations:** - Due to the significant collinearity (Q1, step 2) and the
significant internal consistency (Q1, step 1) of the pain threshold measures, PC1 is most probably
very strongly correlated with the mean allowing for using the mean and PC1 interchangeably, and
as prediction target in our study.

[23]: # we define a function for computing p-values with permutation test,
# as this will be applied multiple times
def permtest(A, B, nameA="A", nameB="B", numperm=10000):

cor=np.corrcoef(A, B)[0,1]
print("cor(" + nameA + "," + nameB + ") = " + str(cor) )
p_value = permutation_test(A, B,

method='approximate',
func=lambda x, y: np.sign(cor) *

np.corrcoef(x, y)[1][0],
num_rounds=numperm,
seed=0)

if p_value==0:
print("Permuation-based p < " + str(1.0/numperm))

else:
print("Permuation-based p = " + str(p_value))

permtest(df['mean_QST_pain_sensitivity'],
principal_components[:,0],
"Zunhammer-score", "PC1")

cor(Zunhammer-score,PC1) = 0.9259546424719092
Permuation-based p < 0.0001

7.0.2 Result

As expected, the mean strongly correlates (R=0.93, p<<0.001) with the first principal component,
therefore, most probably, captures the shared component of interest.

Below, we plot the pain thresholds, together with PC1 and the mean pain sensitivity score by
(Zunhammer et al., 2016) as a network:

[30]: # Calculate the correlation between individuals.
# We have to transpose first, because the corr function
# calculates the pairwise correlations between columns.
tmpdf=df[["HPT", "CPT", "MPT_log_geom", "mean_QST_pain_sensitivity"]]
tmpdf['PC1']=principal_components[:,0]
# just to fix order of columns
tmpdf=tmpdf[["HPT", "CPT", "MPT_log_geom", "mean_QST_pain_sensitivity", 'PC1']]
corr = tmpdf.corr()
corr = corr.where(np.triu(np.ones(corr.shape)).astype(np.bool))

# Transform it in a links data frame (3 columns only):
links = corr.stack().reset_index()
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links.columns = ['var1', 'var2','value']
links['value']=np.round(links['value'], decimals=2)

# Remove self correlation (cor(A,A)=1)
links_filtered=links.loc[ (links['var1'] != links['var2']) ]

# Build your graph
G=nx.from_pandas_dataframe(links_filtered, 'var1', 'var2', edge_attr='value')

significant = [(u, v) for (u, v, d)
in G.edges(data=True) if np.abs(d['value']) > 0.15]

significant_value = [d['value'] for (u, v, d)
in G.edges(data=True) if np.abs(d['value']) > 0.15]

nonsignificant = [(u, v) for (u, v, d)
in G.edges(data=True) if np.abs(d['value']) <= 0.15]

nonsignificant_value = [d['value'] for (u, v, d)
in G.edges(data=True) if np.abs(d['value']) <= 0.15]

# Plot the network:
pos = nx.circular_layout(G)
plt.figure(3,figsize=(12,10))
nx.draw(G, pos, with_labels=True, node_color=['red',

'lightgray',
'lightgray',
'lightgray',
'red',],

node_size=4000, edge_color='lightgray',
linewidths=10, width=10, style='dotted')

edges=nx.draw_networkx_edges(G, pos,
edge_color=significant_value,
edgelist=significant, width=10,
edge_cmap=plt.cm.bwr, edge_vmin=-1, edge_vmax=1)

plot=nx.draw_networkx_edge_labels(G,
pos,
edge_labels=nx.get_edge_attributes(G,'value'),
font_color='black',
font_size=25)

colorbar=plt.colorbar(edges)
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7.0.3 Supplementary Figure 9. Network representation of the correlation structure
across CPT, HPT, MPT, PC1 and the composite score of (Zunhammer et al.,
2016).

Dotted lines and light gray color mean no significance. Solid lines mean significant correlation and
are color-coded, according to the legend.

7.0.4 Interpretation

As expected, the composite pain sensitivity scores (red nodes), namely PC1 and the the mean pain
sensitivity score by (Zunhammer et al., 2016) (denoted as “mean_QST_pain_sensitivity” on the
figure) are significantly correlated with all modalities, including MPT. This suggests, that similarly
to PC1 (as shown above) the composite pain sensitivity score by (Zunhammer et al., 2016) is also
able to capture the shared component of interest.
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Below we look at the single data points to confirm that correlations between the composite pain
sensitivity score by (Zunhammer et al., 2016) and the single modalities are not driven by e.g. out-
liers.

[31]: # Plot correlations
fig, (ax1, ax2, ax3) = plt.subplots(ncols=3, sharey=True, figsize=(15,5))
sns.regplot(x=df['HPT'], y=df['mean_QST_pain_sensitivity'], ax=ax1)
ax1.set_ylabel('pain sensitivity (Zunhammer)')
sns.regplot(x=df['CPT'], y=df['mean_QST_pain_sensitivity'], ax=ax2)
ax2.set_ylabel('pain sensitivity (Zunhammer)')
sns.regplot(x=df['MPT_log_geom'], y=df['mean_QST_pain_sensitivity'], ax=ax3)
ax3.set_ylabel('pain sensitivity (Zunhammer)')
ran=np.max(df['mean_QST_pain_sensitivity'])-np.
↪→min(df['mean_QST_pain_sensitivity'])

plt.ylim(np.min(df['mean_QST_pain_sensitivity'])-0.1*ran,
np.max(df['mean_QST_pain_sensitivity'])+0.1*ran)

ran=np.max(df['MPT_log_geom'])-np.min(df['MPT_log_geom'])
ax3.set_xlim(np.min(df['MPT_log_geom'])-0.1*ran,np.max(df['MPT_log_geom'])+0.
↪→1*ran)

# compute p-values with permutation test
print("Correlation with the pain sensitivity score of (Zunhammer et al., 2016):
↪→")

permtest(df['HPT'], df['mean_QST_pain_sensitivity'],
'HPT', 'pain sensitivity (Zunhammer)')

permtest(df['CPT'], df['mean_QST_pain_sensitivity'],
'CPT', 'pain sensitivity (Zunhammer)')

permtest(df['MPT_log_geom'], df['mean_QST_pain_sensitivity'],
'MPT', 'pain sensitivity (Zunhammer)')

Correlation with the pain sensitivity score of (Zunhammer et al., 2016):
cor(HPT,pain sensitivity (Zunhammer)) = -0.7797640399729854
Permuation-based p < 0.0001
cor(CPT,pain sensitivity (Zunhammer)) = 0.7055498458988412
Permuation-based p < 0.0001
cor(MPT,pain sensitivity (Zunhammer)) = -0.6396260726198744
Permuation-based p < 0.0001
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7.0.5 Supplementary Figure 10. Correlations of CPT, HPT and MPT with the
composite pain sensitivity score of Zunhammer et al.

Units are °C for CPT and HPT and log(mN) for MPT. The correlations of the composite pain
sensitivity score with all three modalities were significant (R=-0.78, 0.71 and -0.64, for HPT, CPT
and MPT, respectively. p<0.0001 for all correlations).

8 Question Q3. Do we have evidence that the prediction (the
RPN-score, trained using the “mean pain sensitivity score”
by (Zunhammer et al., 2016)) captures the identified shared,
modality-independent component?

So far, we have shown that: - the all three modalities (HPT, CPT and MPT) significantly con-
tribute to the first principal component (PC1) of the data, pointing to the existence of a shared,
modality-independent component of pain sensitivity. - the “mean pain sensitivity score” by (Zun-
hammer et al., 2016), used in our study as a proxy for modality-independent pain sensitivity and
prediction target, very strongly correlates with PC1, therefore, most probably incorporates the
shared, modality-independent component of interest

** NOTE: ** The RPN-signature was trained with the the “mean pain sensitivity score” by (Zun-
hammer et al., 2016) and was “blind” to the single scores, already during the training procedure.

At this point, however, we cannot exclude the possibility, that the the composite pain sensitiv-
ity score by (Zunhammer et al., 2016) is dominated by components other than the modality-
independent component of interest (e.g. thermal modality-specific or noise) so such a great extent
that using it as a prediction target ends up in loosing the “modality-independency” and remains
predictive to only one or two modalities.

This would make the RPN-signature unstable for adding or removing a sensory modality from the
composite score.
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We test, how well the composite score-based RPN prediction generalizes to the single modalities by
leaving out modalities when computing the observed composite score. Specifically, this involves an
analysis of leaving out one modality (Step 1) and leaving out two modalities, i.e. retaining only one
modality.

8.0.1 Step 1. “Leave-one-modality-out” analysis

In this analysis, we calculate two-modality summary scores with the same method used for the
Zunhammer-score. Comparing these “leave-one-modality-out” scores to the RPN-score provides
insights into the generalizability of the RPN-signature to combinations of different modalities and
potentially, adding a new modality.

[32]: # calculate leave-one-modality-out summary scores
# (analogously to the method used by Zunhammer et al.)
# means and standard deviations from Study1 (Bochum-sample):
# these values are hard-coded into the
# calculation of the score of (Zunhammer et al., 2016),
# so that its calculation is independent of the data at hand
b_hpt_mean=44.21297
b_hpt_sd=2.799718
b_cpt_mean=14.35385
b_cpt_sd=7.595601
b_mpt_mean=3.617695
b_mpt_sd=0.801178

hpt_scaled=-(df['HPT']-b_hpt_mean)/b_hpt_sd
cpt_scaled=(df['CPT']-b_cpt_mean)/b_cpt_sd
mpt_scaled=-(df['MPT_log_geom']-b_mpt_mean)/b_mpt_sd

df_lomo=df #lomo:leave-one-modality-out
df['HPT_CPT']=(hpt_scaled+cpt_scaled)/2
df['HPT_MPT']=(hpt_scaled+mpt_scaled)/2
df['CPT_MPT']=(cpt_scaled+mpt_scaled)/2

# Plot correlation with the "RPN-score"
fig, (ax1, ax2, ax3) = plt.subplots(ncols=3, sharey=True, figsize=(15,5))
sns.regplot(x=df['HPT_CPT'], y=df['prediction'], ax=ax1)
sns.regplot(x=df['HPT_MPT'], y=df['prediction'], ax=ax2)
sns.regplot(x=df['CPT_MPT'], y=df['prediction'], ax=ax3)
ax1.set_ylabel('RPN-score')
ax2.set_ylabel('RPN-score')
ax3.set_ylabel('RPN-score')

# compute p-values with permutation test
print("Correlation with the RPN-score:")
permtest(df['HPT_CPT'], df['prediction'], 'composite(HPT,CPT)', 'RPN-score')
permtest(df['HPT_MPT'], df['prediction'], 'composite(HPT,MPT)', 'RPN-score')
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permtest(df['CPT_MPT'], df['prediction'], 'composite(CPT,MPT)', 'RPN-score')

Correlation with the RPN-score:
cor(composite(HPT,CPT),RPN-score) = 0.4575562457450685
Permuation-based p < 0.0001
cor(composite(HPT,MPT),RPN-score) = 0.4291506440039318
Permuation-based p < 0.0001
cor(composite(CPT,MPT),RPN-score) = 0.40012762722771095
Permuation-based p < 0.0001

8.0.2 Supplementary Figure 11. Correlations of the “leave-one-modality-out” com-
posite variables with the predicted pain sensitivity score (the RPN-score).

Units are arbitrary, based on the standardized variables. The correlations of the RPN-score with all
three “leave-one-modality-out” composite variables were significant (R=0.46, 0.43 and 0.40, for the
“leave-one-modality-out” composite variables HPT-CPT, HPT-MPT and CPT-MPT, respectively.
p<0.0001 for all correlations).

8.0.3 Result

All possible leave-one-modality-out scores were significantly predicted by the RPN-score.

8.0.4 Interpretation

The RPN-signature is not driven by one modality only, and stays robust for different definitions
of “composite pain sensitivity”.
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8.0.5 Step 2. “Leave-two-modalities-out” analysis

Leaving out two modalities equals with simply testing the relationship of the composite RPN-score
with the single modalities (HPT, CPT and MPT)

[33]: # Plot correlation with the "RPN-score"
fig, (ax1, ax2, ax3) = plt.subplots(ncols=3, sharey=True, figsize=(15,5))
sns.regplot(x=df['HPT'], y=df['prediction'], ax=ax1)
sns.regplot(x=df['CPT'], y=df['prediction'], ax=ax2)
sns.regplot(x=df['MPT_log_geom'], y=df['prediction'], ax=ax3)
ran=np.max(df['prediction'])-np.min(df['prediction'])
plt.ylim(np.min(df['prediction'])-0.1*ran, np.max(df['prediction'])+0.1*ran)
ran=np.max(df['MPT_log_geom'])-np.min(df['MPT_log_geom'])
ax3.set_xlim(np.min(df['MPT_log_geom'])-0.1*ran,np.max(df['MPT_log_geom'])+0.
↪→1*ran)

ax1.set_ylabel('RPN-score')
ax2.set_ylabel('RPN-score')
ax3.set_ylabel('RPN-score')

# compute p-values with permutation test
print("Correlation with the RPN-score:")
permtest(df['HPT'], df['prediction'], 'HPT', 'RPN-score')
permtest(df['CPT'], df['prediction'], 'CPT', 'RPN-score')
permtest(df['MPT_log_geom'], df['prediction'], 'MPT', 'RPN-score')

Correlation with the RPN-score:
cor(HPT,RPN-score) = -0.43644372163377854
Permuation-based p < 0.0001
cor(CPT,RPN-score) = 0.35617457477513276
Permuation-based p = 0.0005
cor(MPT,RPN-score) = -0.24024492612674364
Permuation-based p = 0.0129
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8.0.6 Supplementary Figure 12. Correlations of the “leave-two-modality-out” com-
posite variables with the predicted pain sensitivity score (the RPN-score).

The correlations of the RPN-score with all three “leave-two-modality-out” composite variables were
significant (R=-0.44, 0.36 and -0.24, for the “leave-two-modality-out” composite variables, i.e. the
single pain thresholds HPT, CPT and MPT, respectively. p<0.05 for all correlations).

8.0.7 Result

All possible “leave-two-modality-out” scores, i.e. all three pain modalities were significantly pre-
dicted by RPN-score.

8.0.8 Interpretation

The RPN-signature is not exclusively driven by any combination of two modalities, specifically, not
only driven by the thermal thresholds. The RPN-score holds predictive value for all modalities, even
though it was specifically trained to predict the modality-independent composite pain sensitivity
score by (Zunhammer et al., 2016).

8.0.9 Figure SA1.7. Correlations of the “leave-two-modality-out” variables, i.e. the
single modalities with the predicted pain sensitivity score (the RPN-score).

Units are °C for CPT and HPT and log(mN) for MPT. The correlations of the RPN-score with all
three modalities were significant (R=-0.44, 0.36 and -0.24, for HPT, CPT and MPT, respectively.
P-values: pHPT,RPN < 0.0001, pCPT,RPN=0.0005, pMPT,RPN=0.01.

9 Question Q4. To what extent is the RPN-score biased to-
wards any of the modalities? Is its correlation with the sin-
gle thresholds lower than excpeted from its correlation to the
Zunhammer-score?

9.0.1 Step 1. Analyis-of-bias

This analysis aims to exclude the possibility that the RPN-score is biased e.g. towards thermal
thresholds.

We will employ “simulated” RPN-scores that are constructed by adding orthogonalized Gaussian
noise to the pain sensitivity score of (Zunhammer et al, 2016), so that the correlation of these
simulated scores with the original pain sensitivity score equals to its correlation to the RPN-score.
For the sake of simplicity, we refer to these artificially generated scores as “simulated RPN-scores”.

The correlation of many simulated RPN-scores to the single pain thresholds (HPT, CPT, MPT)
will be used to construct a null distribution for these correlations. Then, the actual “RPN-score
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vs. single threshold” correlations will be contrasted to these null distributions to obtain p-values.
The test is one sided, testing for “negative bias” (smaller correlation than expected from the null).

Possible outcomes and interpretations: - a significant p-value implies a strong bias against the
given modality, meaning that the degree to which the RPN-signature generalizes to the single pain
thresholds significantly differs from what we can expect given its correlation to the pain sensitivity
score by Zunhammer et al. - p-values greater than the alpha-level (p>0.05) means that our data
provides no evidence for significant bias of the RPN-score towards any of the single pain modalities.

[41]: old_df=df
df=df#study3.dropna()

cor_Zunhammer_rpn = np.corrcoef(df['mean_QST_pain_sensitivity'],
df['prediction'])[0,1]

np.random.seed(1)
num_sim=1000

# a nice tricky function to genberate random simulated RPN scores:
# variables with a given correlation to the composite score of Zunhammer et al.
# ported to python from:
# https://stats.stackexchange.com/questions/15011/
↪→generate-a-random-variable-with-a-defined-correlation-to-an-existing-variables

def get_simulated_RPN(rho=cor_Zunhammer_rpn,
y=df['mean_QST_pain_sensitivity'],
x=None,
seed=None):

if (not x):
if seed is not None:

np.random.seed(seed)
x = np.random.normal(0,1,len(y))

y=np.array(y)
x=np.array(x)
y_perp = sm.OLS(x,sm.tools.tools.add_constant(y)).fit().resid
return( rho * np.std(y_perp, ddof=1) * y +

y_perp * np.std(y, ddof=1) * np.sqrt(1 - rho**2.0) )

rhos_simRPN_Zunhammer=np.zeros(num_sim)
rhos_simRPN_HPT=np.zeros(num_sim)
rhos_simRPN_CPT=np.zeros(num_sim)
rhos_simRPN_MPT=np.zeros(num_sim)

Zunhammer_std = (df['mean_QST_pain_sensitivity']-
np.mean(df['mean_QST_pain_sensitivity']))/-np.std(

df['mean_QST_pain_sensitivity'])

# simulate simulated RPN scores
for sim_i in tqdm(range(num_sim)):
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# cereate a "noisy Zunhammer"
simRPN=get_simulated_RPN()
# calculate the correlation of the simulated RPN scores and
# the observed composite score by Zunhammer et al.
rhos_simRPN_Zunhammer[sim_i]=np.corrcoef(df['mean_QST_pain_sensitivity'],

simRPN)[0,1]
# calculate the correlation between the
# simulated RPN scores and the single pain thershodls
rhos_simRPN_HPT[sim_i]=np.corrcoef(df['HPT'], simRPN)[0,1]
rhos_simRPN_CPT[sim_i]=np.corrcoef(df['CPT'], simRPN)[0,1]
rhos_simRPN_MPT[sim_i]=np.corrcoef(df['MPT_log_geom'], simRPN)[0,1]

# assess p-values based on the null distributions of correlations
# between the simulated RPN scores and HPT
cor_HPT_RPN=np.corrcoef(df['HPT'], df['prediction'])[0,1]
hist=plt.hist(rhos_simRPN_HPT)
plt.title(

"Histogram of the correlations between HPT and the \"simulated␣
↪→RPN-scores\"")

plt.xlabel("Correlation coefficient")
plt.axvline(cor_HPT_RPN, color='k', linestyle='dashed', linewidth=2)
text=plt.text(cor_HPT_RPN, np.max(hist[0])*0.9,

" cor(HPT, RPN)=" + str(np.round(cor_HPT_RPN, 2)))
plt.show()
print("p = ", str(np.sum(rhos_simRPN_HPT > cor_HPT_RPN)/num_sim) )

#assess p-values based on the null distributions of
# correlations between the simulated RPN scores and CPT
cor_CPT_RPN=np.corrcoef(df['CPT'], df['prediction'])[0,1]
hist=plt.hist(rhos_simRPN_CPT)
plt.title(

"Histogram of the correlations between CPT and the \"simulated␣
↪→RPN-scores\"")

plt.xlabel("Correlation coefficient")
plt.axvline(cor_CPT_RPN, color='k', linestyle='dashed', linewidth=2)
text=plt.text(cor_CPT_RPN, np.max(hist[0])*0.9,

" cor(CPT, RPN)=" + str(np.round(cor_CPT_RPN, 2)))
plt.show()
print("p = ", str(np.sum(rhos_simRPN_CPT < cor_CPT_RPN)/num_sim) )

# assess p-values based on the null distributions of
# correlations between the simulated RPN scores and MPT
cor_MPT_RPN=np.corrcoef(df['MPT_log_geom'], df['prediction'])[0,1]
hist=plt.hist(rhos_simRPN_MPT)
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plt.title(
"Histogram of the correlations between MPT and the \"simulated␣

↪→RPN-scores\"")
plt.xlabel("Correlation coefficient")
plt.axvline(cor_MPT_RPN, color='k', linestyle='dashed', linewidth=2)
text=plt.text(cor_MPT_RPN, np.max(hist[0])*0.9,

" cor(MPT, RPN)=" + str(np.round(cor_MPT_RPN, 2)))
plt.show()
print("p = ", str(np.sum(rhos_simRPN_MPT > cor_MPT_RPN)/num_sim) )

print("Correlation of the Composite score of Zunhammer et al. and the RPN-score:
↪→ "

+ str(cor_Zunhammer_rpn))

df=old_df

100%|����������| 1000/1000 [00:01<00:00, 784.92it/s]

p = 0.873
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p = 0.583
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p = 0.166
Correlation of the Composite score of Zunhammer et al. and the RPN-score:
0.4801750952950685

9.0.2 Supplementary Figure 13. Analysis-of-bias.

Histograms shown the null distributions of the correlations of simulated predictive scores with HPT,
CPT and MPT, respectively. Dashed lines imply the actual correlation of the given pain threshold
with the true RPN-score. P-values are above 0.05 for all three sensory modalities, showing no
evidence of negative bias of the RPN-score in any of the modalities.

9.0.3 Results

All p-values are gerater than 0.05.

9.0.4 Interpretation

We found no evidence of negative bias towards any of the sensory modalities.

10 Conclusion

In this python notebook, we have performed a multi-stage analysis to investigate the rationale for
using the composite pain sensitivity score as defined by (Zunhammer et al., 2016) for predictive
modelling purposes.

We have found that: - (Q1) There is a common, modality-independent component shared across
the investigated pain modalities. - (Q2) The the composite score of (Zunhammer et al., 2016) does
capture this shared, modality-independent component. - (Q3) The prediction of the RPN-signature
(the RPN-score) also captures the identified modality-independent component of pain sensitivity. -
(Q4) The RPN-score was not found to be significantly biased towards/against any of the modalities.

We conclude, that the RPN-score represents a modality independent component of pain sensitivity.
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Supplementary Note 2

November 19, 2019

1 Analysis of the stability of the RPN-signature to parcellation-
related effects.

1.1 Supplementary Analysis 2 for the paper “Pain-free resting-state functional
brain connectivity predicts individual pain sensitivity”

Supplementary Analyses 2 is also available at the following link:

https://raw.githack.com/spisakt/RPN-signature/master/notebooks/Supplementary_Analysis_2.html

Alternatively, to edit and run the code:

https://nbviewer.jupyter.org/github/pni-lab/RPN-signature/blob/master/notebooks/Supplementary_Analysis_2.ipynb
>By clicking on “Execute on Binder” in the top right corner, the reviewers can enter the interactive
mode where the code of the analysis can be edited and run in a dedicated python environment.

2 Stability of the RPN-signature to the regions-of-interest system

Initially, we import the required python modules and load the data (composite pain sensitivity,
RPN-score, regional timeseries).

[7]: # import neccessary modules and load all data
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns; sns.set()
sns.set(style="ticks")
import warnings
warnings.filterwarnings('ignore')
from sklearn.preprocessing import StandardScaler
from sklearn.externals import joblib
from tqdm import tqdm as tqdm_base
# just a hack for a tqdm progress bar issue in python 2 notebooks
# https://github.com/tqdm/tqdm/issues/375
def tqdm(*args, **kwargs):

if hasattr(tqdm_base, '_instances'):
for instance in list(tqdm_base._instances):
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tqdm_base._decr_instances(instance)
return tqdm_base(*args, **kwargs)

# Load all data:
study1 = pd.read_csv("../res/bochum_sample_excl.csv")[["HPT",

"CPT",
"MPT_log_geom",
␣

↪→"mean_QST_pain_sensitivity",
"prediction"]]

study2 = pd.read_csv("../res/essen_sample_excl.csv")[["HPT",
"CPT",
"MPT_log_geom",

␣
↪→"mean_QST_pain_sensitivity",

"prediction"]]
study3 = pd.read_csv("../res/szeged_sample_excl.csv")[["HPT",

"CPT",
"MPT_log_geom",
␣

↪→"mean_QST_pain_sensitivity",
"prediction"]]

# merge datasets
df = pd.concat([study1, study2, study3])

# load the trained RPN-model
rpn = joblib.load("../res/predictive_model.sav")

# load features for each study
X_bochum = joblib.load("../res/feature_bochum.sav")
X_essen = joblib.load("../res/feature_essen.sav")
X_szeged = joblib.load("../res/feature_szeged.sav")

X=np.concatenate((X_bochum, X_essen, X_szeged))

2.1 Step 1. Stability to the definition region-boundaries (e.g. mixed signal)

Next to full drop-out of some of the regions another issue on the level of the regional timeseries can
be a decreased signal-to-noise ratio. Such an effect can be caused, for instance, by a generally low
measurement quality or a less accurate definition of regions (e.g. co-registration inaccuracies or use
of another brain atlas).

First, we define a function to add a given proportion of Gaussian noise to all of
the regional timeseries. >new_timeseries = original_timeseries + noise_weight * Guas-
sian_random(mean(original_timeseries), sd(original_timeseries))

• noise_weight = 0 means no additional noise at all,
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• noise_weight = 1 means an equal amount of original signal and additional noise

[9]: def mix_region(mixing_weight=0):
X_noisy=X.copy()
scaler = StandardScaler()
scaler.fit(X_noisy)
X_noisy = X_noisy + mixing_weight * np.random.normal(scaler.mean_,

scaler.scale_,
X_noisy.shape)

predicted = rpn.predict(X_noisy)

# calculate a reference value by simply adding noise to the original␣
↪→prediction

predicted_orig = rpn.predict(X)
reference=predicted_orig+mixing_weight *np.random.normal(np.

↪→mean(predicted_orig),
np.

↪→std(predicted_orig),
predicted_orig.

↪→shape)

return(predicted, reference)

Next, we investigate how prediction accuracy changes as a function of the amount of noise.

[10]: numiter=100
weights=np.linspace(start=0, stop=4, num=10)
noise_weight=np.zeros(len(weights)*numiter)
correlation=np.zeros(len(weights)*numiter)
correlation_reference=np.zeros(len(weights)*numiter)

np.random.seed(0)
idx=0
for w in tqdm(weights):

for iter in range(numiter):
ret = mix_region(w)
correlation[idx] = np.corrcoef(df['mean_QST_pain_sensitivity'],

ret[0])[0,1]
correlation_reference[idx] = np.

↪→corrcoef(df['mean_QST_pain_sensitivity'],
ret[1])[0,1]

noise_weight[idx] = w
idx=idx+1

data=pd.DataFrame({
'noise_weight' : noise_weight,
'correlation' : correlation,
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'reference' : correlation_reference
})

100%|����������| 10/10 [00:45<00:00, 4.54s/it]

[11]: # plot mixed-signal effect
ax=sns.lineplot(x="noise_weight", y="correlation", ci=95, data=data)
ax=sns.lineplot(x="noise_weight", y="reference", ci=95, data=data)
ax.axhline(0.2061, ls='--')

plt.show()

2.1.1 Supplementary Figure 14. The tolerance of the RPN-signature to noise added
to the regional timecourses.

The mean correlation (and 95% confidence intervals, blue) between predicted and observed pain
sensitivity is plotted as a function of the amount of noise added to all timecourses, simultaneously.
As a reference, we plot the case of adding the same amount of noise simply to the final prediction
(with 95% confidence intervals, orange), i.e. with the regional timeseries unchanged. Dashed line
denotes R=0.206, i.e. the correlation value belonging to the p=0.05 significance threshold.

The RPN-signature displays a remarkable robustness to reductions in the signal-to-noise ratios of
the regional signals (which can originate e.g. co-registration inaccuracies, BOLD-artefacts or “mixed
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signal” due to suboptimal parcellation). The RPN-signature tolerates “mixed signal” effects on the
level of regional timeseries significantly better than expected for a single-region-based marker.

2.2 Step 2. Stability to region drop-out

Here, we investigate how robust the RPN-signature is to region drop-out, that is, artificially zeroing
out the timecourse of a given number of RPN-regions. On real data, a similar (although not so
dramatic) drop-out can be caused e.g. by signal drop-out due to susceptibility artifact (typically
in medial frontal regions). We simulate drop out be zeroing out N regions randomly and plot the
histogram of correlations of the RPN-scores computed with random drop-out (drop-out score) with
the measured composite pain sensitivity.

First, we define a function to perform the “drop-out” of a given number of regions.

[12]: def drop_out_region(num_drop_out=0):
#load atlas labels
labels = pd.read_csv("../data/atlas_relabeled.tsv",

sep="\t")[["index","labels", "modules"]]
labels.loc[-1] = [0, "aMEAN_GM", "aMEAN_GM"] # adding a row
labels.index = labels.index + 1 # shifting index
labels = labels.sort_index() # sorting by index

# get coefficients of the RPN
RES = np.zeros(len(labels)*(len(labels)-1)/2)
featuremask = rpn.named_steps['fsel'].get_support()
RES[featuremask] = rpn.named_steps['model'].coef_

# zero-out some regions by randomly selecting from those having a nonzero␣
↪→coef

indices=np.random.choice(np.nonzero(RES)[0], num_drop_out, replace=False)
X_drop=X.copy()
X_drop[:, indices]=0

predicted = rpn.predict(X_drop)
return(predicted)

Next, we investigate how the correlation changes for various drop-out values.

[13]: numiter=50
max_drop_N=22
num_dropped=np.zeros(max_drop_N*numiter)
correlation=np.zeros(max_drop_N*numiter)

np.random.seed(0)
idx=0
for dropN in tqdm(range(max_drop_N)):

for iter in range(numiter):
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correlation[idx] = np.corrcoef(df['mean_QST_pain_sensitivity'],
drop_out_region(dropN))[0,1]

num_dropped[idx]=dropN
idx=idx+1

data=pd.DataFrame({
'num_dropped' : num_dropped,
'correlation' : correlation

})

100%|����������| 22/22 [00:52<00:00, 2.37s/it]

[14]: # plot drop-out effect
ax=sns.lineplot(x="num_dropped", y="correlation", ci=95, data=data)
ax.axhline(0.2061, ls='--')
plt.show()

2.2.1 Supplementary Figure 15. The tolerance of the RPN-signature to region drop-
out.

The mean (and 95% confidence intervals) correlation between predicted and observed pain sensitivity
is plotted as a function of the number of regions dropped out randomly by setting their timecourse
to constant zero. Dashed line denotes R=0.206, i.e. the correlation value belonging to the p=0.05
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significance threshold. The analysis revealed a considerable robustness to drop-out; the average
prediction accuracy remained significant by the random drop-out of up to 19 regions out of 21,
although – as expected - prediction accuracy constantly decreased with an increasing number of
dropped regions.
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